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Abstract

Software installation and updates have become simpler for end users in recent years.
The commoditization of the internet has enabled users to obtain more software than
ever before from more developers than ever before. Additionally, software installation
now requires less input from users, allowing installation with merely a single click or
tap. At the same time, different software installation models with varying levels of
security, usability and freedom have emerged. In centralized environments, available
software is limited by an authority, whereas decentralized environments allow users
and developers to interact freely. Decentralized software installation ecosystems pose
the most significant security challenges due to the lack of centralized control.

In this thesis we identify, through the systematic evaluation of prominent systems,
limitations in the way operating systems provide security guarantees (including ver-
ification of integrity and authentication, and establishment of trust) in decentral-
ized software installation environments. We address these limitations by designing
tools and protocols that help secure software installation and updates at each of the
three installation stages (software discovery, initial install and updates, and enforc-
ing security policies). Specifically, we propose a cryptographically verifiable protocol
for developers to delegate digital signature privileges to other certificates (possibly
owned by other developers) without requiring a centrally trusted public key infras-
tructure. Our proposal allows trust to be delegated during software updates without
user involvement. We also propose a flexible policy for developers to authenticate and
share privileges amongst applications being executed simultaneously on a device. We
evaluate these proposals and show that they are direct improvements over currently
deployed real-world systems.

We discuss the design and implementation of an install-time architecture that allows
users to query crowdsourced expert information sources to gain trust in software they
are about to install. We motivate the requirements for such a system, designed to
mirror the security semantics provided by centralized environments.

The proposed protocols and tools have been implemented as proofs-of-concept using
Google’s Android mobile operating system. We leverage a large application dataset
to inform our design decisions and demonstrate backward compatibility with existing
applications. While the implementations are specific to Android, we discuss how our
general proposals extend to other decentralized environments.
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Chapter 1

Introduction

Modern computing platforms such as personal computers, smartphones and tablets

offer incredible amounts of processing power, data storage and access to detailed

environmental readings (e.g., via Global Positioning System (GPS) sensors, cameras,

and gyroscopes). Operating systems running on these modern platforms, in their

initial (default) configurations, provide software applications which make basic use

of these advanced features. However, users are typically directed to third-party1

software if they wish to fully utilize all the features on their devices, or apply them

to novel uses.

The way users obtain and update third-party software for their devices has changed

significantly over the past few decades. The internet has provided a viable alternative

to (and in many cases entirely replaced) physical installation media (e.g., floppy disks

and CD-ROMs), allowing network-based software installations from diverse sources.

The following factors have also motivated the transition to network-based software

installations:

Smaller physical devices. As devices become increasingly mobile, manufactures

of smaller devices are removing expandable media slots such as CD-ROM bays, mem-

ory card slots, and Universal Serial Bus (USB) ports. The absence of these slots

encourages (and sometimes limits) software to being installed over the network.

Reduction of costs. The economic cost of producing physical installation media is

1Third-party software is installed and updated alongside the base operating system software load,
but may be developed by parties other than the OS vendor, e.g., an independent developer or group.

1



2 Chapter 1. Introduction

high compared to the cost of hosting an installation package on a web server. Hosting

costs can additionally be very low or even free if they are sponsored by a platform

vendor or subsidized by advertisement revenue. Time costs are also a factor when

considering delivery and shipping times as compared to making a digital download

immediately available, possibly to a worldwide userbase.

Need for updates. If software flaws are discovered after initial release, or missing

features need to be added, software updates can be distributed online. Updates to

software distributed on physical media rarely reach the full user base2, while software

initially distributed through online sources may more easily receive frequent updates.

Prior to the internet, acquiring software required a physical distribution channel.

Purchasing software on diskettes or CDs at a retail store was common, as were of-

fline peer to peer software transfer schemes such as sneakernet3 for sharing software

amongst friends and special interest groups. The periodic installation of software in

corporate environments through disk imaging or similar techniques was also common,

giving employees updated copies of software every few months. As software binaries

and installation packages grew in size (e.g., from small file size text-based games to

complex 3D games with intense graphics and textures), optical media such as CDs

and DVDs became the norm for software distribution. Later, the commoditization

of the internet allowed applications which were small in size to be downloaded from

remote servers, but larger applications such as office suites and games continued to

rely on physical media distribution. Still, as of writing, physical media persists as

the preferred method for distributing large applications such as video games for users

who do not have access to large amounts of bandwidth.

Ease of software installation has also increased in the past decades. Today’s soft-

ware, particularly software which targets modern operating systems, can be installed

and updated with a single click or touch of a screen, whereas installation previously

required obtaining physical media, loading it onto the system and following a set of

prompts. While the increased usability properties of software installation are wel-

come, they present a problematic scenario when combined with increased exposure

to a large software base: users today have more access to software than ever before,

2Hybrid update models exist, where the initial installation is provided via physical media, and
updates such as service packs or expansion packs are distributed online.

3The transfer of electronic information by physically moving the storage media from one location
to another.
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written by more developers than ever before. Single-click installations from central-

ized application repositories (i.e., app stores) make discovering and installing software

trivially simple for users, while simultaneously creating an environment that is ripe

for exploitation; as users become accustomed to installing more software without any

perceived negative impact, concerns about security become lower priority or security

is simply assumed to be present.

On desktop operating systems, users have gravitated towards a web-centric model,

where a large portion of computing time is spent visiting different websites and ser-

vices inside a web browser. When a web service is not available, downloadable ap-

plications are used. Smartphones and tablets on the other hand have moved towards

discrete, task-specific installable applications (commonly referred to as apps), likely

for two reasons: (1) web browsers on mobile are not as feature-complete as their desk-

top counterparts; and (2) the smaller user interface encourages carrying out targeted

tasks with minimal user input. The app culture has led to many users installing

dozens and in some cases hundreds of apps on their devices.

App installation has evolved into several models, each providing security, usability

and freedom properties. Centralized models where a central party (e.g., software or

hardware vendor) has full decision control over what applications are made available

to users are believed to provide high security and usability at a high cost of freedom.

Decentralized models, where users can install software from any developer without

restriction are often considered to offer weaker security guarantees but give users more

alternatives, encouraging unrestricted software development and consumption.

1.1 Motivation and Thesis Goals

We believe the new software installation paradigm of users frequently installing many

applications from a wide range of developers motivates the need for security mech-

anisms and supporting infrastructure to enhance installation and updates. As users

trust their devices and personal data to more developers with each new installation,

it is unreasonable to expect that end-users will be successful in distinguishing benign

from malicious developers and applications, especially at a large scale. We believe

there is also motivation to create security architectures that isolate (both from the
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OS and from each other) untrusted applications and limit applications’ capabilities

once installed. The design and implementation of these security mechanisms is the

overall motivation of this thesis. Specifically, the research and proposals made in this

thesis are driven by the following goals:

G1. Improve Decentralized Software Installation Security Mechanisms.

We identify limitations in currently deployed decentralized OS software security mech-

anisms related to software installation. When limitations are found, we propose im-

provements to make such mechanisms more robust and less prone to error when used

by non-technical users. Our goal is to provide improvements which can be incremen-

tally deployed to devices while maintaining backwards compatibility4. We inform our

proposals by empirically and systematically analyzing designs of currently deployed

systems. We specifically focus on issues related to establishing trust relationships

between applications written by multiple developers, as well as transparent trust

delegation during software updates.

Each of our proposals is designed with the goal of minimizing involvement from the

end-user (e.g., not asking the user for input unless absolutely necessary). While we

aim to propose generic improvements that are applicable to many (hopefully all)

decentralized platforms, we implement and evaluate concrete proposals on the open

source version of Google’s Android operating system [70]. Where possible, we discuss

the suitability of extending our improvements to other platforms as well.

G2. Propose New Architectures to Enhance the Security of Decentralized

Software Installation.

Where incremental changes improving on current security mechanisms are not fea-

sible, we propose entirely new mechanisms or architectures. These proposals may

require replacing major components in existing OSs, or require server-side supporting

infrastructure. Our objective here is that future OS designers (particularly those in

decentralized environments) will consider our proposals for inclusion (either directly

or variants) into their overall OS software installation security architecture. We focus

4Throughout the thesis, we use the term backwards compatibility to describe not needing to
change all currently existing applications in order to maintain interoperability with our changes.
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on the problem of establishing an initial trust relationship between end users and

developers in the absence of a central authority.

1.2 Main Contributions

In this thesis, we discuss mechanisms for securing the software installation process in

decentralized environments. To that end, our first contribution is an in-depth analysis

of the three main components of the software installation process:

1. Software discovery and initial trust establishment. We explore how users

can find trusted software applications in the presence of multiple, possibly untrusted,

application repositories. We identify requirements for achieving security semantics of

single-market environments when there are multiple markets available.

2. Integrity verification and trust continuity. We perform an in-depth analysis

of the Android software update process, including the secure retrieval of a copy of the

software from an installation source, and possibly overwriting a previously installed

copy as an update. Here we discuss challenges of authentication in decentralized envi-

ronments and propose a mechanism to prevent applications from being overwritten by

unauthorized parties. We also present a mechanism for cryptographically verifiable

trust delegation.

3. Security policy enforcement. We analyze different approaches for distribut-

ing, applying, and enforcing application security policies in the absence of a central

authority. For Android (versions 2.0 to 4.4) specifically, we identify limitations in the

granularity of privilege sharing between applications. We propose an alternate mech-

anism to specify applications with which a given application may share privileges.

In addition, this thesis also discusses the design, implementation and evaluation of

four software tools developed as proofs-of-concept.

Meteor. Meteor is a software installation framework designed to assist users in iden-

tifying trusted applications on initial install. Meteor is comprised of a client appli-

cation that interfaces with multiple server back-ends. The client queries the server

for additional relevant information about an application to be installed. The server

can notify the software client (called Meteorite) that an application is known to be
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malicious, or point the user to alternative applications written by the same or other

developers. This may help users find more suitable software alternatives. Meteorite

clients may optionally register to receive kill switches (app removal requests) from

the server in the event that a server operator finds an application to be malicious.

The feasibility of Meteor is demonstrated by building and testing the client software

on Android and the server on Linux.

The Android Observatory. The Android Observatory is a publicly available web-

site and service that allows users to view detailed information about Android appli-

cations. The Observatory processes Android applications extracting metadata and

finds similarities to other applications such as other apps signed with the same key,

same binary resources, permissions, etc.. As of writing, the Android Observatory

has indexed over 53,000 Android applications. The Observatory receives dozens of

volunteer app submissions per week. We have also shared the database of parsed

application metadata with several other international research groups.

Baton. Baton is a protocol that allows developers to delegate signing authority to

a new signing key and corresponding digital certificate. We implement Baton on

Android, where it was not previously technically possible to replace or make changes

to the signing key used to sign the initial release of an application. Baton allows

signing key updates without requiring a central authority of any kind. Baton is also

designed to be backwards compatible with existing applications and Android versions.

Fluid. Fluid is an alternate method for two or more Android applications to share

privileges, process, or memory space. Prior to this proposal, the only way to achieve

this level of integration was for developers to sign all applications in the (desired

sharing) group with the same signing key. Our proposal allows developers to retain

their own signing keys, while explicitly authorizing applications in a policy. The

shared privileges can be revoked (through an application update) at a later time if

necessary.

1.3 Related Publications

Most of Chapter 2 was published as a periodical article on software installation.

For this thesis, the content thereof was expanded and updated, removing focus on
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smartphones and generalizing the software installation models to modern operating

systems.

• D. Barrera and P.C. van Oorschot. Secure Software Installation on Smart-

phones. IEEE Security & Privacy, 9(3):42-48, May 2011.

The software installation infrastructure (Meteor) presented in Chapter 4 was designed

in conjunction with Dr. William Enck, who was instrumental in discussing the overall

concept and security design. Most of the writing in the subsequent publication of the

work is my own:

• D. Barrera, W. Enck, and P.C. van Oorschot. Meteor: Seeding a Security-

Enhancing Infrastructure for Multi-market Application Ecosystems. In IEEE

Mobile Security Technologies Workshop (MoST), 10 pages, 2012.

Chapters 3 and 7 include text from a peer-reviewed publication written in collabo-

ration with Dr. Jeremy Clark and Daniel McCarney. Clark and McCarney assisted

with deconstructing Android’s software installation framework and implementing the

proposed changes, respectively.

• D. Barrera, J. Clark, D. McCarney, and P.C. van Oorschot. Understanding and

Improving App Installation Security Mechanisms through Empirical Analysis

of Android. In ACM Workshop on Security and Privacy in Smartphones and

Mobile Devices (SPSM), pages 81-92, 2012.

Chapter 6 contains certain portions of the paper listed immediately above, in addi-

tion to research done in collaboration with Daniel McCarney and Dr. Jeremy Clark.

McCarney was responsible for the implementation and testing of the Baton software,

while Clark was instrumental in discussing the design and specifications of the system.

The paper was accepted for publication in May 2014:

• D. Barrera, D. McCarney, J. Clark, and P.C. van Oorschot. Baton: Certificate

Agility for Android’s Decentralized Signing Infrastructure. In ACM Conference

on Security and Privacy in Wireless and Mobile Networks (WiSec). 2014.

Finally, a small portion of Chapter 3 relating to Android’s permission model was up-

dated and included from an early publication focusing on analysis of permission-based

security models. The paper was written in collaboration with Dr. H.G. Kayacik, but

the text used in this thesis is my own.
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• D. Barrera, H.G. Kayacik, P.C. van Oorschot, Anil Somayaji. A Methodology

for Empirical Analysis of Permission-based Security Models and its Application

to Android, In ACM Conference on Computer and Communications Security

(CCS), pages 73-84, 2010.

All the publications above were supervised by Dr. Paul van Oorschot, who provided

invaluable assistance during the writing process and in shaping each of the papers.

1.4 Definitions and Scope

This thesis focuses on the evaluation and proposal of software installation security

mechanisms that do not require a trusted central authority, that is, mechanisms that

can improve the security of software installations in decentralized ecosystems.

We use the term decentralized to refer to an environment where developers can inde-

pendently create software and deliver it to users without the need for inclusion in a

centralized or formal application store, nor need to obtain a developer license from

the OS vendor (the requirement of such a license is the norm in Apple’s iOS and

Microsoft’s Windows Phone, for example).

We use the term software installation to refer to the overall process that occurs when

software is being installed. While security tools and mechanisms can be used prior

to installation (and indeed, much of the overall security of installation depends on

secure pre-installation) we do not consider pre-installation as our main focus since it

more generally relates to software security instead of installation. Post-installation

security mechanisms are also critical to the overall security of a system. However,

these are similarly beyond our main scope. Chapter 2 discusses, for completeness,

software security mechanisms typically performed prior and post installation.

Android as a Decentralized Ecosystem

Throughout this thesis, we frequently refer to Android as the driving example of a

widely deployed decentralized ecosystem. Many Android devices by default include

Google’s software repository (presently known as Google Play). For users who install

software only from Google Play, and never from third party sources, the ecosystem



1.5. Organization 9

more closely resembles a centralized ecosystem where Google is the trusted authority.

In this thesis, our main focus is the case where (Android or other) users install software

from third-party application markets (many are available as described in Chapter 5),

or directly from the developer as well as possibly from Google Play.

1.5 Organization

The remainder of this thesis is organized as follows. Chapter 2 covers background

concepts relating to software installation frameworks and software installation mod-

els. This chapter also reviews related work to pre- and post-installation software

security mechanisms. In Chapter 3, we perform a comprehensive analysis of An-

droid’s software installation framework, focusing on security aspects. In Chapter 4,

we discuss security problems with current software discovery in decentralized appli-

cation ecosystems and propose an improved software installation infrastructure for

these environments. In Chapter 5, we discuss the design and implementation of the

Android Observatory which can be used as an information source for the architecture

described in Chapter 4. Chapter 6 presents a proposal for improving signing key

delegation in environments where there is no centralized certificate authorities. We

discuss the general protocol, as well as an Android-specific implementation and evalu-

ation. Chapter 7 discusses mechanisms for securing inter-application communication

through the use of application security policies. Here we discuss an improvement to

Android’s application interaction policy which enables trust establishment and revo-

cation as needed. In Chapter 8, we after revisit our thesis goals and discuss remaining

open problems in securing decentralized software installation and updates.





Chapter 2

Background and Related Work

2.1 Introduction

This chapter provides necessary definitions and related work to contextualize decen-

tralized software installation. We present definitions that we use throughout this

thesis, and further define our scope. This chapter also covers related work in software

security, relevant but not specific to installation. Related work specific to each of our

proposals is reviewed in subsequent chapters.

2.2 Deconstructing Software Installation

The concept of software installation is used broadly throughout the literature. It

is often used interchangeably with other similar terms such as software updates,

installers, and package management. Generally speaking, software installation refers

to the act of making a program ready for local execution. However, depending on the

target computing platform, type of software, or intended use, preparing a program

for execution may result in different sets of procedures.

For example, software installation can be as simple as retrieving a remote, pre-

compiled binary and placing it in a directory where the user has execution privi-

leges. A more complicated example might require the system’s software installation

11
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framework — the OS programs and libraries designed to assist in performing software

installation — to confirm minimum system requirements are met, identify and resolve

shared library dependencies, verify the integrity of each downloaded component, copy

necessary documentation and examples, and finally set up paths and links so that all

users on the system can run the software. The latter example is representative of

Linux package managers (e.g., Debian’s APT [98] or Archlinux’s Pacman [15]), while

the former example typically occurs when downloading simple, standalone applica-

tions.

Since this thesis focuses on security, we deconstruct the software installation process

into the different stages during which security decisions are made. To keep the nar-

rative focused, throughout the thesis we’ll assume the applications being installed

are self-contained and thus requires no external software dependencies for execution.

We’ll also assume that a software update is functionally similar to performing a new

installation. However, updates must preserve existing user data. We divide the soft-

ware installation process into three logical and sequential steps. A brief description

of each step is given below, noting that steps 1, 2 and 3 are discussed in detail in

Chapters 4, 6, and 7, respectively.

(1) Software Discovery. A user’s intent to install an application initiates the soft-

ware discovery and overall software installation process. Users might compare differ-

ent applications by vendor, price, user ratings, etc. Centralized environments will give

users few1 software installation sources, while decentralized environments will have

plentiful alternatives. The software discovery may also be initiated by the system

notifying the user that an update for an application is available.

(2) Software Download and Update Integrity. Once the user has selected an

application for installation, the application must be securely retrieved (e.g., from

a remote server or external file system). Here, integrity checks may verify the file

transfer completed without data being modified in transit. In the case of an update,

the system or installation framework can ensure that the new version was endorsed

(usually through digital signatures) by the developer of the currently installed version.

Caution must be taken to ensure user data is not deleted during updates.

(3) Applying and Enforcing Application Security Policies. The final step in

the installation and update process is to apply a security policy to the newly installed

1Generally only a single option is available.
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or updated application. The security policy may have been previously created by the

OS vendor, provided by the application developer, or manually configured by the

user. Combinations of the previous three options are also possible. The security

policy will be applied at install-time and enforced at runtime, ideally preventing

unwanted applications from gaining privileges they have not been granted.

We note that the steps listed above exclude any static security analysis of software

(e.g., malware scanning) that is done, possibly at a large scale, prior to the installation

process. Similarly, once the application is installed, performing runtime security

analysis of applications during execution is also not part of the installation process.

These two steps are important to software security overall. Thus, related work is

discussed for completeness in Sections 2.4 (pre-installation security) and 2.5 (post-

installation security), but the steps remain out of scope for this thesis. For the

purposes of this thesis, the software installation process begins with user intent to

install a program, and ends once the local copy of the application is ready for its first

execution.

A note on automatic updates

Many modern operating systems and applications support updating software without

user intervention. These automatic updates are sometimes known as silent updates

or unattended updates. The general workflow for these updates is to first notify the

user of an available update (usually through the application or system periodically

polling an update server), then apply the update following the process outlined in

step (2) above. The update process will usually require the application in question

to be restarted and optionally to notify the user that the application was updated.

We include automatic updates in our scope, and assume user intent by enabling the

auto-update functionality either in the OS or per-app.

2.3 Software Installation Models

To better understand and compare the different types of software installation models,

we find it useful to reference a common framework. To that end, this section describes
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a classification of software installation models for third party applications.

We see three generic models for software installation, classified by the level of control

the OS or hardware vendor has over third-party software installation and application

management. The centralized model provides the vendor with the most control. In

the decentralized model, the vendor has practically no control over software once the

device is sold. The hybrid model is a middle ground that can be adapted to several

environments.

2.3.1 Centralized

The centralized model gives the OS vendor full control over third party installation of

software on end-user devices. Users can only install software that has been approved

and made available through a vendor’s app market or clearinghouse. Due to their

restrictive practices, centralized environments are sometimes referred to (perhaps

more appropriately) as closed platforms or walled gardens2.

In the centralized model, applications can be removed from the clearinghouse by

the vendor (sometimes without developer warning), as well as remotely uninstalled

or disabled on user’s devices (see Kill Switches in Section 2.5.4). Code signing is an

essential part of this model, since it provides a reliable technical mechanism to provide

evidence that an app was sanctioned by the vendor and has not been modified. The

walled garden model places most of the security decisions and testing in the vendor’s

control, giving even non-technical users a (perhaps unfounded) worry-free experience.

While this model is subject to controversy due to the vendor’s totalitarian control

over the user experience on the device, it provides a strong set of tools to control

platform security. In the event that a malicious application is detected (even post-

vetting; see Section 2.4.1), the app can be uninstalled from any or all devices that

installed the application. The vetting process itself, in conjunction with the single

point of software entry on to the device, also allows the vendor to monitor trends and

tightly control use of features on user devices.

2Walled gardens exist beyond personal computing devices such as PCs, tablets and smartphones.
E-book readers, video game consoles, and cellular carriers will often limit devices that can access
their network, as well as tightly control content that is delivered to user devices.
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Jailbreaking and Installing from Untrusted Sources

Under certain conditions, it is possible for users of devices in centralized environments

to remove the restrictions established by the central authority. Once the restrictions

are removed, it is possible for users to install software from any source (albeit at

their own risk). Vendors in centralized platforms typically make removing software

installation restrictions from a centrally managed device difficult by locking the boot-

loader such that only digitally signed images can be booted. The process or removing

bootloader locks varies depending on the manufacturer.

A popular example of removing software installation restrictions in a centralized en-

vironment is jailbreaking3 Apple’s iOS. The first jailbreaks for iOS were made public

shortly after the first release of iOS [115] and gave iOS users access to the full device

filesystem. This enabled users to bypass codesigning restrictions and directly install

software onto the device. Once software installation restrictions are removed, devices

behave as decentralized (see below).

2.3.2 Decentralized

In this model, the OS and hardware vendor place no restrictions over what software

can be loaded on to devices. Thus, the user is responsible for deciding what software

installation sources, developers and applications to trust. Users are free to install soft-

ware from any source (e.g., a website, memory card, application marketplace), taking

on the risk that any or all applications could be malicious since there is no application

vetting by default. However, software repositories or third party clearinghouses may

independently offer application vetting or certification services.

The decentralized model relies more heavily on strong operating system security fea-

tures such as application isolation to limit the negative impact of malicious applica-

tions on other applications, on the user, and on system software. Additionally, the

lack of a central trusted party results in users being responsible for detecting malicious

applications after installation.

3The term jailbreaking is believed to be in reference to escaping the BSD-like “jail” in which
many system applications are executed on iOS.
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Prominent examples of decentralized ecosystems such as Google’s Android OS have

proven that software installation security under this model may require asking users

questions which they do not have the technical expertise or detailed knowledge to

answer. These questions may be asked either at install time, or at resource access

time (e.g., “Do you want to allow this application to read phone state?”). These types

of questions have been shown to be largely ineffective with non-technical users [54, 53].

2.3.3 Hybrid

In the hybrid model, some security decisions may be offloaded to a knowledgeable or

trusted third party. However, depending on the system, users may still be allowed to

install their own software, bypassing the trusted third party. The trusted party has

been described by Wurster [126] as a guardian.

The guardian’s role can be assigned to a variety of entities ranging from the OS

vendor (in which case the guardian model behaves more similarly to the centralized

model), a mobile phone carrier, an acknowledged expert acting on behalf of a less

knowledgeable group of users, or an enterprise system administrator who already

controls policy on other employee devices. The guardian is typically in charge of

making most of the fundamental security decisions (e.g., which apps are allowed to

be installed, what services they are allowed to access on the device); end users are

minimally involved with making decisions thereafter. The guardian may also perform

a less rigorous application vetting process (e.g., banning applications that violate

corporate policy or project values4). This method provides a flexible middle ground

for software installation that can be fine-tuned according to the required level of

security or control.

The hybrid model is common in Linux and BSD distributions, where the distribu-

tion vendors (or core developers) release a Linux kernel, core system utilities, and

a package manager. The distribution maintainers provide support and updates for

this set of applications, while support for third party applications must be provided

by upstream5 developers. Users are also free to download applications from devel-

4Debian Linux does not include proprietary (i.e., non-free or open source) applications in its
package manager [38].

5The term upstream is used in the open source community to refer to the original application or
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Installing irssi -0.8.15 _6... done

===> SECURITY REPORT:

This port has installed the following files which may act as

network servers and may therefore pose a remote security

risk to the system.

/usr/local/bin/irssi

If there are vulnerabilities in these programs there may be a

security risk to the system. FreeBSD makes no guarantee

about the security of ports included in the Ports

Collection. Please type ’make deinstall ’ to deinstall the

port if this is a concern.

For more information , and contact details about the security

status of this software , see the following webpage:

http :// www.irssi.org/

Figure 2.1: Example installation of the irssi IRC client on FreeBSD 10.0. Once
the installation has completed, a warning is displayed to the user explaining that
third-party applications (ports) may be insecure.

oper’s sites directly, albeit at their own risk. Figure 2.1 shows an example message

displayed to users when installing a third-party application that includes a network

server. FreeBSD developers state that they make no guarantees about the security

of these third-party applications, and direct the user to the upstream developer for

more information.

2.4 Pre-installation Security Mechanisms

The security mechanisms presented in this thesis are designed to operate during the

software installation process. While the operating system and software installation

framework make a number of the security decisions during the software installation

process, security tools and mechanisms may also be used before and after installation.

In this section we review related academic work involving pre-installation security

mechanisms. In Section 2.5, we perform a similar review of runtime (post-installation)

security mechanisms.

library developer when reporting bugs to distribution maintainers, who are often only responsible
for compiling and packaging third-party source code.
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2.4.1 Application Vetting

Platform vendors that provide controlled application repositories typically perform

some level of vetting on applications submitted for inclusion in their repositories.

This section describes some of the tests that vendors run on applications during the

app vetting process. We note that many application repository maintainers do not

publicly detail their testing process, but often make available to developers documen-

tation outlining test criteria and submission guidelines. We base the following list

on documents from Nokia’s SymbianSigned Test Criteria [112], Apple’s App Store

review guidelines [13] and Mozilla’s add-on review process [92]. We augment the list

with anecdotal reports from developers, as well as our own experience when dealing

with application submissions to centralized repositories.

Smoke tests. These tests involve a quick overview inspection of the application

to ensure that it does not catastrophically fail. Generally this is not a thorough

test, but rather an initial sanity check to verify that the application is worth the full

testing process (provided there is one). Smoke tests help filter out broken applications

submitted by mistake, as well as poorly written applications. This type of test must

be simple to perform in an automated fashion, reducing costs albeit sometimes at the

expense of accuracy. It is our understanding that all controlled markets perform at

least basic smoke testing on submitted applications.

Hidden API checks. Operating system libraries may expose application program-

ming interfaces (APIs) that are reserved for system applications. These APIs are

generally not present in developer documentation, as they are intended to be used

only by the OS vendor. Developers sometimes use hidden APIs (by either guessing

function names in a common namespace or reverse engineering the OS) to obtain

direct access to low-level functionality or to speed up their application by avoiding

unnecessary layers of abstraction (especially in graphics and media code). Developer

use of hidden APIs is regarded as a poor programming practice, since these APIs

could change with future OS releases. Static code analysis and debugging can help

identify use of hidden APIs, but all instances might not be revealed. Manual testing

and fuzzing may be required for this test.

Functionality checks. These tests verify that the application being submitted is

capable of undergoing “typical expected use” without interfering with other installed
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applications. Details of how such tests are performed are not always made available

by vendors, but we expect manual testing is required. Functionality tests involve

simulated real word application use to ensure the application opens, closes, does not

crash, etc. Other checks may include verifying that an application does not disrupt

basic phone functionality (e.g., the ability to receive a phone call or message) or drain

the battery. Some vendors might also perform a more detailed suite of tests on the

most popular applications in their application repository.

Intellectual property, liability, and TOS checks. These checks involve verifying

that the submitted application does not violate Terms of Service (established by the

OS vendor or carrier) or infringe on intellectual property. Tests in this category

are usually performed to limit the vendor’s liability in the event of a legal dispute

surrounding the application once it has been approved. Such checks can be partially

automated by looking for specific trademarked keywords or files, but likely require

some manual inspection if searching for objectionable6 content or simply rely on

independent notification or complaints by third parties.

User interface checks. Some vendors place heavy emphasis on the user interface of

the application in an attempt to deliver a more consistent user experience. For these

vendors, testing the user interface (i.e., the placement of buttons, colour schemes,

navigation within the application, etc.) is important. Failure to comply with estab-

lished UI guidelines could result in the application being rejected from a vendor’s

controlled market. Checks in this category are believed to be done manually rather

than in an automated way.

Bandwidth checks. Application use of excessive amounts of bandwidth can severely

impact a network (particularly mobile networks). Applications that stream Internet

radio or download large files may be further tested to see if they operate within a

network operator’s infrastructure constraints. The size of the application itself may

also be analyzed to determine the best (least costly) method of delivery to users (e.g.,

WiFi or cellular data).

Security checks. The surveyed application submission guidelines briefly mention

malware and trojan horses being unacceptable, as expected. However, there is less

detail of how malware checks are performed, if at all. Mozilla’s add-on repository

6Apple uses an even more subjective term over the line, and defines it as: “We’ll know when we
see it” [13].
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contains many extensions that are open source, and Mozilla claims to review source

code where possible [92]. When source code is not available, it is unclear what is

tested in terms of security. In 2012, Google announced [64] that it was performing

dynamic analysis of applications submitted to the Google Play Store. Their dynamic

analysis framework is discussed in Section 2.5.

From the list above, it appears that most vetting tests are geared toward reducing

liability from the vendor and improving user experience. Security plays a small role

during the vetting process. It appears that vendors who control application repos-

itories mainly rely on their ability to remove applications or developers from their

repository a posteriori rather than attempt to thoroughly investigate or certify the

applications upon submission.

2.4.2 Static Code Analysis and Code Review

Several academic proposals exist regarding statically analyzing applications. Static

analysis is performed without running the application in question, in most cases by

using automated tools looking for specific code patterns. Code review, as the name

implies requires access to the program source code which may not always be available.

Thus, decompiling7 and manual reverse engineering is required.

Egele et al. [42] statically analyzed 1,400 iOS applications. The research was con-

ducted by decompiling each application (a Mach-O binary from compiled Objective-C

code) and automatically creating a control flow graph (CFG). The CFG is then used

in a reachability analysis phase to detect whether there are any data flows between

sensitive cell phone identifiers and network API calls. The authors find that Apple’s

vetting process (as of early 2011) failed to detect many instances of privacy violations,

putting user data at risk.

Enck et al. [44] performed a large scale analysis of Android applications by decom-

piling 1,100 popular free applications using a custom decompiler. The authors use

7A decompiler is a program that given a binary, attempts to produce a high-level language that
performs the same function as the original binary once compiled [33]. Successful decompilation
of binaries is a difficult problem, particularly in the presence of obfuscated code. However, general
approaches exist with varying levels of success dependent on the language and compiler used, number
of subroutines introduced, etc. (cf. [33]).
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static analysis on the resulting 21 million lines of recovered code, and note that while

pervasive use of advertisement and tracking libraries exists (present on over 50% of

analyzed applications), malware was not present in their dataset. The lack of malware

may have been observed due sampling bias, as only the most popular applications

from the official Google Play Store were included in the dataset.

Work has also been done attempting to statically create a mapping of Android API

calls to Android permissions. As of writing, there is no automated way for Android

developers to determine the set of permissions needed for an application to run. Thus,

developers must read the relevant documentation (which is sometimes incorrect or

outdated) and manually assert needed permissions. Felt et al. [51] built a tool to scan

compiled Android applications in an effort to automatically detect over-declaration

of permissions (i.e., permissions requested but never used). Similar work by Au et

al. [17], produced a permission-to-API calls map. Au et al.’s methodology differs from

Felt et al. in that the former authors generate call graphs on the full Android source

code, whereas the latter look at call graphs on individual applications.

2.4.3 Metadata Analysis

Software may be packaged and distributed with additional information about the ap-

plication (e.g., related to Android, see Section 3.3). This metadata, such as name,

version number, permissions, author, etc., may help users learn more about the appli-

cation without installing it. Of course, the authenticity and integrity of application

metadata should be protected to prevent modification which might result in tricking

users into installing unexpected versions or modified copies of software. This sec-

tion discusses academic proposals to analyze application metadata with a focus on

software security.

Kirin [45] suggest that permission (a complete list of Android permissions is provided

in Appendix B) combinations might be dangerous. For example, permissions to write

to the SMS database (WRITE SMS) and receive incoming messages (RECEIVE SMS) could

give an application the ability read incoming messages and delete them, or modify

them before writing.

Barrera et al. [21] used the self-organizing maps machine learning technique to visu-
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alize Android permission requests (see Section 3.4) in the top 1,100 Android appli-

cations on the Google Play store in December 2009. The authors find that there is

no correlation between declared application categories (which are developer chosen)

and permission requests made by the application. This observation becomes relevant

when users are expected to interpret permission requests and decide whether to trust

an application. The authors also find that while Android’s permission system is very

granular, the use of permissions by application developers is not uniform; a small

number of permissions (e.g., those restricting access to network connectivity, GPS

access, and SMS functionality) are used by a large percentage of applications, while

most permissions are rarely or never used.

Metadata such as app price, reviews, number of downloads and ratings, all of which

are provided by application markets, can also be analyzed with data-mining tech-

niques. Chia et al. [30] performed statistical analysis comparing permission requests

with app popularity. For their analysis, the authors collected large datasets of An-

droid applications from multiple markets, Facebook applications, and Google Chrome

browser extensions. The authors find that even across multiple platforms and ver-

sions, popular applications request more permissions (i.e., are more privileged). Chia

et al. also find that developers often modify the branding of their application (e.g.,

app name and description) to mislead users into installing applications which are

believed to provide some level of functionality.

2.5 Post-installation Security Mechanisms

This section briefly covers related work in proposing security mechanisms whose op-

erations require the application to be executed. In general, the work below involves

the dynamic analysis of applications to identify privacy leaks, unauthorized privilege

escalation, and malicious program components.
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2.5.1 Privacy Leaks

On the defensive side, TaintDroid is an Android modification designed by Enck et

al. [43] to detect privacy leaks in applications. While taint tracking has previously

been used in desktop operating systems to detect attacks, Enck et al. were the first

to develop a dynamic taint analysis solution for a mobile platform where resources

are limited. TaintDroid works by flagging sources of sensitive data (e.g., cell phone

identifiers, contacts, and messages) when relevant API calls are made, and identify-

ing flagged data if and when it reaches a sink (usually a network interface). Since

TaintDroid requires deep system integration, it must replace the local Android base

operating system installation. However, TaintDroid may allow experts to test third-

party applications for privacy violations.

On the attack side, Schlegel et al. [108] demonstrate a trojan for Android that is

capable of identifying sensitive information spoken into the device’s microphone (e.g.,

credit card numbers and PINs). The trojan requires the installation of two separate

low-privileged applications that communicate through covert channels on the device

once installed.

2.5.2 Privilege Escalation

A heavily researched area in OS security focuses on attacks and defences against

privilege escalation. A privilege escalation attack usually involves an unprivileged

application performing a privileged task. This can occur either by exploiting a local

system vulnerability (e.g., bypassing a permission check), or by asking a privileged

application to perform the task on behalf of the unprivileged app (also known as a

confused deputy8 attack).

Bugiel et al. [24, 25] describe a multi-layered security framework for Android that

combines application-level inter-process communication (IPC) inspection, and kernel-

level mandatory access control (MAC) to prevent privilege escalation attacks. Their

8This attack model is often called a confused deputy attack [72], in which an innocent application
is fooled into performing a task on behalf of a malicious application. Since the privileged application
is allowed to perform the task, and is trusted by the OS, the attack is both difficult to detect and
difficult to prevent.
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system allows the user or administrator to supply custom policies that can prevent in-

formation flows from unprivileged applications to privileged ones. A more lightweight

approach was proposed by Dietz et al. [39] in which IPC messages on Android are

allowed or denied after performing the equivalent of a call stack inspection [122] on

Android.

Felt et al. [55] proposed a different approach to preventing confused deputy attacks

on Android. The authors suggest dynamically reducing the privileges of the callee

application to the intersection of the permission sets of the caller and the callee. If this

technique is being used, the caller (possibly malicious) application would be forced

to request more privileges at install-time, as attempts to use a privileged application

without sufficient permissions would be denied.

Chin et al. [31] and Kantola et al. [78] attempt to identify errors where developers

make available APIs to provide functionality to other applications, but do not perform

necessary privilege checking to ensure the API call does not leak sensitive data. By

allowing any other application to invoke API calls, the app making available such

functionality may be susceptible to abuse. In the former proposal, manual inspection

was done on 20 popular applications, and in the latter a set of heuristics are proposed

for automated detection of vulnerable applications.

Ontang et al. [97] propose redesigning Android’s IPC framework to allow the defi-

nition of fine-grained policies on the receiver application. By allowing applications

with exposed interfaces to limit which applications (including version numbers, code

signing certificates, authors) can use their APIs, the risk of communicating with (and

possibly being exploited by) malicious applications may be reduced.

2.5.3 Malware Scanning

Anti-malware vendors often claim that malware on smartphones is rising exponen-

tially and that Android users, due to Android’s decentralized model, are at greater

risk of infection. One recent paper [82] analyzed Domain Name System (DNS) queries

for over 380 million cell phones on a major US cellular carrier, and found that only

0.0009% of devices were observed to be executing malware that communicated with

known malicious domains. These findings challenge the notion that malware is ram-
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pant on decentralized (and centralized) ecosystems. Two surveys of mobile mal-

ware [52, 132] on iOS, Symbian and Android characterize the main malware families

(including those found in the study above) comparing infection vectors and common

post-infection behaviour.

Proposals for system call analysis for malware detection also exist. Two proposals [26,

102] record system call traces on Android devices, analyzing them locally (e.g., by

comparing to a local policy) or optionally submitting them for cloud-based analysis.

A different cloud-based approach is Jarabek et al.’s [75] ThinAV, a lightweight anti-

virus for Android that looks up cryptographic hashes of Android applications on freely

available cloud-based anti-virus engines.

Zhou et al. [131] proposed a method for detecting repackaged9 Android applications on

third-party application markets. Their technique relies on having a known-good copy

of Android applications collected from the official Google Play Store. Applications

are run through a disassembler, and the resulting code is then run through a fuzzy

hashing algorithm that is resilient to small changes in the binary. The resulting hashes

are compared and a similarity score is assigned to application pairs. In subsequent

work [130], Zhou et al. improve the detection technique by adding a module decoupling

stage, where the application is split into its main components (e.g., ad libraries,

tracking libraries, static resources, etc.). Module decoupling is done by statically

computing a program dependency graph on compiled code.

Google themselves reportedly scan for malware applications submitted to the official

Google Play store [64]. Google appears to run applications in a virtual Android

environment for 5 minutes while monitoring network access, as well as access to file

system and other private resources [77].

2.5.4 Kill Switches

Remote application revocation and uninstallation, also known as a kill switch, is a

powerful feature in centralized operating system ecosystems. Kill switches allow the

OS vendor to remotely (potentially without user interaction or approval) uninstall or

9Repackaged applications are benign applications onto which malicious code has been attached.
The new binary is subsequently published on to a third-party application market.
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disable an application on a user device. Kill switches typically work closely with a

platform’s application marketplace since their operation requires that vendors know

(or have some mechanism to detect) if an application has been installed on a device.

On-device software to access the vendor’s marketplace might periodically transmit a

list of installed applications to the vendor. While kill switches offer a mechanism to

control the spread of malicious applications, they can also facilitate excessive vendor

control and might potentially be abused for censorship or anti-competitive practices.

Notorious examples of kill switches used in practice include Amazon’s removal of

George Orwell’s 1984 e-book from user’s Kindle e-readers [4] after the book’s publisher

noticed that copies had been sold in unauthorized regions. Google has also invoked

their kill switch to remove a malicious application from all user devices [100]. Apple

has also confirmed that iOS includes kill switch functionality [114], but there is to

our knowledge no existing evidence that it has been used in practice.

2.6 Secure Software Distribution and Updates

To the best of our knowledge, there is little academic research related to understand-

ing, defining, and securing the software installation process. This may be unsurpris-

ing, since the notion of software installation is relatively recent (circa mid-1990s, as

OSs and software grew in complexity, requiring an installation prior to running), and

regular updates becoming an even more recent practice. The few academic papers

that have been published are discussed in this section and its subsections.

A survey by Anderson et al. [5] presented a comprehensive stakeholder analysis of

software installation. The work identified key roles in the software installation pro-

cess such as users, administrators, developers, packagers, certifiers, etc. The goals,

incentives and influence is discussed for each role, concluding that traditional mar-

ketplace phenomena (e.g., asymmetric information and moral hazard) also occur in

the software installation ecosystem. The paper also surveyed software installation

frameworks used in 10 different platforms (Microsoft Windows, Mac OS, Ubuntu

Linux, Symbian, iOS, Android, browser plugins, browser extensions, Facebook ap-

plications and OpenSocial), noting that newer OSs targeted towards smartphones

and tablets have a more robust security architecture than desktop OSs. At the same
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time, browser extensions and plugins were noted as being either highly privileged

(e.g., Mozilla Firefox) or poorly vetted (e.g., Google Chrome).

2.6.1 Secure Software Distribution

When developers began using the internet for software distribution, malicious devel-

opers leveraged the internet’s inherent anonymity properties to distribute malware.

Executing code from untrusted sources, sometimes as a privileged (i.e., root) user,

can lead to the compromise of the system. The problem for users became how to know

ahead of install-time, whether or not the source of the software could be trusted.

Rubin [101] proposed one solution to the problem, which involved a trusted third

party (T ) issuing certificates for developers (D). In this scheme, D registers with

T by proving his identity and supplying a public key. For each software release, D

constructs a message m which includes the developer’s name, file name and location,

version number, cryptographic hash of the file, and a timestamp. The message is

digitally signed and submitted to T. Upon receiving m and verifying D ’s signature,

T creates a certificate which includes all information above as well as T ’s identity. D

can now post a copy of his software along with the certificate issued by T. If the user

has a copy of T ’s public key, it is possible to independently verify that the downloaded

software was certified by T.

The solution above is the foundation for many trusted software distribution schemes

where a central authority exists. The scheme is lightweight for the user who only needs

the trusted party’s public key and the ability to verify signatures. For example, Apple

(centralized) signs and encrypts third-party applications on its app store, and pre-

loads verifying keys onto user devices [42]. Decentralized environments by definition

do not involve a trusted central party, so while digital signatures are used, they

typically provide a weaker form of authentication [16] as they can only be used for

recognition (see Trust on First Use; Section 6.2.3).

Many popular package managers10 have been found to either use signatures incorrectly

10A package manager is a software tool that retrieves and installs software from the OSs official
servers or from mirrors hosting copies of the software. The package manager may also be responsible
for keeping records of installed software and versions, and identifying and resolving dependencies or
conflicts between installed packages.
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or not at all, exposing users of the package managers to vulnerabilities [105, 28]. In

fact, some package managers appear to trust any file, even when obtained over an un-

secured channel (e.g., HTTP without SSL or unencrypted FTP). These vulnerabilities

allow malicious parties to deliver (through a man-in-the-middle attack) compromised

software to users, and possibly execute the malicious code on user devices. Sub-

sequent to the work of Cappos et al. [28], many Linux distributions have updated

their package managers to verify digital signatures or, at the very least, verify SSL

certificates presented by servers.

2.6.2 Secure Software Updates

Bellissimo et al. [23] surveyed software update frameworks used by popular OSs and

applications (e.g., Windows and Apple update, Firefox, McAffee VirusScan) and

found that some are vulnerable to man-in-the-middle attacks. Frameworks are usually

at risk if they do not authenticate the binaries that are being downloaded, or the

channel through which they are retrieved. The authors note that custom or standalone

software update solutions are more likely to be insecure due to developer error, while

OS update mechanisms tend to use multiple layers of security (e.g., signed binaries

delivered over SSL).

In the simple case where a single private key is used to sign all updates, the compro-

mise of that key can be devastating. To address this problem, Samuel et al. [106] pro-

pose splitting the update process into several roles. Developers in each role are tasked

with different responsibilities (e.g., timestamping the update or packaging files), each

requiring a digital signature created with a separate private key. Thus, if a single key

gets compromised, users are not immediately at risk of being sent malicious updates.

The update framework attempts to divide trust of private keys amongst multiple par-

ties to reduce the risk of a single compromise. This idea is also the basis of threshold

signatures [109], which may be used as a lower level cryptographic primitive when

creating keypairs for the framework above.

Van Oorschot and Wurster [117] discuss using digital signatures to prevent the unau-

thorized modification of binaries on Linux systems. The general approach presented

uses file system metadata blocks to store verification keys for subsequent updates.
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If a locked file needs to be replaced, the replacement file must be digitally signed

such that the signature can be verified with at least one of the on-disk verification

keys. Updated versions may include different sets of verification keys, allowing key

evolution or continuity. We build upon type of key continuity scheme in Chapter 6.

2.7 Summary

This chapter has introduced the definition of software installation that will be used

throughout this thesis. We’ve presented a classification of software installation mod-

els, comparing properties of centralized, decentralized and hybrid ecosystems. This

chapter also covered related work in software security occurring prior to or post soft-

ware installation. Finally we highlighted relevant related academic work in securing

software distribution and updates.





Chapter 3

Android’s Software Installation
Framework and Security Model

3.1 Introduction

In this chapter, we conduct an empirically-informed systematic analysis of Android’s

software installation framework, focusing on the security mechanisms employed during

app installation. To understand and address limitations of the Android software

installation framework, we begin this chapter by providing an in-depth analysis of

Android’s security model and design.

3.2 Android Security Model

Android inherits many security properties from Linux due to executing the Android

runtime and libraries on top of a Linux kernel (see Figure 3.1); every application,

including those running in a lightweight Java-like virtual machine (Dalvik1 [8]), is

1On recent Android builds, Google has included a new runtime designed to replace Dalvik. The
new runtime is called Android Runtime (ART). We note that while documentation for ART is, as
of writing, not available, it appears ART is a transparent drop-in replacement for Dalvik, requiring
no change for most applications. ART focuses on increasing application performance and lowering
power consumption, but makes no changes to Android’s security architecture.

31
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Figure 3.1: Overview of the Android software stack [67].

ultimately a standard Linux process.

A practical example of the relationship between Linux and Android security, and

the basis of Android’s security architecture is the application sandbox [67]. The

application sandbox isolates applications and their data through extensive use of

a discretionary access control policy (DAC [107]) which by default allows only the

application to read and write to the file system location in which it is installed.

Leveraging DAC means that every Android application must be assigned a distinct

Linux user ID (UID) such that the file system ownership can distinguish between

apps2. The kernel is then responsible for enforcing isolation between sandboxes,

preventing apps from interfering with each other.

By definition, the DAC model allows developers to set access permissions on files their

application owns and creates. While it is generally advised to use the default permis-

sions (i.e., read and write only by the owner of the file), it is not uncommon for devel-

opers to accidentally or intentionally create world-readable files [93]. As of Android

2We note that having each application run under a separate UID is significantly different from
a typical Linux desktop, where applications run with the privileges of the user who launched the
application.
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4.2 (API level 17), creating files as world readable by using the FileOutputStream

API is deprecated, as this practice has been identified as the cause of many security

vulnerabilities. The code snippet below demonstrates how a file can be created with

world readable permissions.

...

String filename = "myfile";

String string = "Hello world!";

FileOutputStream oStream;

try

{

//can’t figure out why there’s an error , but this fixes it

// commenting out for now , return to private before release!

// oStream = openFileOutput(filename , Context.MODE_PRIVATE );

oStream = openFileOutput(filename , Context.MODE_WORLD_READABLE );

oStream.write(string.getBytes ());

oStream.close ();

}

...

Figure 3.2: Example Java code for writing to a file within an Android application.
The author of this code has made the file world readable to debug a problem.

In order to further protect and isolate applications despite the possibility of developer

error, Google introduced mandatory access control (MAC) through SELinux [110] in

Android 4.2. The default SELinux security policy provides an additional layer of

security on top of the Linux DAC by preventing applications from accessing files

outside their sandbox, even if the files are world readable. While SELinux was set

to permissive mode3 in earlier versions of Android, as of version 4.4 it is set to

enforcing [7].

3.3 Application Packages

Android applications are distributed as compressed archives, typically with a .apk

file extension (leading to the colloquial term apk file to refer to an Android applica-

tion). As shown in Figure 3.3, each application archive contains a Dalvik executable

3SELinux can be configured to one of: off, permissive or enforcing. In permissive mode, actions
violating the security policy will be detected and logged, but allowed. Enforcing mode will block
actions that violate the security policy. Off disables SELinux enforcement completely.
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Figure 3.3: Directory and file structure of an Android application archive.

(classes.dex), which is the application’s main binary and designed to be executed

inside the Dalvik VM. The compressed archive also contains a set of resources in

the res directory (non-executable files such as graphics, media files, user interface

components, etc.).

Application developers must include a manifest (AndroidManifest.xml), which is an

XML-encoded text file describing the application’s properties. The manifest is read

by the system at install-time to display to the user strings such as the app package

name, version number, supported Android versions (also known as target software de-

velopment kit (SDK)), and other attributes. The manifest file also contains a version

code (e.g., 375 or 12668442), which is a developer-chosen monotonically increasing

integer independent of the user-visible version name (e.g., v1 or v2.5). During ap-

plication updates, the OS compares version codes and only allows installation if the

version code is set to increase (i.e., app downgrades are never allowed).

Every installed Android app must have a unique, developer-chosen package name

defined in the manifest, and this name should follow standard Java naming conven-

tions to avoid collisions amongst applications. A general practice is for developers

to reverse their web domain name for uniqueness (possibly appending a name for

an app if there is more than one app per domain, e.g., org.mozilla.firefox and

org.mozilla.firefox beta). The package naming convention may be enforced by
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application markets such as Google Play, but developers are free to claim their pack-

age namespace, or re-use an existing namespace. The lack of namespace control

can create confusion amongst users as well as introduce security vulnerabilities as

discussed in Chapter 4.

3.4 Permission Model

The Android security model uses a permission-based system that by default denies

access to features or functionality that could negatively impact the user experience,

the system, or other applications installed on the device. Examples of these features

are sending messages or making phone calls, which may incur monetary cost to the

user; keeping the device screen on or accessing the vibrator, which could result in

battery drain; and reading the user’s address book which could result in privacy

violations.

To make use of the restricted functionality (which could potentially be dangerous

if used in combination with other features, or in a different way than intended by

the Android OS designers), Android requires application developers to declare in the

application’s manifest which of the restricted features are intended to be used by

their application. Failure to declare a particular permission will result in the related

system call or inter-process communication being denied by the system.

As of December 2013, there are 145 items of functionality which are identified as

requiring an explicit permission in order for Android to grant access [69] (a complete

list of all Google defined permissions is provided in Appendix B). These permissions

control access to network and GPS functions, personal information, system hardware

and settings, and many other device features. However, Android is designed such that

any third party application can define new functionality (e.g., through an API) and

make that specific functionality available to other applications based on developer-

defined permissions. In the case of developer-defined permissions, Android enforces

that both the caller and callee applications have matching permissions (i.e., the callee

defined the permissions using the permission tag in its manifest, and the caller

requested the permissions using uses-permission) to allow the IPC to take place.

Permissions are declared in the manifest using the uses-permission XML tag fol-
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lowed by a common namespace (usually android.permission.* for Google defined

permissions). Self-declared permissions which other applications can request are la-

belled with the permission tag. The Android manifest contains entries which can

be automatically generated by the developer environment but some fields, specifically

those related to permission declarations, must be manually entered. Manual permis-

sion declaration can lead to application developers over-declaring [51] or erroneously

declaring permissions that do not exist [21].

Figure 3.4: Screenshot of permissions requested at install time by an Android appli-
cation. The install screen displays six permissions grouped into two categories. The
user must accept all permissions to proceed with the installation process.

Permissions are enforced by Android at runtime, but must be accepted by the user

at install time (see Figure 3.4). When users install a new application in Android

(regardless of how the application was obtained), they are prompted to accept or

deny the permissions requested by the application. Permissions are also described

in a more user friendly (albeit sometimes equally puzzling) language at install time.

For example, in Figure 3.4, the developer included the WRITE CALENDAR permission

in the application’s manifest. This permission is displayed as Add or modify calendar

events and send email to guests without owners’ knowledge on the installation screen.
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These descriptions attempt to give a brief, technical explanation of the permission,

but do not disclose what the developer intends to use access to those resources for. On

stock Android builds, permissions cannot be individually rejected. Thus, developers

assume that once their app has been installed they can make use of all the features

protected by the permissions requested.

3.5 Digital Signatures

Android applications must be digitally signed prior to being installed on devices [61].

The application installer will refuse to install applications that do not contain a suit-

able signing certificate. During application development and testing, the standard

development environment automatically creates self-signed debug certificates which

enables deployment to emulators and devices. For application release, Android allows

developers to independently generate or obtain a key pair and a corresponding certifi-

cate that can be used for signing apps. The certificate may be self-signed, or issued

by a certificate authority. While self-signed certificates are not required, they appear

to be implicitly encouraged by Google, since the Play Store only allows apps with

certificates expiring after 2033 to be published and many CAs won’t issue certificates

with a 20 year lifespan.

Developers sign their code through the jarsigner [94, Ch. 12] tool, distributed as

part of the standard Java development environment. During the signing process,

jarsigner accepts an unsigned compressed file, and creates the META-INF directory

inside it (see Figure 3.3). Next, the following three files are added:

1. MANIFEST.MF - A text file which contains a list of every file (excluding files in

META-INF) in the archive at the time of signing. For each file, a corresponding

SHA1 hash is stored.

2. CERT.SF - A file containing a SHA1 hash of each entry in MANIFEST.MF file,

along with a corresponding file path.

3. CERT.RSA - The developer’s X.509 certificate, usually self-signed using the RSA

algorithm. This file also includes the signature of the entire CERT.SF file.

Apps can be signed with multiple keys, in which case the META-INF directory is
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populated with multiple certificates (one per signing key), manifests, and signature

files. The signature(s) on an app can be stripped by simply deleting the META-INF

directory.

Digital signatures are used in conjunction with the application sandbox to provide

several fundamental aspects of the Android security model. The developer’s certificate

is used to restrict who can issue software updates to the app (described in detail

in Chapter 6), the app’s inter-process communication (IPC) abilities, and whether

certain permissions are granted. As an example of the latter, the MASTER CLEAR

permission allows an app to delete all user data and restore the device to its factory

state. While the MASTER CLEAR permission can be requested by any app, it can only

be granted to apps signed with the same key as the one used to sign the system image.

These types of permissions are called signature or signatureOrSystem permissions

and are further discussed in Section 3.4. Third-party developers may additionally

write public APIs and protect them with signature-level permissions.

3.5.1 Certificate Sets

int checkSignaturesLP(Signature [] s1 , Signature [] s2) {

...

final int N1 = s1.length;

final int N2 = s2.length;

for (int i=0; i<N1; i++) {

boolean match = false;

for (int j=0; j<N2; j++) {

if (s1[i]. equals(s2[j])) {

match = true; break;

}

}

if (!match)

return PackageManager.SIGNATURE_NO_MATCH;

}

return PackageManager.SIGNATURE_MATCH;

}

Figure 3.5: Android OS signature check-
ing method used in versions 2.2 and ear-
lier.

int checkSignaturesLP(Signature [] s1 , Signature [] s2) {

...

HashSet <Signature > set1 = new HashSet <Signature >();

for (Signature sig : s1)

set1.add(sig);

HashSet <Signature > set2 = new HashSet <Signature >();

for (Signature sig : s2)

set2.add(sig);

// Make sure s2 contains all signatures in s1.

if (set1.equals(set2))

return PackageManager.SIGNATURE_MATCH;

return PackageManager.SIGNATURE_NO_MATCH;

}

Figure 3.6: Android OS signature check-
ing method used in versions 2.3 and
higher (current).

Android applications can be signed with multiple private keys, generating additional

signatures inside the META-INF directory. In stock Android, before applying applica-

tion updates, the following certificate comparison is performed (see Figures 3.5 and
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3.6). On current releases of Android (2.3 and higher), the installer builds two Java

HashSets from the available certificates4 in the currently installed app (s1) and the

app being installed (s2). If the sets match (i.e., all elements in the one set are identi-

cally present in the other), the update is allowed, otherwise the update fails. The code

in Figure 3.6 (found within the Android source tree) prohibits developers from ever

changing either the number of signatures (and corresponding certificates) in apps, or

the certificates themselves.

In previous versions of Android (2.2 and earlier), it was possible to shrink the cer-

tificate set as long as all certificates in the old app version were also present in the

new (updated) version. As seen in Figure 3.5, this functionality (intentional or other-

wise) was possible by iterating through the certificate set in the new app and looking

for matches in the currently installed app. Ensuring that N1 is equal to N2 before

entering the loop on line 5 would make the two code snippets functionally equivalent.

Additional details on Android’s use of digital signatures, including statistics of signing

key usage on real-world markets, can be found in Chapter 6.

3.6 Secure application interaction

Android allows developers to use signature information to authenticate applications.

This extra level of authentication (i.e., beyond simply looking up the package name

of the caller on an IPC message) allows developers to be assured that a message is

coming from an application signed with a the same certificate. There are two ways

in which developers can make applications interact securely.

3.6.1 UID sharing

As described in Section 3.2, Android applications are assigned unique UIDs at install-

time to enforce application isolation and sandboxing. When two or more apps are

signed with the same certificate and simultaneously installed on a device, developers

4Although the source code references “signatures”, signature objects are simply DER-encoded
byte representations of X.509 certificates.
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can specify that a subset of these apps should be assigned the same UID. By having

multiple applications run under the same UID, the applications become part of the

same sandbox and are able to share file system access as well as process and memory

space.

UID sharing is requested by developers by specifying the sharedUserId="string"

directive in the manifest of all apps that should share a UID. The signing certificate, as

well as string label must be the same on all applications sharing a UID. Developers

can optionally specify the sharedUserLabel="string" as a user-friendly string to

describe the set of applications sharing a UID.

Shared UIDs are common amongst modular applications such as browsers and plug-

ins. One example of UID sharing found on the Android Observatory (see Section 5)

is the Dolphin Browser (sharedUserId="mgeek.dolphin.browser"), which shares

a UID with extensions such as ad blockers, PDF viewers and translation services.

Sharing UIDs allows for tighter integration between applications, eliminating the

need the need to use excessive inter-process communication to transfer data. However,

increasing the number of apps in a sandbox also increases attack surface and may allow

unprivileged applications to perform privileged operations through other applications

in the shared UID group (see Chapter 7).

3.6.2 Signature permissions

Android allows developers to define public interfaces and make those interfaces avail-

able to other apps via IPC. Some interfaces may be sensitive so developers may wish

to only allow known applications to invoke them. To do so, developers can make use

of developer-defined permissions. One type of developer-defined permissions is a sig-

nature permission, which is only be granted to applications signed with the same key

as the application exposing the interface. Developers often use signature permissions

to securely expose functionality and interact with other apps.

Defining a signature permission is done by specifying the permission directive in

the application’s manifest, as well as protectionLevel="signature". System appli-

cations may specify protection Level="signatureOrSystem" to allow applications

signed with the same certificate and applications installed on the read-only system
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partition to request the permission. If an application requests a signature-level per-

mission but does not meet the specified criteria, the application will be installed but

not granted the specific permission.

3.7 Installation, Updates and Removal

Android devices are sold in one of two main configurations, depending on the man-

ufacturer licensing agreement with Google. If the device manufacturer has licensed

the use of Google services for Android, the Android build will typically include pro-

prietary Google applications such as GMail, Maps, and the Google Play store. Use

of these services requires a Google account.

If the manufacturer does not obtain a license for Google services, the device will

ship without the inclusion of the Play store and other Google-branded applications.

The absence of the Play store requires that users obtain applications through third-

party application markets such as the Amazon App store or F-Droid (other popular

markets are listed in Section 5.3). As of late 2013, and independent consulting firm [1]

estimated that 32% Android devices (accounting for 25% of all smartphone devices)

ship with a version of Android that does not include the Google Play store.

3.7.1 Installation with the Google Centralized Store

A typical Android app installation from the official Google Play store requires some

level of user involvement as show in Figure 3.7. First, users are given the opportunity

to browse through the application’s description and reviews (Figure 3.7a). Addi-

tional metadata such as number of downloads, date of the latest build, file size, and

a changelog is also shown at this step. Research has shown that users infrequently

perform detailed inspection of this screen [30]. Next, users are shown a list of permis-

sions requested by the application (Figure 3.7b) and are allowed to optionally view

a more detailed description of a permission by tapping on the permission. We note

that the detailed permission view (Figure 3.7c) displays pre-defined text rather than

text created by the application’s developer. Thus, there is no way for the developer
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(a) Step 1: View appli-
cation statistics and devel-
oper information.

(b) Step 2: Review list of
requested permissions.

(c) Step 3: (Optional) Read
more information about a
specific permission.

Figure 3.7: Screenshots taken during app installation through the official Google Play
store

to explain or justify the use of a particular permission. Research has also shown that

users do not inspect detailed permission listings, nor do they understand what the

permissions are displaying [54].

3.7.2 Installation without the Google Centralized Store (Side-
loading)

If the Google Play store is not available on the device, users can obtain applications

by downloading the application packages directly (e.g., via a web browser). Directly

installing applications is sometimes referred to as sideloading. Third-party application

stores often offer an on-device client (which must itself be sideloaded) to interface with

the server component of the store. Clients may mimic some of the Google Play store

user interface (e.g., displaying number of downloads or ratings), but they are only

responsible for handling the retrieval of the application package, and invoking the

system installer.
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(a) Google Play: Notifica-
tion of available updates.

(b) Google Play: Review
list of requested permis-
sions. If new permissions
are requested, they are dis-
played as NEW.

(c) Sideload: New and ex-
isting permissions are dis-
played in separate sections.

Figure 3.8: Screenshots taken during app updates through the Google Play store ((a)
and (b)) and sideloading (c).

If the application package was manually copied on to the device, a file browser must

be used to open the package. Android’s installation framework notices that an apk file

is being directly opened, and will present the user with a screen similar to Figure 3.4.

If the user accepts the permission listings, installation proceeds.

3.7.3 Updates

The Google Play client can notify users when updates for applications are available

(see Figure 3.8a). Google achieves this functionality by maintaining a list of applica-

tions and their versions per user and device. When a developer submits an updated

version of an application, Google can notify all users of the outdated version that an

update is available. Users may also opt-in to automatic (silent) updates on a per-app

basis.



44 Chapter 3. Android Software Installation Security
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Figure 3.9: Our abstract model of the Android installation process for an app package.
Unless otherwise specified, an answer of no to any conditional aborts the installation.

When accepting an update, the permissions requested by the application may have

changed (e.g., in the event of a new feature being added). If permissions change,

users are shown the full permission list, and the new permissions are shown at the

top of the screen (see Figure 3.8b).

When applications are sideloaded, the user is responsible for noticing and downloading

updates unless a third-party market client provides that functionality. Sideloading an

update displays a screen as shown in Figure 3.8c, where new and previously accepted

permissions are shown to the user.

3.7.4 System workflow

When a new Android app is loaded for installation, either through a third-party

market or side-loading, Android’s software installation framework follows the sequence

of events as depicted in Figure 3.9. We note that when apps are installed through

the official Google Play Store, permissions are approved prior to installation (see

Section 3.7.1), but the rest of the process remains the same.

First, the app package validity is verified: the system ensures that the Android app

package is indeed a compressed archive, has not been modified or corrupted since being

signed, and that it contains a valid certificate for the signing key. Next, the installation

framework decides whether the app is a new installation or should overwrite (i.e.,
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update) an existing app. If the app being installed has the same package attribute in

the manifest (e.g., com.google.android.music) as another currently installed app,

then Android will treat the installation as an update.

In the update scenario, the certificate (or set of certificates if signed by multiple keys)

of the new app is compared to the certificate(s) of the already installed app. If both

apps were signed with the same key(s), then the currently installed binary is removed

(preserving any user data) and the new app is installed in its place. Otherwise, the

new app is installed as an initial installation. We note that it is the certificates

themselves that are compared, not the signatures. Thus, even if two certificates are

signed with the same private key, updates are not allowed. Update integrity is covered

in detail in Chapter 6.

Next, Android must assign a UID to the app. If an update is taking place, the

previously assigned app’s UID is preserved. In the case of an initial installation,

Android checks if the app’s manifest contains the sharedUserId directive. If so, the

system looks for any other installed apps that are signed with the same key(s) and

also have sharedUserId specified in their manifest. If such apps are found, the app

is assigned the same UID; otherwise a new UID is created.

Finally permissions must be assigned to the UID. The user is prompted to review

and approve the permission assignments before the app is installed. When UID

sharing is not used, permissions listed in the app’s manifest are assigned to the UID.

When UID sharing is used, the UID is assigned the union of all permissions in the

manifests of apps sharing the UID. If the app is updating an already installed app,

the permissions listed in the updated app’s manifest are assigned to the UID. In

Chapter 7, we describe limitations with Android’s current UID sharing method and

present a more flexible scheme. We also describe the permission inheritance attack,

through which an unprivileged application is granted additional privileges.

Uninstalling apps

Applications on Android cannot uninstall other applications without user interaction.

Uninstalling an app typically requires the user to load the on-device application mar-

ket or application manager. Uninstalling an app removes all locally stored user data,

but applications may store data elsewhere, (e.g., on a remote server or an SD card).
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The method in which that data is handled after uninstallation is up to the developer.

Downgrades

On Android, application downgrades (i.e., replacing a newer version of an application

with an older copy) are not allowed. While the motivations for this are not explicitly

stated, we assume that allowing downgrades may allow an attacker from posting a

correctly signed, earlier, vulnerable version of an application and make it available

for download. Downgrades are prevented through use of the version code (see

Section 3.3), which must always be greater than the currently installed code, thus

acting as a type of timestamp on Android applications.

In practice, other environments where applications self-signing is used typically dis-

courage downgrades for the same reasons stated above [106].

3.8 Summary

This Chapter has provided an in-depth description of the Android security model and

explained the inner workings of its software installation framework. We discussed ba-

sics about Android applications and permission model. We covered Android’s use

of digital signatures and their relation to the overall security model. Finally, we dis-

cussed how application installation and updates are done from the perspective of both

users and the system. Many of these concepts will be revisited in the following chap-

ters when discussing and addressing limitations of Android’s installation framework

and decentralized software installation in general.
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Securing Software Discovery

4.1 Introduction

In this chapter, we focus on the security of the initial step in the software installation

process: software discovery. During this step, users first decide that a new piece

of software is required to accomplish a specific task, and proceed to search for an

application that suits their requirements. This step may also involve being notified

that there is an update available for an application that is already installed. In a

centralized environment, the process of discovering new software is constrained by the

applications made available by the central party hosting, for example, a centralized

application store. In the absence of a central party, users will typically have more

options available for finding software, but may have difficulties identifying benign

applications.

Decentralized environments allow the existence of multiple application markets, allow-

ing users and developers to consume and create software freely. In addition, modern

operating systems such as Google’s Android or Apple’s iOS have created software in-

stallation interfaces which enable users to complete the software installation process

with only a single click or tap (see Section 3.7.1). This chapter examines the security

implications resulting from the convergence of one-click installation in decentralized

environments.

Specifically, we first identify security properties that are lost by allowing the existence

47
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of multiple application markets. We propose a software installation framework with

the objective of achieving single market security semantics while retaining the flexi-

bility and independence provided by a decentralized setting. The proposed solution

described in this chapter (which we call Meteor) enhances app installation with an

extensible set of configurable security information sources and kill switch authorities.

At install time, information sources provide the user with additional app informa-

tion, ranging from app age (i.e., time since the app’s first appearance), virus reports

and privacy violations, to expert ratings on the app and other apps by the devel-

oper. Kill switch authorities allow consumer devices to be configured to subscribe to

notifications of dangerous apps for removal.

A fundamental goal of our approach is to connect digital properties such as package

signatures to human evaluable information such as developer and application names.

Our key observations are that (1) name collisions in both developer and application

names should be minimal even in a decentralized ecosystem; and (2) name collisions

should in fact raise suspicion, since the most frequent cause of a name collision is

malicious substitution of an app [30].

4.2 Background

We first briefly discuss the benefits of centralized ecosystems as well as the motivation

for decentralization. Next, we discuss the role of digital signatures on smartphones.

The section concludes with a review of current malware mitigation techniques on

smartphone platforms.

Note that this and the following sections frequently discuss properties specific to the

Android platform. We do this for two reasons. First, Android is the first platform to

experience the negative effects of a multiple-market ecosystem. Second, focusing on

a specific technology simplifies explanations. However, the architectural lessons are

generally applicable across platforms.
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4.2.1 Application Markets

As discussed in Section 2.3.1, a single, central application market offers an opportunity

to improve overall platform security. To date, this model has exhibited several clear

advantages. First, a market acts as a centralized choke-point for detection of malware1

(e.g., Google’s Bouncer [64]). Second, it provides a means to remotely uninstall

distributed apps later identified as malicious.

These remote uninstalls (or Kill Switches; see Section 2.5.4) provide faster clean-up

than traditional antivirus software, as they push actions to devices and do not require

client-side definition updates or resource intensive scanning. Finally, search results

display consistent developer names for applications2.

Once a developer has registered with a central market, controls exist such that no

other developer can easily distribute applications under that developer name. Hence,

consumers have some assurance that all applications provided by “John Smith” are

provided by the same John Smith. While this characteristic does not ensure that

“John Smith” is the John Smith the consumer intended, it does allow the app market

to apply sanity checks for well known, high-impact entities, e.g., “Bank of America.”

Motivation for multiple markets

Each platform usually provides its own official application market. However, strict

terms of service and questionable motivations for acceptance of an app in a specific

market [49] often motivate multiple markets. For example, the Cydia market has

been created for “jailbroken” iPhones and the Amazon Appstore has been created to

provide developers with better marketing capabilities. Multiple application markets

present a different use model to the consumer. To use multiple markets, the user must

currently download and install separate applications which serve as gateways into each

market. This process may in fact negatively impact the security of the device (e.g.,

iPhones must be jailbroken to install Cydia; the Amazon Appstore requires users to

disable the security feature that disallows applications from unknown sources). Next,

1We note that while market-level app vetting can be useful under some circumstances, the prac-
tical effectiveness and scalability of this approach remains uncertain [86].

2When corporations commission developers to create smartphone applications the corporation
name may be listed rather than the developer name.
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managing apps becomes more difficult. Users may become confused when managing

apps available in multiple markets. Finally, if a malicious app is identified, it is

unclear which market has the authority, responsibility, and capability to employ a

kill switch.

In a multiple-market environment, individual market vendors can compete by offering

the same app at a lower price (e.g., the Amazon Appstore has a free “app of the

day”). This allows consumers to comparison shop to find the cheapest version of an

app. From an economics perspective, such competition is healthy. However, without

a mechanism to determine if two or more apps are actually the same app, an adversary

can lure users to install a malicious version of an app by distributing it into a market

where the legitimate app does not exist. Attackers may also sell the app at a lower

price to receive direct monetary revenue in addition to the return provided by the

malware.

4.2.2 Package Signing and Application Namespace

Modern smartphone OSs require applications to be digitally signed [22]. On Android,

app signatures are implemented as a form of continuity signing [117]: the OS verifies

that subsequent application updates were signed by same developer as the original.

In order to sign an app, developers generate a public/private key pair and a self-signed

certificate. As certificates are self-signed and never displayed to the user, nothing

prevents the developer from inserting fake or incorrect information into the certificate.

Once an app is ready for distribution, the developer uses the jarsigner [94, Ch. 12]

tool to sign the app and embed the signature into the application package. Android

does not allow adding or removing certificates or keys during app updates [117], which

forces developers to release a new application under a new package name (possibly

losing user data; see Chapter 6) in the event of losing their private signing key.

Android internally uses the package name (e.g., com.company.app) as an identifier

for installed apps, and a new app is subjected to the continuity verification mentioned

above if it is identified by the same package name as a currently installed app. If there

is no currently installed app with same package name, the app is installed without

additional checks. Continuity signing is verified for that package name from that
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point forward.

Package namespace collisions can and do occur. Occasionally, collisions result from

careless developers who do not choose a sufficiently distinguished package name. How-

ever, package name collisions can also be a sign of an attack. For example, the Geinimi

trojan [83] grafted SMS-sending malware on to the popular Monkey Jump 2.0 game.

The malware was distributed through an alternative app market for Android and

used the same package name (com.dseffects.MonkeyJump2) as the original game.

As a side-effect, the name collision would have prevented a user from later installing

the legitimate app without previously uninstalling the malicious version.

4.2.3 Malware Mitigation

Similar to commodity desktop platforms, antivirus software has emerged for smart-

phones. However, smartphone antivirus software does not operate analogous to desk-

top antivirus software due to differences in the execution environment. First, energy

consumption prohibits routine scanning of files. Second, since smartphone apps run

within a sandboxed environment (e.g., as in Android and iOS), antivirus apps do

not have sufficient low level API hooks. Instead, smartphone antivirus programs

frequently maintain blacklists containing identifiers for malicious applications. The

resulting functionality strongly resembles that of kill switches.

The kill switches deployed by official markets are commonly integrated with the OS

platform. If malware is detected to have been distributed through the market, the

kill switch can remotely uninstall the app from phones. If the phone has network

connectivity, the removal can occur nearly instantaneously. For example, Android

maintains such a connection for Google services, including app installation and re-

moval. Otherwise, removal occurs when connectivity is restored. An advantage of

kill switches over antivirus software is the ability for a remote server to decide which

installed apps to remove, as the market already maintains the list of installed apps.

This eliminates the need for the phone to download and maintain blacklists, which

conserves battery life.

We note that kill switches operate under the assumption that the malicious app was

contained by a sandbox. In March 2011, Android malware exploited a local privilege
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escalation vulnerability [63], which required more attention than simply uninstalling

the malicious app. As hinted above, Android’s kill switch mechanism is implemented

as part of a protocol that allows both removal and installation of apps. Therefore,

the Google Android Market automatically installed a security fix to clean up devices

known to have installed the malicious apps. In this case, Google effectively used

Android’s enhanced kill switch to distribute an OS patch. While kill switches clearly

offer valuable functionality, it is less clear what trust consumers should place in each

application market.

4.3 Threat Model

The goal of our system is to help users minimize the risk of installing a malicious

application. We consider “malicious” applications to be those that contain code to

harm user devices, violate user privacy, or perform unwanted actions such as sending

SMS without user approval. We classify malicious applications of interest to our

architecture into three broad categories depending on the state of installed apps on

the device, as well as the package name and signature of the malicious app.

1. Colliding malicious app: A malicious application with a package name

matching that of another currently installed application. The application sig-

nature is different than the currently installed app, so Android would prevent

the app from being installed unless the current version is removed by the user.

2. Non-colliding malicious app: An application with a package name that is

different from any currently installed apps. This category of apps includes look-

alikes e.g., Google Maps (com.goggle.maps); new apps with original function-

ality; and weaponized apps with trojaned components. The main characteristic

of these apps is that their package names do not collide with the namespace of

currently installed apps, therefore triggering no alerts (aside from the standard

permission approval) to the user [30].

3. Rogue update: A formerly benign application is updated with a properly

signed new version that includes malicious functionality. This can happen when

a developer’s signing key is compromised or the developer him/herself (or part

of the development team) goes rogue.
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Meteor can help detect malicious applications in categories 2 and 3, but does not

detect applications in category 1, since those are blocked from installation by the OS

(see Section 4.2.2). We note that intentional user circumvention of this block (e.g.,

by uninstalling the current version) would effectively move the app to category 2.

Assumptions. We assume the adversary can successfully submit malicious apps

to any or all application markets. Adversaries may also independently host their

own application repositories. We also assume the adversary is capable of creating

duplicate apps that are identical to the original, with the exception of the digital

signature. That is, we assume the adversary cannot easily access or independently

re-create to the original developer’s signing key.

4.4 Meteor: Enhancing the Security of Multi-market Plat-
forms

Info
Source

Info
Source

Info
Source

UAppID UAppID

UAppID UAppID

Kill Switch
Authority

Kill Switch
Authority
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{UAppID, ... } Meteor
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Figure 4.1: Overview of the Meteor architecture. Each device running the Meteor client
app (Meteorite) subscribes to a set of information sources and kill switch authorities. In-
formation sources are queried (using UAppIDs) at install-time while kill switch authorities
broadcast offending UAppIDs post-installation.

Meteor provides a flexible architecture for addressing the security concerns of a de-
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centralized ecosystem. Addressing the app name consistency problem is a significant

challenge. For example, simply forcing a fixed namespace based on the Domain Name

Service (DNS) would be impractical to authenticate reliably, and it is unrealistic to

expect consumers to separate safe from unsafe names. Instead, we leverage univer-

sally unique naming, and then aggregate statistics and expert ratings from multiple

sources to enable a safer install-time environment.

Figure 4.1 overviews the Meteor architecture. At a high level, Meteor works as follows:

after downloading an app, and prior3 to installation, a pre-configured set of online

information sources is queried to obtain additional information about the app or

about the app’s developer. Each of the sources provides information which may help

the user, or client-side app, gain confidence or reconsider the installation of the app.

The device may also subscribe to one or more kill switch authorities, which enable

the remote uninstallation of apps if they are found to be malicious.

Information sources queried by the Meteor client app (Meteorite) may be grouped by

areas of expertise. For example, one source might host information for apps related

to social networking while a different source may focus on games. In fact it would be

natural to expect multiple sources of each type, used by different users or user groups

in different geographic regions. Narrowing the scope of coverage allows experts to use

domain-specific knowledge to contribute higher quality information about apps.

The Meteor architecture is based upon the following four fundamental underlying

concepts. The remainder of this section discusses these concepts in greater depth.

Universal application identifiers (UAppID): Meteor requires a reliable method

of uniquely identifying app instances for reference by both information sources and kill

switch authorities. To guarantee uniqueness, identifiers are cryptographically bound

to the binary code of app instances, as they incorporate the application name and

digital signature data.

Developer registries: The first general type of information source is aimed at

developers. Developer registries serve as repositories of developer submitted data

such as contact information, news about app updates or issues, and other apps the

developer has authored. While a single developer registry is ideal from a security

3Optionally, additional checks could be deferred to the background and done after install-time,
at the risk that malicious activity could occur in the meantime or alter security enforcement.



4.4. Meteor: Enhancing the Security of Multi-market Platforms 55

perspective, we expect region-specific developer registries to be more amenable to

various global political climates.

Application databases: The second general type of information source targets

applications. These sources host app information manually entered by experts in a

particular domain (e.g., location-based shopping apps), or information automatically

gathered from crowdsourced submissions. For example, databases may include expert

reviews, ratings, permission descriptions, number of downloads, etc.

Kill switch authorities: In Meteor, trust in a remote party to uninstall malicious

or inappropriate apps is decoupled from application markets, as markets have varying

levels of trustworthiness. Depending on consumer privacy requirements, kill switch

authorities may maintain a per-device list of installed apps

4.4.1 Universal Application Identifiers

The Amazon Appstore and the Google Market (and possibly others) use an app’s

package name to uniquely identify apps inside their stores. In a multi-market envi-

ronment, using a package name alone will not uniquely identify apps because these

names are sometimes arbitrarily chosen and may deliberately collide with another

completely independent application (see Section 4.3).

We propose the use of a universal application identifier (UAppID), to provide a com-

mon handle for referring to specific application instances. In Meteor, UAppIDs serve

two main purposes: 1) precise app lookups, useful for comparing apps across multiple

markets (similar to the way consumers search for the best price of a specific TV model

as opposed to the best price of any TV); and 2) instance-specific kill switches, which

allow for the removal of specific binaries instead of any app with a given package

name.

Using a signed Android app as input, we construct its unique UAppID by extracting

the package name and developer certificate (the two components used by Android

to ensure correct application continuity as discussed in Section 4.2.2) from the ap-

plication package. Next we remove the application’s signature4 and certificate, and

4Removing the signature of a signed Android app can be done by deleting the META-INF direc-
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compute a cryptographic (collision-resistant) hash of the binary. Application names

and versions are not explicitly incorporated because they are already embedded within

the unsigned binary. Therefore:

UAppID = {H(package name, dev. cert), H(binary)}

The UAppID is a tuple of size two. The first element is a hash of the package name and

developer certificate5. The first element of the tuple can be used to identify all apps

that the Android installer considers to be equivalent. The second element is a hash

of the application’s binary. This portion of the UAppID can help identify repackaged

(including pirated, but unmodified) apps across markets, or different version releases

of the same app. The UAppID tuple results in a globally unique string that can be

used to identify a particular version of an application using a specific package name

and written by a specific developer or organization.

This approach has the advantage that UAppIDs can be quickly reconstructed on

the device, and provide strong guarantees that two identical UAppIDs refer to the

same executable app if a strong hash function is used and verified. Of course, a

universally agreed upon collision-resistant hash function must be designated and used

(e.g., the Meteorite proof-of-concept app uses SHA256). UAppIDs, similar to other

hash functions, can be further encoded to be more human-readable or allow for easier

comparisons [99].

4.4.2 Developer Registries

One uncertainty users face when installing applications results from the lack of avail-

able information about the app’s developer. Installation screens (e.g., when installing

via an application market; see Figure 3.7) typically show the developer’s name and

website, but these two pieces of information are provided by developers themselves,

and are generally unverified by the market vendor. Furthermore, apps that are dis-

tributed outside of app markets (e.g., through a developer’s website6) don’t generally

tory inside the app package.
5Due to the two inputs to this hash function being developer-supplied, we also include the length

of each string as input to the hash function to help prevent attacks that rely on the concatenation
of variable-length inputs.

6Developers might choose to distribute apps on their own to avoid paying registration fees or to
keep 100% of the app’s revenue.
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Type of Information Description
App binary properties The name, version, package name and full developer certificates in-

cluded in the binary.
App age and origin How long an application has existed and a list of markets or sites on

which it has been made available. This can help users determine if an
app is brand new, or can be found elsewhere.

Expert reviews (or links
to)

This service allows (ideally well-known experts or sets of) users to test
software and submit technical or security reviews.

Blacklists and whitelists The presence of an application (or other applications by the same
developer) on a blacklist or whitelist. The reason(s) for being added to
a list could also be recorded (e.g., privacy violations, tasteless content,
malware, etc.).

Anti-virus and other se-
curity and privacy tests

Whether the app has been flagged by an anti-virus tool or has been
reported for privacy violations.

Number of installs and
uninstalls

Market provided data related to the total number of installations or
number of active users of an app identified by a particular UAppID.

Table 4.1: Example types of information that may be provided by application
databases.

display any developer information at install-time.

We argue for the establishment of one or more central locations where developers

can voluntarily disclose more information about their apps, development cycle, com-

pany, etc. These registries would be consulted to help resolve the which John Smith?

problem, or simply to learn more about a developer before installing their software

(similar to the way one might research a charity prior to donation). A widely used

or relied upon central developer registry would ideally motivate developers to opt-in

as a best-practice.

Developer registries can be used in several ways. First, application markets can obtain

further confirmation of a developer’s history and portfolio during sign-up. Second,

application markets can show a “more info” section on an app information screen

which hooks into the developer registry to show additional data about the developer.

For example, Registered developer since 04/2011, Developer of 3 other apps, No apps

killed to date, 4 apps issued to date, etc. Third, they provide a central point for a kill

switch authority to look up developer contact information if necessary before deciding

to throw a kill switch for their app. Finally, they provide a website that developers

can use to make announcements about app issues or updates.

Our goals for such voluntary developer registries do not include becoming a certifi-

cation authority for developers. These registries are intended to be lookup services
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for retrieving information that may help increase confidence in a developer. As such,

the enrolment process is envisioned to include only minimal verification of submitted

data (e.g., only verifying e-mail retrieval capabilities and control of a signing key), but

fundamentally cannot provide assurance about the security or accuracy of provided

information. We expect, however, that experts in each developer registry will help

identify false or misleading information.

Participating in one or more developer registries should not be made mandatory as

this would be both technically challenging and go against (e.g., Android’s) open de-

velopment philosophy. Indeed, if developers wish to remain anonymous, submit false

information to the developer registry, or not register at all (e.g., an anti-censorship app

developer concerned about political persecution) we envision that their apps would

still be installable by those who choose to take that risk. However, we believe that in

most cases, positive incentives and benefits would motivate developers to opt-in.

Enrolment: A developer creates a password-protected account on a registry by

providing a valid e-mail address. After signing in, the developer asserts ownership of

one or more certificates (i.e., app signing keys). The proof of control of the signing

key is done using standard known techniques for challenge-response based on digital

signatures [87, pp. 404-405], and could be designed to make use of current code-

signing infrastructure and tools (see Section 4.2.2).

Hosting registries: Registries would ideally be provided free of direct charge for

both developers and users retrieving information. Candidate host providers for this

type of service might be universities, non-profits, or commercial organizations funded

by advertisement revenue.

4.4.3 Application Databases

Similar to the developer registries above, databases containing information about

apps available both within and outside of markets would be valuable to end-users

and experts. We see application databases as extensible repositories of application

properties, statistics and reviews by subject area experts. For example, cartography

enthusiasts can populate a database of apps that relate to maps, while gamers can

maintain a database of game apps. We acknowledge that enthusiasts are not always
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ID Name Version Package Name Cert. Hash App Hash First Seen Submissions
1 Chess 1.5.2 com.games.chess 0x74A8. . . 0x93B1. . . Jan 2, 2012 100
2 Chess 1.6 com.games.chess 0x74A8. . . 0x8F2C. . . Jan 30, 2012 80
3 Chess 1.5.2 com.games.chess 0x1D51. . . 0xA33C. . . Feb 21, 2012 3
4 Checkers 0.5-beta com.games.checkers 0x74A8. . . 0xDB89. . . Mar 1, 2012 10
5 Chess 1.6 com.games.chess 0xF307. . . 0x8F2C. . . Mar 3, 2012 1

Table 4.2: Example application database. Hashes truncated for space.

security experts. However, they often have a vested interest in the security of apps in

their area, so one might expect these enthusiasts to also communicate with security

experts, or at least advanced users who report technical anomalies.

An application database contains a new entry for each known instance of an app.

Each entry in the database lists information obtained from the package metadata

(e.g., app name, app version) and the package name. The entries would also list the

hash(es) of the developer certificate(s), as well as a hash of the relevant application

binary and any other useful data for evaluating an app. Example types of information

are listed in Table 4.1.

As an example, Table 4.2 shows a list of 5 app instances that could have originated

from a board-game app database. By viewing and comparing entries, experts man-

aging the database could make the following observations (items with * trigger a

warning to the user):

• App versioning. (Apps 1 and 2). These apps use the same package name

and are signed with the same key. The version numbers and application hashes

differ, as expected for a new release.

• Multiple app developer. (Apps 1, 2 and 4). A developer in possession of a

certificate with hash starting with 0x74A8 is developing the Checkers and Chess

apps.

• *Certificate change. (Apps 2 and 5). App hashes are the same indicating no

code modification, but the certificates do not match. Possible explanations are

that the developer lost access to the signing key, the developer is using different

certificates for different distribution channels, or an attacker has stripped off the

certificate from the binary replacing it with a new one. All these cases trigger

further investigation, or notification of suspicious behaviour to the user or an

agent working on behalf of the user.
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• *Namespace collision. (Apps 1 and 3). These apps share a package name

and app name, but differ in certificate hash and application hash. This could

mean that a malicious developer has grafted malware on to the legitimate chess

application, or that by chance, 2 developers have chosen to use the same package

and app name, as well as coincided in version number.

In the event of certificate change and namespace collisions, the application database

itself cannot answer the question which of the conflicting apps should I trust? The

information merely suggests the presence of malicious activity, and a supplementary

mechanism is necessary to decide which of the apps should be downloaded. For ex-

ample, the database might also contain initial submission times or overall number of

submissions. The database could also include expert reviews, or link to the appropri-

ate developer registry.

We have created an application database called The Android Observatory, available

at http://www.androidobservatory.org. This application database contains in-

formation about applications crawled from various application markets as well as

user-submitted samples. We describe the design and implementation of the Android

Observatory in Section 5.

Populating Application Databases: Databases should contain relatively up-to-

date information to be effective in helping users make informed decisions. The

database could be populated in several ways: (1) by application market vendors

relaying information about apps they have accepted into their respective markets;

(2) by paid employees who look for apps and submit them to a database; (3) by

crowdsourced submissions from volunteers and interested users.

The existence of an app in a database reflects the notion that the app is known or has

been seen. The absence of an app in a database could also be leveraged to identify

obscure or “fly-by-night” apps. The devices of conservative users may be configured

to only allow installation of well-known apps for which no suspicious behaviour has

been reported (see Figure 4.5a).

Transparency in Consulting a Database: It is unreasonable to expect typical

end-users to actively inspect all information provided for an app. Detailed information

retrieval is an option that can be enabled by experts, but ordinary end-users (or agents

working on their behalf) would only be alerted in the event of suspicious behaviour

http://www.androidobservatory.org
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(e.g., certificate change, namespace collision, blacklisted app, etc.). Deployed this

way, the application database and the client app (Meteorite) would be transparent to

users the vast majority of the time as the most common scenario for new app entries

in the database would likely be new app versions. Mobile security vendors, security

researchers and other automated tools may actively consult the database to find app

inconsistencies and overall app statistics, and to compile aggregate statistics.

4.4.4 Kill Switch Authorities

The final component in the Meteor architecture is a kill switch authority responsible

for the remote removal of apps on user devices. Kill switch authorities have the

unique ability to remove an app from subscribed devices independently of the market

or website from which they were obtained. This is different to the way kill switches

are handled in current smartphone ecosystems, where each market is responsible for

removing apps that it distributed.

Kill switch authorities have the capacity to securely broadcast offending UAppIDs

to registered devices at any given time (i.e., push). This is in contrast to developer

registries and application databases which serve information based on a query (i.e.,

pull). Optionally, devices may transmit lists of installed apps to kill switch authorities

(as denoted by the dotted lines in Figures 4.1 and 4.2) such that kill switch signals

are only received for installed apps. Informing a kill switch authority of installed apps

has significant resource consumption advantages for mobile devices, as the authority

can perform management logic and only contact the device when necessary. However,

submitting a list of installed applications to a third-party may be viewed as a privacy

risk, which may dissuade privacy-conscious users from opting in to this mode of

operation.

Similar to application databases and developer registries, we expect kill switch au-

thorities to specialize on a small set of application domains. For example, a kill switch

authority could concentrate on identifying and disabling apps which are unsuitable

for children younger than a certain age.
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Figure 4.2: Overview of the Meteor app installation process.

4.5 Implementation of the Meteorite Client Application

We have implemented a Meteor client app (called Meteorite) for Android along with

the corresponding server-side components to test the technical feasibility of our pro-

posal. Meteorite can be installed on any device running Android 2.2 or greater (which

covers approximately 93% of the worldwide Android install-base as of April 2012 [65].

It has three main components as discussed in the following subsections, and requires

neither modifications to the underlying OS nor root access. Section 4.5.4 discusses

the advantages and limitations of operating within unprivileged app boundaries.

4.5.1 Information Source Management

When the Meteorite app is first installed, the user adds new information sources

specifying the type (application database, developer registry or kill switch authority)

as well as a URL to query. To minimize the amount of data to be manually entered,

servers (regardless of their type) publish a JSON-formatted manifest file that lists

services offered and additional server information (see Figure 4.4). A screenshot of

the information source entry process is displayed in Figure 4.3.
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Figure 4.3: Adding an information source to the Meteorite app

manifest.json

{ "name" : "Example Meteor Server",

"description" : "This information source

offers descriptions of apps

that have been installed by

members of a security lab",

"services" :

[ { "type" : "application database",

"url" : "http://XXXXXXX/query.php",

"license" : "no" } ] }
Figure 4.4: The server manifest corresponding to the example in Figure 4.3.

From a practical standpoint, popular or well-known information sources could be

pre-configured within the app. We expect users to find other candidate servers via

colleagues and expert websites that recommend good sources for given tasks and

report poor quality or malicious sources.

The ideal number of configured servers will vary according to security, usability, and

cost requirements of each user. Expert users who want as much information as possi-

ble with full control over their installed apps may choose to configure a large number

of information sources and no kill switch authorities. Non-experts and users who

don’t want to be involved in low-level technical details of making security decisions

may consider installing more kill switch authorities.
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4.5.2 Information Source Query

Once information source(s) have been added, the Meteorite app will receive a Broad-

cast Intent every time a new package is installed or updated.7 Upon receiving the

intent, Meteorite computes the newly installed app’s UAppID, and issues a standard

HTTP POST request to all enabled application databases and developer registries

(see item 2 in Figure 4.2). Information sources currently send back information re-

lated to the submitted UAppID if it exists. Depending on how Meteorite has been

configured, the retrieved app information can be displayed to the user, who is then

prompted to continue or to uninstall the app.

Using standard HTTP queries and a standardized query language allows information

source operators to populate and run their servers in the way that is most convenient

to them. Future versions of Meteor will specify an app description language that

will assist in automated decision making based on a local policy. We note that our

prototype Meteorite app has not been engineered for usability and is presently mainly

a tool for expert users.

4.5.3 Kill Switch Listener

The final component of the Meteorite app is the kill switch listener (depicted as item 4

in Figure 4.2). We avoid polling (which is expensive in terms of battery and network

performance) kill switch authorities by using Google’s Cloud to Device Messaging

(C2DM) Framework [60] for push notifications to devices. C2DM allows a server to

send short data messages (up to 1024 bytes) to registered devices. The messages are

sent from the kill switch authority to Google, and then relayed to the Meteorite app

using the existing connection most Android devices maintain with Google servers.

When adding each kill switch authority to the Meteorite app, a registration process

must take place to inform the kill switch authority that the user is willing to receive

kill notifications. The user can remove or temporarily disable kill switch authorities

from within the app, as well as choose to ignore kill switch messages when they are

received.

7These intents are received regardless of the app’s installation origin (e.g., sideloaded, third party
app market, official market).
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(a) Configuring the Meteorite
app

(b) New app installed notifica-
tion

Figure 4.5: Screenshots of the Meteorite app. On the left, the settings window allows
users to configure the behaviour of the app when no apps are found in an application
database. On the right, a notification that a new app has been installed and a query
is in progress in the background.

Our demonstration kill switch authority currently sends the UAppID of the app to

be killed, along with a reason the kill switch was thrown. Receiving a kill switch

launches Meteorite in the background and compares the received UAppID against a

list of UAppIDs for all installed apps. If a match is found, the user’s current Android

activity is interrupted to display the kill switch data. The user is then prompted to

either uninstall the app or dismiss the message.

As noted earlier, Meteorite does not have root privileges so it is not capable of remov-

ing other apps without the user’s consent. Meteorite only invokes Android’s package

manager and the user must confirm or deny the final uninstall process.
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4.5.4 Design Choices

The Meteorite app leverages Android’s application life-cycle and IPC to avoid running

in the background and constant server polling. The OS only invokes Meteorite at

app installation time or upon receiving a kill switch, meaning that there is negligible

impact on battery life or overall performance.

Our choice to use non-privileged APIs comes with the trade-off of creating a vul-

nerability window between app installation and first launch. Malicious apps could

register hooks to launch automatically (e.g., after a device boots, after receiving an

SMS, or as a handler for specific file types). This window could be avoided if the An-

droid app installer were modified to perform Meteor queries prior to installation, but

would require installing a full new Android firmware which may discourage widespread

adoption.

Source code for the Meteor app as well as UAppID utilities are available for download

at http://www.ccsl.carleton.ca/software/meteor.

4.6 Discussion of the Meteor Architecture

Here we discuss the advantages and limitations of the Meteor architecture as a whole,

and review the specific benefits of grouping information sources by domain and secu-

rity focus.

4.6.1 Advantages

Incrementally deployable and extensible: The proposed architecture provides

security benefits even if using as few as one information source or kill switch authority.

The client-side software could initially be distributed as an app download, and later

possibly bundled as a core OS feature. The ability to customize information sources

offers an extensible solution that can be adapted to a wide range of users/skill levels,

and facilitates the existence of a democratic application marketplace.

http://www.ccsl.carleton.ca/software/meteor
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Scalability: By allowing experts in small domains to handle application reviews and

database maintenance, high quality information may be produced and distributed

quickly.

Low resource requirement: Servers are only queried upon app installation, where

a small amount of application-specific data is sent and received. Meteor involves

no massive (e.g., antivirus) signature downloads and no CPU-heavy operations per-

formed on the device aside from hashing the app in question.

Only intrusive on suspicious behaviour: The Meteorite app can be configured

to only display warning messages in the event of detecting suspicious activity (by

the developer or app). If no malicious activity has been reported for the app being

installed, the installation process is not visibly different to the end-user than the

current app installation procedures.

4.6.2 Limitations

We note that Meteor mitigates many threats introduced by a multiple-market ecosys-

tem, but it cannot address all threats. In particular, our architecture cannot auto-

matically determine the most (or least) secure application for a specific task. This is

a fundamental problem of app distribution even for single-market ecosystems, and is

outside the scope of this thesis.

Usability: Meteorite requires some level of user input either for adding servers or

interpreting the results of the information source query. While we can attempt to

automate some of these tasks (e.g., by specifying policies), our proposal is not a

one-size-fits-all solution. Future work is needed to identify usability challenges when

deploying a system like this.

Quality of information sources: There is no mechanism to automatically handle

malicious information sources, which may allow attackers to craft a complex attack

where a user is tricked into installing a malicious information source as well as a ma-

licious app. In this example, the information source could return positive comments

and ratings for all apps, or at least those an attacker wishes to be installed, giving the
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user a false sense of trust that the app being installed is benign (false negatives). The

information source could also attempt a denial of service by replying with warnings

on all queries, creating false positives which must be identified and resolved by the

user. While attacks like these are less likely as more information sources are selected

(assuming at least one has identified the malicious app), they may still be possible

for users with small information server lists.

We believe that over time, individuals and sub-communities will place their trust in

information sources that deserve such trust. While Meteor and other (e.g., single-

market ecosystems with state-of-the-art vetting) systems fundamentally cannot pre-

clude abuse of trust, Meteor can deal with abuse in the longer run by user choice.

4.6.3 Security and Privacy Considerations

Separating content creators from content hosts: Meteor does not require that

application databases be hosted by the same individuals who create the content within

them. For various reasons (e.g., high cost or unavailable expertise), expert users

may not want to operate a dedicated server even though they have access to app

or developer information. Similarly, end-users may trust an entity with the app

information they create, but may not be willing to reveal to that entity the apps

they are installing. By allowing this separation, database hosts can act as relays or

proxies to help preserve end-user privacy. Meteor could be extended to allow private

information retrieval (PIR) [32] for users with high privacy requirements.

Authenticating information: In its most basic form, Meteorite clients communi-

cate with Meteor servers via HTTPS using Android’s default root CA list. Future

work is needed to design a proper way to handle man in the middle attacks on the

local network (e.g., an attacker intercepting both the app file download and the Me-

teor query). We are exploring the option of using signed database records that can

be authenticated locally, similar to the approach of Samuel et al. [106].

Lack of consensus in database entries: In a distributed system like Meteor, it

is possible that users subscribing to many information sources will receive conflicting

information. For example, an app may exist on a whitelist for one reason and simul-
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taneously be listed on a blacklist for a completely different reason. The Meteorite app

currently requires consensus among information sources that are queried, but future

work will look at ways to automatically resolve conflicts based on pre-defined policies.

4.7 Security Analysis

This section presents a security analysis of the Meteor architecture. Our analysis iden-

tifies threats created by allowing the presence and active participation of corrupted

users, developers, information sources, and collusion between them.

Corrupted Developer: A developer may attempt to produce a malicious applica-

tion which, when looked up on Meteor servers, returns information associated with a

distinct legitimate application. To be successful (and assuming the developer doesn’t

have the original developer’s signing key), the developer must create a new malicious

binary which produces the same binary hash as the legitimate application. The use

of a suitable hash function, as discussed in Section 4.4.1, should preclude this.

Corrupted Information Source: Meteor servers can violate their user’s privacy

by harvesting queries and IP addresses, thereby learning exactly what apps users

have installed. To mitigate this threat users can obfuscate the source IP address

of their device by sending queries through a proxy or Tor [40]. The downside of

proxying queries is that servers can no longer have an accurate view of their userbase

or maintain accurate usage statistics. IP address obfuscation may also make it difficult

to detect corrupted users sending fake queries.

Another method for users to preserve privacy is to obfuscate submitted queries by

using private information retrieval (PIR [32]) techniques. While PIR currently has

high bandwidth and processing overhead, it may be a more viable solution on newer

devices. Additionally, a combination of Tor and PIR could be used in privacy-critical

environments [89].

Collusion between developers and information sources: We consider the case

of corrupted developers colluding with corrupted servers for completeness, but note

that collusion specifically should not introduce any additional threats. Corrupted
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information sources can readily reply with specially crafted responses without the

assistance of developers. Furthermore, servers cannot assist developers in finding a

collision on binaries.

Corrupted User: Meteor was designed to protect users. In our proposed architec-

ture, users have no direct input into the system by using the application, so the threat

of a corrupted user (aside from a user attempting a denial of service on information

sources) is negligible.

Lack of Consensus: When users subscribe to many information sources, they may

receive conflicting information (e.g., corrupted servers trying to convince a user that a

malicious app is benign, or an app exists on both a whitelist and a blacklist). Meteor

clients currently require a consensus among the majority of information sources they

query. Future work will look at automatic conflict resolution based on policy.

4.8 Related Work

Meteor builds upon known proposals for unique file identification, cross-checking in-

formation, cloud-based malware detection and information crowdsourcing. This sec-

tion reviews some of these proposals.

Kim and Spafford propose Tripwire [80], a tool for recording hashes of important

system files and later detecting modifications or intrusions. UAppIDs are similar in

that they involve cryptographic hashes of the app’s binary code, but these hashes are

not stored to detect modification (code signing already does this). UAppIDs uniquely

identify and index (e.g., for app lookup) app instances.

Oberheide et al. [95, 96] highlight advantages of offloading malware detection to the

cloud such as low resource requirements and better detection coverage. The authors

run multiple antivirus engines on each submitted binary, and hashes of binaries are

stored to improve performance (i.e., avoid scanning the same file if the result is already

known). This is conceptually different from Meteor, which aggregates information

from multiple expert sources on the device rather than aggregating multiple services

on a central server.
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A number of researchers have analyzed large collections of apps across multiple mar-

kets. The results of these experiments, including detection of malware [132], privacy

leaks [44], and poor developer practices [51] would be good candidates for inclusion

in a Meteor application database.

Perspectives [123] (and related projects such as Convergence [90]) uses a set of “notary

hosts” which monitor web servers’ public keys from multiple vantage points on the

Internet. Clients query the notaries to detect man-in-the-middle-attacks or changes

to public keys. Information sources in Meteor play a role somewhat similar to Per-

spectives’ notaries, but app information is collected by more than passive monitoring

(e.g., experts actively trying apps and submitting reviews).

Meteor shares similarities with browser-based ad blocking tools such as Adblock

Plus [2], which allow users to subscribe to ad blocking lists maintained by experts

around the web. Similar to Meteor information sources, each ad blocking list filters

specific types of advertisements (e.g., region-specific, content-specific), allowing users

to build a custom filter set tailored to their needs.

Aggregate and personalized ratings from users in a social circle can be helpful to find

inappropriate apps, as users in the same social circle tend to have similar definitions

of appropriateness [29]. However, detecting malicious applications generally requires

experts, who may not be present in all social circles. Meteor attempts to create

domain-specific services that can individually crowdsource information. However,

Meteor does not specify how to deal with the problem of expert recruiting or “fame

management” [41]. We defer this aspect, as well as the optional use of reputation

systems [76] to each information source.

4.9 Summary

This chapter has discussed the main challenges in providing pre-installation security

in platforms that offer decentralized software installation, using Android as an ex-

ample. We proposed the creation and use of security information sources, developer

registries, and kill switch authorities to re-gain the security semantics lost by allowing

decentralized software installation. The design and implementation Meteor was de-

scribed as a general software installation architecture that leverages domain-specific
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crowd-sourced information from experts. We believe such a decentralized architec-

ture is valuable not only for Android and smartphone OSs, but also tablets, netbooks,

and computing devices in general as software distribution and installation inevitably

converge in the direction of application markets.



Chapter 5

The Android Observatory

5.1 Introduction

The Android Observatory is a proof-of-concept information source for Meteor (see

Section 4.4). This information source was originally designed to reply to install-time

queries by clients to help users decide whether an application was authorized (i.e.,

digitally signed) by the correct developer. This functionality was initially done by

maintaining an association between known package names and signing certificates.

If a client submitted a {signing certificate, package name} tuple that did not match

any entries for that package name or certificate in the database, a warning was sent

back to the client alerting them that the application’s signing information cannot be

corroborated.

We have updated and expanded the Android Observatory to display very fine grained

application metadata and code signing information, allowing it to be used for more

than a Meteor information source. This section explains design and implementation

details of the Android Observatory. We also discuss how the dataset that is currently

being used was obtained and curated.

73
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Figure 5.1: A screenshot taken from the Android Observatory website as of March
14, 2014. Statistics include number of unique samples as well as a list of the top 10
most requested permissions across all Android applications in the dataset.

Figure 5.2: Screenshot depicting the user interface for searching applications on the
Android Observatory.
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5.2 Overview

The Android Observatory is a public website that displays Android application meta-

data. As of March 14, 2014, the Observatory contains metadata from 53,445 distinct

binaries1. These binaries represent multiple versions of 31,372 distinct packages (see

Figure 5.1). We have also indexed 19,691 code signing certificates2. The web front-end

allows users to search (see Figure 5.2) for applications by package name, application

name, and other metadata. When searching for a specific application instance (e.g.,

by searching for a binary hash), the Observatory interface will display all metadata

for that application, provided it has already been added (either directly by us or

contributed by a user) to the database. Metadata displayed includes:

Application: Metadata describing each individual application’s properties such as:

package name, version number and version code. We also include SHA1 hashes of

various application resources such as the manifest, compiled application code classes,

and binary resources.

Certificates: Details about signing certificates included in the application. We in-

clude X.509 properties such as common name, organization unit, fingerprint, etc. We

also display public key information which includes key algorithm, key size and key

parameters.

Permissions: A list of all Android permissions requested by the application, includ-

ing permissions that are non-existent (discussed in Section 3.4), developer-defined,

and system-only.

Source: The application market or source from which the application was obtained.

This information is not contained within the application itself, but rather inferred or

hard-coded at import time.

On the Observatory, application metadata is displayed using hyperlinks so users can

quickly navigate to other related applications within the dataset (i.e., not on the

Android market, for example). We define applications to be related if they share

one or more attributes with another application in our database. For example, if

1Binaries are distinguished through a cryptographic hash (SHA1) of their binary code (displayed
as binhash in Figure 5.1).

2Certificates are uniquely identified through a cryptographic hash of the public key included in
the certificate (referred to as certificate fingerprint in Figure 5.1).
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Figure 5.3: Screenshot depicting the user interface for uploading an application to
the Android Observatory.

an application was signed with a signing certificate whose corresponding private key

was used to sign more than one application, other applications signed with that key

are also displayed. This allows users to easily navigate between apps by the same

developer or development company.

Viewing apps that use the same code signing certificate has other benefits. For

example, developers can detect key compromise3. A practical example highlighting

the advantages of displaying related applications was a signing certificate4 used on

over 1500 apps in our dataset. Upon further examination, we traced back the origin of

this certificate (including its corresponding private key) to being distributed as part

of the Android Open Source Project as a “test key”5 used for signing debug Android

builds. Malware authors and novice developers (perhaps following incorrect guides

online) have also made use of this certificate to sign applications, and the Observatory

clearly highlights this behaviour.

We periodically update the Observatory database by invoking an application import

script on newly obtained applications. As of writing, these applications are obtained

3To be more specific, the developer would have to actively visit the Android Observatory, and
his or her private key would need to be used to sign a different app, and this app would also need
to be submitted to the Observatory.

4https://androidobservatory.org/cert/61ED377E85D386A8DFEE6B864BD85B0BFAA5AF81
5https://github.com/android/platform_build/tree/master/target/product/security

https://androidobservatory.org/cert/61ED377E85D386A8DFEE6B864BD85B0BFAA5AF81
https://github.com/android/platform_build/tree/master/target/product/security
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by either crawling new and existing markets, or by user submissions via a web upload

interface (see Figure 5.3). After applications are imported into the database, they

immediately appear as “recent applications” on the Android Observatory website.

Advanced use

While the provided search interface is simple to use (ideally even by non-expert users),

user input is converted into pre-constructed queries which are then executed on our

back-end database. Thus, when using the site’s search, the types of queries that can

be made are limited. More complex queries can be performed directly on the database

file (available for users to download) as SQLite queries; for example, it is possible to

search for all apps signed with a 512 bit RSA key that request both INTERNET and

RECORD AUDIO permissions. Sharing the database of parsed metadata (but not the

original application binaries) with other researchers has already lead to interesting

findings beyond our original goals. For example, Truong et al. [116] used our database

to find previously undetected malware by searching for known malicious signing keys

in our database.

5.3 Application Sources

The Android Observatory contains applications collected from several sources. The

project goals were to create a database that contains application representing a broad

set of languages, versions, distribution models, signing schemes, benign, malicious,

etc. Thus, we acquire applications from official and unofficial application markets,

peer to peer application collections, malware repositories, and we additionally allow

users to contribute their own applications or applications they have collected. Fig-

ure 5.4 displays a graphical summary of the application source distribution of our

dataset. We now describe each of these application sources.

Google Play Store. The Google Play Store [66] is a factory-installed (i.e., pre-

installed) app on Android devices sold in regions where Google has presence. Most

applications (around 6,000) in our dataset from the Play Store were obtained by
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Figure 5.4: Number of Android Observatory apps from various sources.

crawling the top free applications in the Google Play Store for over a year beginning

in early 2010. Another long-term crawl which contributed to our dataset took place

over the summer of 2012, where we collected an additional 1,600 apps. For each of

the crawls, a generic T-Mobile US identifier and region code were used as well as

an Android 4.0 user agent, retrieving applications visible to US customers on those

devices6. In total, our dataset contains 7,599 applications from the Google Play Store.

Alternative Markets. Several markets have emerged to offer alternative appli-

cation delivery channels. These markets differ from the Google Play Store in their

terms of service, pricing and developer payment schemes, restrictions on content, and

user experience. The Android Observatory contains applications from six alternative

markets.

• The Aproov market [14] is an alternative market that provides more detailed

app categorization, claims greater profit shares for developers, and a more so-

phisticated app rating system than Google Play. The top 100 applications from

6Developers may select geographic regions in which to make available or disable their applications.
Developers may also specify a minimum Android version required to run an application.
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each of the 17 Aproov categories were included as a large non-Google Play data

source. We note that as of March 2014, Aproov is no longer functioning as an

application market.

• The Amazon Appstore [3] is a mainstream alternative to Google’s Play Store.

It is featured prominently on Amazon-branded devices such as the Kindle Fire.

One paid application per day is featured by Amazon and offered for free down-

load. We downloaded the free app of the day on 37 different days in 2012.

• The F-Droid market [48] offers only free and open source Android apps. All

apps are open source (usually released under the GNU General Public Licence

and Apache license) and most are built from source by the F-Droid maintainers.

The authors of the applications themselves are not responsible for signing the

F-Droid app package, rather they are signed by the market maintainers. We

wrote a crawler to download around 1700 applications from F-Droid over 2 days

in early 2013.

• The MiKandi market [88] offers applications with adult content. Adult content

is prohibited on the Android market so the inclusion of these apps expands

authorship in the Android Observatory’s dataset. We included the top 100 free

applications from July 2012. For this set and all others in the Observatory, We

do not make available the original applications for download.

• The APK store market [11] appears to specialize in distributing pirated appli-

cations. Their site displays application screenshots and descriptions, and links

to free file-hosting websites to download the applications. Following the down-

load links usually leads to a copyright notice explaining that the application

in question has been taken down. We were able to download over 25,000 apps

from APK store in late 2012.

• The HiAPK store [74] distributes free applications in Chinese. It appears to

host applications which are not available on other markets, adding diversity to

our dataset. We retrieved roughly 7,500 applications from HiAPK in late 2013.

Malware Repositories. To achieve diversity in our dataset, we include meta data

on malicious applications from three different sources. Each application from the

sources below is labelled as malicious in our dataset (we trust that the sources of
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these apps have correctly classified the app as malware, and as such are making it

available to others). This way, users can identify specific malicious apps or malware

related to other applications.

• Contagio Malware Dump. The Contagio website [35] hosts known desktop and

mobile malware samples for research purposes. Some of the samples are con-

tributed by anti malware-vendors, while others are user-submitted. Malware

packs are periodically made available for download by Contagio, and contain a

large set of malicious applications. We downloaded one malware pack from Con-

tagio, collecting 53 separate malware applications. We note that many samples

on Contagio have been independently analyzed in the literature [52, 133].

• Malware Genome. Zhou et al. [132] analyzed 1137 malware applications for

Android, characterizing the evolution of malware for the platform. This is their

dataset which was subsequently made public. We include all apps from the

Malware Genome Project in the Observatory.

• VirusShare [118] is a website dedicated to collecting and re-distributing (for

research purposes) malware samples for multiple platforms. In early 2013,

VirusShare released a collection of 6091 malware applications for Android. We

include these in our dataset.

File-sharing. In early 2012, we downloaded 4 popular app collections that were

available on the BitTorrent network. File-sharing networks are a common source of

pirated content and are commonly considered to present a risk of malware. The 4

collections totalled 2,167 unique binaries.

User Submissions. As mentioned, the Observatory allows any independent party

to submit applications for analysis. As of March 14, 2014, we have received 915 unique

user submissions. While we receive multiple submissions a day on average, some

submissions are duplicates entries of applications already contained in our database.

For efficiency, we discard duplicates upon submission.
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5.4 Populating the Observatory Dataset
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Figure 5.5: Block diagram of application import process.

The database is populated with information extracted from Android packages. We

use what is formally called a chain of responsibility pipeline [56]. This type of process

allows the import and processing of applications from a variety of sources. Each

component of the chain (e.g., certificate parser, metadata parser, cryptographic hash

calculator) is able to independently process application information, insert database

records, and prepare the application for subsequent components. The modular nature

of the pipeline allows for new analysis operations (e.g., static analysis tools) to be

integrated in order to augment the database with additional information.

The pipeline extracts and computes two main types of data from each Android app

package (see Figure 5.5): (1) metadata extracted from the package such as app names,

package names, version numbers, permissions, and certificate attributes from file con-

tents; and (2) a structural description of the package such as the individual hashes

of resources, compiled code, and the application manifest. Distinct variants of the

same app (e.g., different versions or same version from difference sources) are indexed

separately as unique APKs. Relevant pieces of the extracted information are stored

in separate database tables for application packages, certificates, and permissions. By

cross-referencing common fields in the tables, it is possible to locate common elements

between applications.
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In order to obtain attributes from certificates for inclusion in the dataset, we modified

Oracle’s Java keytool utility to extract more detailed information than the base

tool provided. We extracted the certificate serial number, public key and public

parameters (modulus and exponent for DSA and RSA).

5.5 Future Work

Moving forward, we see the Android Observatory continuing to be useful to re-

searchers and the general Android user community. We believe it would be useful to

grow the dataset used herein through the inclusion of new and emerging marketplaces,

as well as increasing coverage of our existing sources. We may also improve integra-

tion of the Observatory with other online application repositories, allowing users to

find applications outside of our own dataset. On each application page, we currently

provide links to VirusTotal [119] and Andrototal [9] (both are cloud-based malware

scanners) so users can obtain malware scan information (provided the application was

independently submitted to those services for analysis). While we do not yet offer

a complete API to query the Observatory, we have already shared the Observatory

database of extracted metadata with many researchers.



Chapter 6

Securing Software Downloads and
Updates

6.1 Introduction

After users select an application to install, possibly leveraging a pre-installation ar-

chitecture like the one described in the previous chapter, the next step in the software

installation process is to retrieve the application and verify its authenticity and in-

tegrity. By authenticity, we refer ensuring that an application was authored by the

intended developer. By integrity, we refer to the verification that the application

was downloaded (e.g., in the case of remote retrieval) without error. Digital signa-

tures play a key role in providing authentication and integrity guarantees in software

distribution and installation.

Modern operating systems use digital signatures as a mechanism to verify the integrity

of downloaded software and/or authenticate developers. Platforms such as iOS, Win-

dows Phone, and Blackberry use code signatures to restrict installation of third-party

applications to only registered developers. These platforms use a centralized author-

ity, where developer certificates or the software itself is signed by the vendor prior

to being distributed to user devices. A centralized authority is restrictive for users

(e.g., users must obtain software and updates from sources formally sanctioned by

the platform vendor) while allowing vendor control over certificate issuance.

83
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Android, one of the most widely deployed mobile operating systems, does not use a

centralized authority. Instead, developers are responsible for obtaining suitable sign-

ing certificates (typically self-signed, but they can be issued by a certificate author-

ity). The use of signatures on Android allows the OS to verify (1) that the application

package was downloaded without error, and (2) to authenticate updates. Specifically,

Android’s installation framework allows installation of app updates only if they are

sanctioned by the same developer. Such update integrity is enforced in the OS by

comparing the set of signing certificates embedded in the already installed applica-

tion against the set in the updated version. If the updated version set of certificates

matches the set in the previously installed app, the update is allowed. Otherwise, the

update fails. Since Android uses a trust-on-first-use [123] approach, initial app instal-

lations are not subject to such certificate continuity verification. However, download

integrity can still be provided, as any missing or erroneous bits would result in digital

signature that cannot be verified.

In this chapter, we motivate, design, and implement Baton, protocol that allows de-

velopers in decentralized environments to update code signing certificates (informally

called key agility or certificate agility). Baton offers a mechanism to delegate signing

authority to a new certificate, and provides a cryptographically verifiable mechanism

to ensure the authenticity of certificate delegations. Developers may wish to update

the certificate for a variety of reasons. For example, developers may want to authorize

a new developer to issue updates to an application in the case of an application sale

or transfer. In other cases, developers may want to use new signing algorithms or

key sizes as acceptable best-practices evolve. We implement and test Baton in a real-

world decentralized environment (Android), and find that certificate agility can be

provided without end-user involvement, user data loss, or changes to the decentralized

code signing model.
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6.2 Background and Related Work

6.2.1 Download Integrity

We briefly discuss issues surrounding verifying download integrity when digital signa-

tures are not available, and then concentrate the discussion on environments in which

all software is digitally signed.

Download integrity refers to verifying that a software installation package or binary

was not modified during the data transfer (typically a web download) process. That

is, download integrity focuses on data consistency, ensuring that the file which was

made available by the developer is retrieved without modification (e.g., due to lack

of error checking in the file transfer protocol, or malicious substitution of data by an

adversary). When there is no authentication during the download process (e.g., a

file transfer over plaintext HTTP), integrity is typically provided by the underlying

transport protocol. A common practice in signature-less decentralized software distri-

bution is for developers to provide the output of cryptographic hash functions (e.g.,

MD5 or SHA1) using the software package as input. The integrity of a downloaded

file can be verified by retrieving a cryptographic hash of a file, and comparing to a

locally computed hash as shown in Figure 6.1.

$ wget http://ftp.mozilla.org/pub/firefox/releases/SHA1SUMS

$ wget http://ftp.mozilla.org/pub/firefox/releases/firefox-28.0b9.tar.bz2

$ sha1sum -c SHA1SUMS

firefox-28.0b9.tar.bz2: OK

$ wget http://ftp.mozilla.org.evil.com/firefox-28.0b9.tar.bz2

$ sha1sum -c SHA1SUMS

firefox-28.0b9.tar.bz2: FAILED

sha1sum: WARNING: 1 computed checksum did NOT match

Figure 6.1: Example commands used to verify the integrity of a downloaded file. The
sha1sum program takes as input a list of SHA1 hashes, calculates a new SHA1 hash
on the file, and compares the results. In this example, the list of hashes is retrieved
from the legitimate server, and the second binary is retrieved from a malicious site.

We note that in the example of Figure 6.1, the SHA1 hash for the file was retrieved

over HTTP. An adversary could have performed a man-in-the-middle attack at re-
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placed both the SHA1 hash as well as the downloaded file, allowing for successful

integrity verification, but incorrect (and unverified) authentication. Thus, an addi-

tional layer of authentication (e.g., one provided by a digital signature) is needed to

ensure the cryptographic hash can be trusted. Alternatively, the SHA1 hash could

be retrieved out of band (e.g., posted on a mailing list archived on a different server),

but that process is beyond our current scope.

6.2.2 Digital Signatures for Authenticating and Verifying Down-
loads

Digital signatures are the most common solution to verifying download integrity and

authenticity when a public key infrastructure is available. In a digital signature

scheme, a cryptographic hash of the message (in this case, the file being made available

for download) is computed. The hash of the message is then processed according to

a digital signature scheme1 and a private key to produce a digital signature. Upon

reception of the file and corresponding signature, the receiver computes the hash of

the file, and verifies the signature using a signature verification algorithm and the

sender’s public key. If the signature correctly verifies the receiver can at least make

the following two claims:

1. Authenticity: the signature was produced by someone in possession of the

sender’s private key. Since private keys should remain private, the receiver

can be assured that it was in fact someone with possession of the private key

who created the signature.

2. Integrity: The signature was created with the inclusion of a cryptographic hash

of the application. Thus, if the file was modified in transit, the signature would

not verify correctly. If a malicious party attempts to modify the application

in transit, they would also need to generate a valid signature. This should be

difficult without possession of a private key.

1Many digital signature schemes exist, each with its own performance and security properties. In
this thesis we treat the signature scheme as a black box that could internally use any digital signature
algorithm that requires the message as input for verification. Readers interested in the inner workings
of various digital signature schemes are encouraged to read Chapter 11 of the Handbook of Applied
Cryptography [87].
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We note that confidentiality is one property that is not inherently provided by the use

of digital signatures. That is, an eavesdropper that can monitor the channel used to

send the application will be able to identify the sender, as well as completely view the

application’s contents. Confidentiality can be provided by encrypting the file itself or

using an end-to-end secure channel.

6.2.3 Trust on First Use in Decentralized Environments

Trust on first use (TOFU) is used when there is no central authority in charge of

certificate issuance or revocation. In a TOFU model, certificates are trusted the first

time they are seen, hoping that the certificate was not forged, tampered with, or

substituted. Thus, TOFU schemes are also referred to as leap-of-faith authentica-

tion [16]. Note that in a TOFU scheme, certificates does not fully authenticate their

owner since no authoritative party verifies the link between identity and public key.

Goldberg et al. [58] categorize TOFU protocols as stateless, non-interactive message

recognition models that can be used to authenticate messages as long as the same cer-

tificate is used to sign every message. TOFU protocols are lightweight, and require no

certificate authorities or centralized PKI of any form (cf. [6, 85, 58]). Their drawback,

consequently, is the inability to provide trust guarantees on the initial verification, as

well as locking-in trust to a specific certificate after the initial verification.

Android, as described in Section 3.5, requires digital signatures on all applications.

Android uses the TOFU approach, providing no trust guarantees on initial instal-

lations, but allowing only applications signed with the same certificate to replace

existing applications. When signing certificates during updates are changed, the only

method to install the updated app is for the user to manually uninstall the old app

(which deletes the app’s user data) and then install the updated version as a new in-

stallation which is not subject to the certificate continuity verification. This process

in effect revokes trust in the previous signing certificate, replacing it with one that is

newly trusted for subsequent updates.

Aside from this uninstall-reinstall method described above, Android, in its operating

system and developer tools, has no mechanism for developers to renew, change, or

revoke signing certificate(s).
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6.2.4 Selective Updates

Wurster et al. [127] propose a mechanism for providing binary file update integrity

through self-signing by including an embedded set of public signing keys, sufficient for

verifying signatures. This approach is functionally similar to Android’s app update

mechanism, and similarly does not allow updating or changing verification keys. In

subsequent work [117] (called key-locking), the verification key set is allowed to evolve,

meaning that updates may include new verification keys suitable for verifying the next

set of updates.

The key-locking approach presents several advantages over the TOFU model. First, it

allows signers to update their signing keys in a flexible way. For example, a threshold

scheme can be done by issuing an update that requires t-of-n signing keys to be present

in the subsequent updates. The total number keys can grow or shrink as needed, as

long as updates are applied in order to preserve continuity. Second, key-locking is

transparent to users. The OS enforces verification of signatures, and installs new keys

for future updates. If signatures are valid, updates are applied without warning or

input from the user.

The disadvantage of key-locking is that all intermediate updates must be applied for

continuity. That is, if an intermediate update N in which keys are changed is not

applied, the OS may prevent the installation of the N + 1 update due to verification

keys for the update not being present in the N − 1 binary. This limitation can be

side stepped by including verification keys over multiple updates, but this may be

undesirable in the event of key compromise.

6.2.5 Other Related Work

In the broader literature on software updates, Cappos et al. [28, 27] examine secu-

rity issues in package managers which commonly distribute verifying keys as part

of the installation media. Samuel et al. [106] describe a software update framework

(TUF) that is resilient to a number of key compromise attacks. TUF is essentially

an alternate PKI tailored to allow multiple roles (e.g., release and time-stamping)

such that an adversary would have to compromise multiple keys to trick a user into

installing a malicious update. Our proposal extends the TOFU model and focuses
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on the continuation and delegation of the initial trust without the need for a central

PKI.

6.3 Motivation for Key Agility on Android

This section presents arguments in favour of enabling key agility on Android backed by

an empirical dataset obtained from the Android Observatory project (see Section 5).

6.3.1 Absence of Secure Defaults

The Android developer tools provide a point-and-click wizard for signing applications.

The wizard requests (as input from the developer) a certificate validity period (Google

requires a validity of 25 years or more for apps submitted to the Play Store [61]),

and then invokes Java’s keytool to generate a suitable signing key and certificate.

Parameters such as key type, key size or signing algorithm cannot be specified using

this wizard. However, it does pass a -keyalg RSA parameter to keytool, generating

a default 1024 or 2048 bit RSA key (on Java 6 and 7, respectively). When invoked

outside the wizard (e.g., from the command line) without any parameters, keytool

generates a 1024 bit (in a 160 bit subgroup) DSA public key.

On a dataset of 6159 signing certificates obtained from a snapshot of the Android

Observatory from September 6, 2013, we observe that over 99% of certificates were

likely generated using the Android signing wizard (see Table 6.1). In fact, only 24

certificates appear to have been generated by passing manual (non-default) options

to keytool. According to recommendations by the National Institute of Standards

and Technology (NIST), signature generation with key sizes less than 2048 bits for

RSA and DSA was deprecated in 2011 and disallowed in 2013 [19, 18]. By this

recommendation, over 75% of keys in our dataset do not follow best-practices, yet

developers have no mechanism to transparently issue an updated certificate with a

stronger key. Enabling certificate agility allows developers to change key algorithms

or key sizes as best practices evolve.
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Key algorithm/size Occurrences % of total
RSA 1024 4593 74.57
RSA 2048 1340 21.76
DSA 1024 202 3.28
Other (non-default) 24 0.39

Table 6.1: Signing key algorithm and key size over a dataset of 6159 certificates from
the Android Observatory.
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Figure 6.2: CDF for certificate reuse in our dataset of 11452 apps and 6159 certificates.
An x = y line depicting a theoretical 1 distinct certificate per distinct app is plotted
for reference.

Applications can be sold or otherwise transferred between developers. Under the

current model and to avoid user interaction, transferring private signing keys is a

likely component of the ownership transfer process. However, such sharing of private

signing keys is problematic if a developer signs multiple apps with the same signing

certificate; surrendering a private key for one app allows the new owner of the key to
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issue updates to any other app signed with that key.

The September 6, 2013 snapshot of the Android Observatory consists of 11452 dis-

tinct2 applications. On this dataset, we notice that key reuse (i.e., using one key

to sign more than one distinct app) happens frequently. Out of a total 6159 signing

certificates, 1037 keys (16.83%) were used to sign 2 or more distinct apps. Figure 6.2

shows a cumulative distribution function of signing key reuse on our dataset. Some

cases of reuse involve developers releasing a free (usually ad-supported) version of

an app alongside a paid version signed with the same key. In other cases, software

companies (e.g., Rovio, Google, Yahoo, etc.) release a separate app for each service

or game, but use a single signing key on all apps.

6.3.3 Logical Requirements

Secure app interaction. Developers (or development teams) can leverage An-

droid’s signature-level privileges for UID sharing or signature permissions (see Sec-

tion 3.6) to securely integrate apps or app components. Without certificate agility,

developers must decide ahead of time which apps should be granted the capability

to interact securely. It may not always be possible to predict future functionality or

required interaction of an application.

External certificate management Developers may wish to use certificates (per-

haps previously acquired) issued by a certificate authority to assert a validated iden-

tity on their apps. However, many reputable CAs will not issue certificates with

an essentially infinite lifespan (25 or more years). Some CAs (e.g., Symantec [111])

will issue these long-lived certificates but will not release them to the developer; the

developer must use a CA-provided signing service to sign applications, which is an

additional cost and necessitates distinct certificates specifically for Android apps.

Without certificate agility, developers cannot renew an expired certificate and still

update user apps without user interaction.

2We use the package name to differentiate between apps and to avoid counting app updates as
key reuse.
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6.3.4 Case Studies

This section describes two high-profile examples highlighting the potential benefits of

certificate agility on Android.

Google Authenticator In March 2012, Google changed the signing certificate for

their two-step authentication app Google Authenticator (package name authenticator3).

Google released a new application (under package name authenticator2) signed with

a new signing key and included a certificate used to sign other prominent Google prop-

erties (e.g., Maps, Chrome, and the Play Store client). The certificate switch was os-

tensibly required to enable secure interaction (see Section 3.6) between Authenticator

and this set of apps.

The upgrade path from one version of Authenticator to the other required that users

take a series of steps, including a manual new install and uninstall. To assist users,

Google created a help page [62] explaining the upgrade procedure. Below is an ex-

cerpt:

“Once you have confirmed as part of the previous step that you are able to

successfully generate valid verification codes using the new Authenticator,

it is safe to uninstall the old version of the app. Because both versions have

the same icon, make sure to check the version number before uninstalling:

you want to keep version 2.15.”

In Appendix A, we perform a usability analysis technique known as a cognitive walk-

through [124] on this upgrade process. We find that the overall process is convoluted

and should not involve the user. However, given the constraints, Google did mitigate

many potential usability issues. With Baton, we aim to provide a mechanism by

which, when developers update apps which include changed signing certificates, no

additional interactions are triggered for end-users when the updated apps install. Ba-

ton would have allowed Google to issue a standard update to authenticator which

includes the new signing certificate.

Mozilla Firefox for Android Before releasing Firefox for Android in 2010, Mozilla’s

intention appeared to be to use their existing Microsoft Authenticode certificates or

3The full package name is com.google.android.apps.authenticator2
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to purchase a 2 or 3 year certificate from Verisign to sign Firefox for Android [91].

Mozilla correctly concluded that there is no support in Android for certificate renewal,

even if there is no change to the signing key pair. Mozilla filed a bug report [10] on

Android asking for confirmation or motivation for why certificate renewal is not sup-

ported. The bug report was closed automatically getting marked as obsolete on June

23, 2013 despite the issue remaining unresolved and unacknowledged.

While the Android OS does not currently enforce certificate expiration (i.e., apps

with expired certificates can be installed as usual), the Android documentation [61]

asserts that certificate validity is verified. This inconsistency leads us to believe that

certificate expiration policies on Android may change in the future. Baton allows

developers to use shorter lived (more typical lifespan) certificates, and update them

as needed by issuing an application update. This may prove useful for companies,

such as Mozilla, that already have (or wish to have) code signing certificates issued

by certificate authorities.

6.4 Design and Implementation of Baton

Baton provides the ability for developers to delegate signing authority to a new pri-

vate key. This is accomplished by creating a data structure (token) in which the

old signing key is used to sign the new certificate and additional corresponding meta

data. Each token is embedded in a certificate chain describing the history of delega-

tions. The chain is cryptographically verifiable, and embedded inside the APK file of

subsequently released Android apps after the first delegation occurs. The certificate

chain and verifying code are implemented to meet the following design objectives:

1. No user involvement. Certificates and signatures are system-level compo-

nents that need never be visible to the user. Baton provides a system-level

mechanism to validate certificate changes and does not involve the user in any

decisions or actions.

2. Compatibility with Android’s security model related to application

signing. Android uses certificates for software update continuity and for ap-

plication interaction (see Section 3.6). Baton does not change the requirements

for signature permissions and UID sharing.
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Protocol 1: Baton signing key endorsement protocol

Overview: The holder of KeyA wishes to delegate signing authority to a new
key KeyB.

Variables:
KeyA,KeyB - the private keys corresponding to the public keys in CertA and
CertB respectively.
CertA,CertB - the signature verification certificate used to verify signatures on
current application release, and the certificate being delegated to, respectively.
The certificates are self-signed.

Pre-requisites: The fingerprint of CertB has been communicated to the
holder of KeyA over a channel with guaranteed integrity.

Protocol:
1. Holder of KeyA generates token=SigKeyA{H(pkg name, version code,

CertA, CertB fingerprint, previous token hash†)}.
2. token is communicated to holder of KeyB.
3. Holder of KeyB includes token in AndroidManifest.xml when releasing

updates signed with KeyB.
†: If there is no previous token to hash (i.e., it is the first token to be included
in a certificate chain) null may be substituted for the previous token hash value.

3. Minimal OS changes. We add code to the Android application installation

framework and developer tools, but make no other software modifications, and

require no change of behaviour by developers if certificates don’t need to be

changed.

4. Backwards compatibility. Baton supports incremental deployment with in-

cremental benefit. Users with Baton-enabled Android will be able to upgrade

applications that have changed their signing certificates (provided verification of

the delegation succeeds). Users without a Baton-enabled Android build can still

install and upgrade applications that include Baton certificate chains. These

users, as with current Android, will be unable to transparently apply software

updates if there is a certificate change; instead they must uninstall the current

version and install the update as a first install.
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Figure 6.3: Version update diagram depicting updates that are allowed by stock
Android (icons depicted over an arrow) and by Baton (icons depicted under the
arrow). SigA(V n) and SigB(V n) are signatures on application version n with signing
keys A and B, respectively. In all cases, updates are only allowed if signatures are
successfully verified.

Baton has two core components: (1) a set of patches to the Android installation

framework, modifying packages responsible for parsing the AndroidManifest.xml file

and verifying application signatures; and (2) an Eclipse plug-in for assisting developers

in generating key delegation metadata.

Delegating Signing Authority For a developer to successfully delegate (i.e., en-

dorse a new signing key) signing authority to a new signing key (shown as an example

in Figure 6.3 as an update from V2SigA to V3SigB), they must embed a valid delegation

token in the update. In the example in Figure 6.3, a delegation token passing signing

authority from KeyA to KeyB (i.e., the private keys associated with certificates A

and B, respectively) must be present in the update. The delegation token generation

is described as step one in the signing key endorsement protocol given in Protocol 1.
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6.4.1 Threat Model and Goals

We consider the following security objectives to be necessary for any secure update

mechanism, including Baton:

1. No Unauthorized Updates. Updates to installed apps must be authorized

(either directly or transitively) by the signer(s) of the originally installed version

of the app.

2. No Replays. Key delegation tokens should be bound to specific applications

and versions. The tokens should not allow unintended delegations through

embedding potentially modified tokens on unauthorized applications.

3. Mitigating Social Engineering. The update mechanism should only require

user actions that are easily distinguishable from the actions a target victim user

would take in a social engineering attack.

4. No Unauthorized App Interaction. Multiple apps may only interact through

properly authorized privileged means (e.g., sharing a UID or granting access to

restricted APIs) with the mutual authorization of all the integrated apps.

We assume the attackers in the system to be computationally-bounded adversaries,

who may hold their own signing keys, have their own apps released on application

markets, and even have apps installed on a target user’s phone. We assume adver-

saries are not capable of learning the private signing keys of other developers (we

discuss key compromise in Section 6.6.3), nor are they able to modify or otherwise

compromise the Android OS. We assume, however, that the adversary can tamper

with any Android application package. A security analysis (see Section 6.5.3) is given

after first describing the details of Baton.

6.4.2 Implementation

Certificate Chain and Delegation Tokens

In Baton, a certificate chain is a sequence of one or more delegation tokens. Each

delegation token in the certificate chain is a signed collection of metadata which

contains the following information:
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1. The application package name.

2. The application version code.

3. A set4 of previously active certificates.

4. A set of currently active certificates.

5. A cryptographic hash of the previous delegation token in the certificate chain.

A Baton delegation token acts as a verifiable endorsement of a transition from one set

of certificates to a new set of certificates whose corresponding private keys will be used

to sign the new or current version of the application. The generation of the delegation

token is described in Protocol 1. Each delegation token, including a signed hash of

the delegation token prior to itself in the chain, allows cryptographic verification of

the entire certificate chain. This prevents an adversary from removing, adding, or

rearranging delegation token elements in the chain. Inclusion of the package name

scopes the delegation to only the specified application. For example, if a developer

signs three applications with the same signing key and generates a Baton delegation

token to update the certificate of only one of the three applications, the scope prevents

this same token from being embedded in the other two applications, as the package

name will not match.

Baton XML

Baton applications embed into the AndroidManifest.xml an XML representation of

the certificate chain. To simplify the signing and verification procedure we detach 5

the delegation token signatures from the delegation token metadata to create two sep-

arate sets of nested elements, certificate-chain and certificate-chain-signatures

(see Figure 6.4). The delegation-token elements in certificate-chain are matched

to the corresponding delegation-token-signature elements in the certificate-chain-signatures

by order within their parent element. The signing process is performed following the

xmldsig standard best practices outlined by the W3C working group [120].

To allow signature validation in the case of missed intermediate updates, each dele-

gation token includes a Base64 encoding of each certificate in the previous certificate

set as well as their fingerprints. We chose to embed the full certificate for each of

4Baton assumes developers may use multiple signing keys on the same application (see Sec-
tion 3.5.1).

5This is done by using the XML Signature Detached specification as outlined by the W3C [121].
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<?xml version="1.0" encoding="utf -8"?>

<manifest xmlns:android="http:// schemas.android.com/apk/res/android"

>

...

<certificate -chain>

<delegation -token android:versionCode="10">

<previous -certs>

<cert encoded="..." fingerprint="907

EB3F2E8447054446A2A4B3ED8CA78DB04B188" />

</previous -certs>

<current -certs>

<cert fingerprint="6E532E87A468052DA2EE8E9D6E56080181D3E2F9"

/>

</current -certs>

<previous -token hash="null" />

</delegation -token>

</certificate -chain>

<ceritificate -chain -signatures >

<delegation -token -signatures >

<Signature >

....

</Signature >

</delegation -token -signatures >

</certificate -chain -signatures >

...

</manifest >

Figure 6.4: Example Baton certificate chain entry in AndroidManifest.xml . Base64
encoded certificate content and non-Baton related Android entries removed for
brevity. Signature element defined in xmldsig [121] standard.
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the previous-certs as a convenience to handle updates from a very old version to a

new version signed with certificates which would be valid only after processing several

delegations. In this case, the certificates specified in intermediate tokens may not be

present within the application and must be loaded from the encoded version in the

token.

As a design alternative, it is possible to avoid embedding a certificate chain at all by

retaining all previous versions of AndroidManifest.xml and the META-INF directory

in future versions of the APK.6 Thus, signing a new APK will bind the current An-

droidManifest.xml to the complete history of previously signed AndroidManifest.xml

files. In this alternative implementation, transitioning to a new set of signing cer-

tificates would require the AndroidManifest.xml to specify the new certificate in an

APK update signed by the currently valid certificate. This simpler implementation

would require more involvement from developers to ensure that all prior versions of

the META-INF directory are retained. Jarsigner would need to be invoked indepen-

dently once the application archive is created. With Baton, certificate delegations

only add a few lines to AndroidManifest.xml instead of creating an archive of past

files containing mostly no-longer valid data.

AOSP Implementation

We modified The Android Open Source Project (AOSP) code to implement the Baton

certificate verification functionality. The proposed set of patches totals under 500 lines

of code which we plan to make available under an open source license compatible for

inclusion in AOSP.

The android.content.pm.PackageParser core class was modified to correctly pro-

cess of the new AndroidManifest.xml entries. In the AOSP services sub-project, the

com.android.server.pm. PackageSignatures class was modified to store a Signa-

tureChain reference, populated by the PackageParser. When the com.android.server.pm.Settings

class loads or stores the on-disk packages.xml file, the SignatureChain is responsible

for writing its own representation to the file, and restoring it when the operating

system boots.

In addition to modifying existing classes, we created a new class (com.android.server.pm.Signa-

6The hash tree structure of MANIFEST.MF allows the signature on a single file to be verified.
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tureChain). This class serves as an in-memory representation of the XML certificate

chain from the AndroidManifest.xml . It contains the logic for reading the Signa-

tureChain to and from XML, as well as verifying delegation token signatures.

Finally the com.android.server.pm.PackageManagerService class was modified to

instrument the stock signature verification logic and package update procedure. When

the modified PackageManager Service processes an update for an installed applica-

tion, it will now compare the installed application’s set of signing certificates to the

proposed update’s set of signing certificates. If the sets match, the update proceeds

following the existing Android certificate continuity policy. If the certificate sets do

not match, then the PackageManagerService ensures that the proposed update must

contain a delegation token for the correct version transition (i.e., for the currently

installed version to the update’s version) endorsed by the installed application’s cer-

tificate set. The version transition may be endorsed through one or more intermediate

delegation tokens allowing the update to proceed in the event the user has missed

interim updates.

The AOSP project does not include the javax.xml.crypto.dsig packages used to

verify XML signatures. Therefore we additionally include the Apache Santuario [113]

library, an independent implementation of the xmldsig [121] standard.

Developer Tools

To facilitate adoption by developers, we augment the application signing life-cycle

by integrating with the development environment used to produce Android applica-

tion releases. As of writing, the official Android Developer Tools (ADT) plugin for

Eclipse [59] is closed source, impeding our ability to enable Baton support directly. In

lieu of a patch to ADT, we have opted to provide a third party Eclipse plugin. After

installing the Baton plugin in Eclipse, developers are able to export their Android

projects as a Baton-enabled APK. In addition to the Eclipse plugin, our developer

tools can operate as a stand-alone GUI, or a command line tool. The stand-alone

versions of the plugin are better suited for integration with other IDEs that support

external tools, or with more complex build management systems often used with large

software projects.

To begin the process, the developer is prompted to select one or more signing certifi-
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cates to endorse for future updates, or to enter a certificate fingerprint. For example,

this may be a certificate generated by the new owner of the project if the developer

is transferring control (e.g., selling to another developer) of their application. The

certificate may also be locally generated. The developer must also choose one or

more signing certificates whose corresponding private keys will be used to sign the

delegation token. In practice the developer will most often select the signing certifi-

cates presently used to sign production releases of their project. The version code

and the package name values in the token are pre-filled from the values in the An-

droidManifest.xml file. If necessary, the developer will be asked to enter a passphrase

to unlock the private key. After unlocking the private keys (if required) the XML

for the delegation token is generated, following Protocol 1. It is signed, and inserted

into the certificate chain in the AndroidManifest.xml file. The token is also displayed

on-screen to allow communication of the token to other parties if required.

6.5 Evaluation

This Section discusses compatibility of Baton with other signature-based security

mechanisms and previous versions of the OS. Additionally, we perform a security

analysis of Baton.

6.5.1 Compatibility

Compatibility with Related OS Functions

Android currently uses code signing certificates for security operations outside of ap-

plication update integrity. Code signing certificates provide a form of access control,

selectively allowing applications to join a shared UID group or to be granted a sig-

nature permission (see Section 3.6). At application install time, for the application

to be allowed access to a signature protected resource (e.g., UID group or permis-

sion), the certificates on the application must be identical to those associated with

the protected resource. This requirement remains unchanged in Baton.
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Using Baton, if one application in a shared UID group or an application providing

a signature protected permission transitions to a new set of signing certificates, the

certificates associated with the group or permission within the OS are updated to

reflect the transition. As a consequence, future updates to other applications in the

UID group, or requesting the signature permission must also transition to the new

set of signing certificates.

We have designed Baton such that developers cannot issue a certificate transition to

one application that “evicts” other applications from a UID group by changing the

associated certificate set. This behaviour is consistent with Android’s current model,

where applications cannot arbitrarily change UID groups during updates.7 An evic-

tion would, by definition, change the UID of the evicted application, leading to an

inconsistent state. Our design instead honours the membership of already installed

applications until they are updated. This prevents previously functional applications

groups from losing functionality (by evicting a member) while introducing no detri-

mental security properties.

If UID group evictions are required, a more flexible mechanism is required. We pro-

pose one such mechanism called Fluid in Section 7.4.2.

Enabling Compatibility with Stock Android

Application releases that perform a certificate transition using Baton must package

a modified AndroidManifest.xml containing a Baton certificate chain in the released

APK. For this reason, we consider the compatibility of the modified application release

with existing versions of Android (i.e., those without Baton).

At application install-time, the Android OS parses the AndroidManifest.xml using

the android.con- tent.pm.PackageParser class (located within the frameworks

directory of AOSP). Once patched to enabled Baton support, the Android OS is

aware of the new XML tags introduced for the certificate chain (see Figure 6.4), and

can react accordingly. The default unmodified behaviour of the PackageParser class,

as of the time of writing, sets an internal RigidParser constant to false causing

7https://android.googlesource.com/platform/frameworks/base/+/

d0c5f515c05d05c9d24971695337daf9d6ce409c

https://android.googlesource.com/platform/frameworks/base/+/d0c5f515c05d05c9d24971695337daf9d6ce409c
https://android.googlesource.com/platform/frameworks/base/+/d0c5f515c05d05c9d24971695337daf9d6ce409c
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unrecognized XML tags to be skipped without error. Based on the behaviour of

the code in AOSP, if an application carrying a delegation token is installed on an

unpatched OS, the certificate chain will be ignored. The application will still install

correctly pending successful (stock) certificate continuity validation.

If the Baton patches were merged into AOSP, we recommend developers who release

application containing a Baton certificate chain use the android:minSdkVersion pa-

rameter in AndroidManifest.xml to preclude install on systems lacking Baton support.

It seems unavoidable that users without Baton support may only install application

updates signed with a different set of signing certificates by first uninstalling the old

application.

6.5.2 Implementation Evaluation

Standard Update

We verified that our patches to Android’s installation framework did not interfere with

standard update functionality by creating multiple releases (each with an incremental

version code) of a test application, and side-loading each version on to an emulated

Android environment in various orders (e.g., V1→V2→V3, V1→V3, V2→V3→V1).

All releases were signed with the same signing certificate and used the same package

name. As per stock Android policy, updates succeeded but downgrades did not. The

user experience was no different in the Baton environment and in the unmodified

Android environment.

Certificate Agility

We created a sample application with an embedded Baton certificate chain and tested

delegating signing authority from one certificate to another (keeping the package

name the same). After installing the application signed with one certificate, the app

was transitioned to a new certificate by embedding a token generated by the Baton

developer tools in an update. Baton successfully validated the delegation token, and

user data related to the test app was preserved and accessible by the application with

the new certificate. We also tested changing certificates but not including the Baton
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certificate chain, as well as changing certificates and including an invalid certificate

chain. These updates failed with the “failed inconsistent certificate error” thrown by

the Android OS as expected.

AOSP Unit Tests

We ran the bundled unit tests for the PackageManagerService class. These unit

tests are included with the AOSP source code and are used for automated testing

and to prevent any bugs from being introduced to previously functional code. We

checked that the Baton system introduces no such regression errors by running the

unit tests and verifying that a Baton patched system to pass the tests without failure

or warning.

AOSP Code Inspection

We searched the AOSP source code tree looking for references to signing certificates.

Code found interacting with the PackageManagerService, or with the Signature

objects used internally to represent code signing certificates was manually inspected

and examined for conflicts with Baton. No conflicts were discovered.

6.5.3 Security Analysis

Here, we analyze Baton under the security objectives and threat model presented in

Section 6.4.1.

1. No Unauthorized Updates. Baton does not modify the requirements of

Android’s standard certificate continuity verification. Baton only introduces

cryptographic verification of certificate chains. Thus, with Baton, an adversary

must still compromise a developer’s private signing key to issue an update or

create a valid certificate chain to transition to a new signing certificate.

The certificate chain and delegation tokens in Baton are included in the An-

droidManifest.xml . They are not secret; digital signatures provide integrity
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protection. Deleting the chain or delegation tokens inside the AndroidMani-

fest.xml has the same effect as removing a signature from an Android package

(deleting the META-INF directory, also known as signature stripping [20]). Apps

without a Baton certificate chain or META-INF directory will fail to validate as

legitimate updates and will not succeed in replacing an installed binary.

2. No Replays. Delegation tokens include a package name, version code, and are

digitally signed. Replaying a delegation token on a different application (i.e.,

copying the relevant section of the AndroidManifest.xml file into an application

with a different package name) causes Baton to fail the certificate chain ver-

ification. Certificate transitions do not succeed unless all tokens in the chain

reference the package name being updated, and corresponding signatures can

be verified.

3. Mitigating Social Engineering. With Baton, users apply app updates as

usual. However, unlike with stock Android, there is no legitimate reason to

require the user to manually uninstall applications for the purpose of a key

update. Training users that sometimes this action may be required (which

is the case, as of writing) can lead to social engineering attacks by malicious

developers; Baton eliminates the need to do so, reducing this risk.

4. No Unauthorized Interaction. Baton does not modify UID sharing nor

signature permission requirements. Applications must be signed with the same

signing key(s) at install time to leverage signature privileges (see Section 6.5.1).

It is not possible to leverage Baton to arbitrarily join a UID group for which a

key is not held.

6.6 Discussion

6.6.1 Limitations of Existing Proposals

The concept of forward certificate chains, where an old key signs a new key (or

alternatively, the new key is transmitted over a channel secured with the old key)

is a long-known key-management technique, almost as old as public key certificates,
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Stock Android [61] • • •
Baton (Sec 6.4) • • • • ◦
Self-Signed Executables [127] • •
Key-locking [117] • •
Baton Alternative (Sec 6.4.2) • • • ◦
Central Certificate Authority • • • •

Table 6.2: A comparison of proposed update integrity mechanisms, including ones
with key agility.

with applications to encrypted email [134], TLS certificates [47], and Linux files [117].

However, despite their perceived theoretical contributions, forward certificate chains

have not seen widespread use. In Table 6.2, we compare decentralized signature

schemes to Baton. We add to the comparison using a full fledged centralized PKI.

Baton appears to be the only proposal that offers key agility, allows skipping interme-

diate updates, is directly compatible with jarsigner and partially enables certificate

revocation (see Section 6.6.4). We note that using a centralized certificate authority

affords many of the same benefits provided by Baton, but would require substantial

changes to the Android OS, developer tools, and overall signing model.

6.6.2 Certificate Expiration

The Android OS currently ignores the validity of signing certificates at install time,

despite official documentation stating otherwise [61]. As of Android 4.2, we have

verified that it is possible to install (without warning or user intervention) apps with

a signing certificate that has expired. Additionally, the Google Play Store requires

that all apps submitted carry a certificate valid for at least 25 years, making expiration

verification redundant for marketplace installations. With Baton, certificate renewal
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becomes possible, which re-enables the possibility of enforcing certificate validity.

Enforcing expiration may limit the impact of key compromises (see below) and allow

the optional use of CA-issued signing certificates that have more generally acceptable

validity periods (e.g., 1–5 years).

Baton could be modified to limit the time during which an expired certificate can be

used to authorize a key delegation. For example, limiting the ability for an expired

certificate to authorize a key delegation one year after expiration. This mechanism

can help reduce the exposure window where an adversary can gain access to an

expired private key and roll it over to a new malicious key, while giving developers

ample opportunity (e.g., one year) to acquire and authorize new certificates after

expiration.

6.6.3 Private Key Compromise

In the current Android security model, if a developer’s private signing key is com-

promised by an attacker (e.g., by physical keystore theft or by exploiting a crypto

implementation bug [73]), the attacker may permanently release unauthorized up-

dates. If the signing key is used on an app distributed on an application marketplace,

the attacker would need to successfully gain access to the marketplace account to

publish an update. Alternatively, the attacker could convince users to sideload the

unauthorized version (e.g., from a non-official site). Similarly with Baton, unautho-

rized updates will be possible if keys are compromised. This includes both standard

updates as well as updates with a certificate chain. Developers using Baton must pro-

tect signing keys as usual. However, if key compromise or a crypto implementation

bug is detected in a timely fashion, it may be possible for the legitimate developer

to issue a Baton app update before the adversary, effectively “locking” users who

upgraded into a new uncompromised replacement signing certificate.

6.6.4 Transferring Authority

Using Baton, developers can delegate signing authority to the holder of a different

key, but the original certificate and corresponding key pair will remain authorized
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for issuing updates to versions of the app not containing the certificate chain. For

example, when an app is being sold, the seller may continue to issue updates to the

app under the original key (see V2SigA →V3SigA in Figure 6.3). Clients who do not

update to the Baton version (V3SigB) may be tricked into installing updates with the

old signing certificate instead. While there is generally a trust relationship established

when ownership of an app is being transferred (e.g., the buyer is already exposed to

potential backdoors in the app), best practices would encourage revoking the origi-

nal certificate from updating the app. This must be a finer grained revocation than

certificate revocation: a seller of an app may have other apps signed with the same

certificate that are not being sold. We consider two conditions—with and without

a marketplace—under which apps could require a proper transfer of signing authority.

Assisted by a central marketplace. When an app is installed through an appli-

cation marketplace, there are effectively two authentication mechanisms in place to

ensure source continuity: the signature enforced at the OS-level and the developer

account with which the app is associated at the market-level. Application market-

places such as Google Play allow developers to transfer apps to another account [71],

which effectively prevents an app seller from continuing to issue updates through the

marketplace. For marketplace users, app updates will proceed as usual. Users who

install apps from multiple markets or by sideloading may still be vulnerable to in-

stalling unauthorized updates that are signed with the original developer’s key.

Without a central marketplace. When users install apps from only side-loaded

sources, it seems difficult to communicate the revocation of a certificate’s signing

authority over a specific app. Certificate revocation remains a open problem in self-

signed environments, where no single entity is authoritative except perhaps the OS

itself.

Detection instead of prevention.

It could prove advantageous to keep a public record of package names and associated

certificate chains as a type of public notary to identify if different certificate chains
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emerge for the same app. This principle can be seen in other domains: e.g., Perspec-

tives [123] and Certificate Transparency [81] which aim to detect fraudulent certifi-

cates in TLS. A similar system could be used in Android to confirm the uniqueness

of a certificate chain at install-time. Baton could be augmented to submit certifi-

cate chains or query valid chains for a given application by leveraging an install-time

server query mechanism like Meteor, described in Chapter 4. The server-side com-

ponent, which reports back on valid or invalid chains, would require manual curation

by experts.

6.6.5 Applicability Beyond Android

The Baton protocol (see Protocol 1) is designed to be generically applicable in other

decentralized signing environments. We only require that signed objects exist in a

collision-free namespace. That is, the underlying OS prevents the existence of more

than one signed object with the same name. In the case of Android, we use package

names as identifiers. However, Linux file system paths could also be used, resulting in

a direct and practical improvement over the key-locking proposal of van Oorschot and

Wurster [117]. Baton also requires a way to keep track of versions to ensure correct

validation of delegations. Object versioning can be implemented at the application

level similar to Android’s version code, or built in to the file system itself.

6.6.6 Limitations of Baton

One of Baton’s main limitations is the need for developers to include the certificate

chain (which includes corresponding full certificates) in potentially all8 subsequent

versions after a certificate transition. Failure to include the chain of certificates would

prevent users who have not yet upgraded to the latest version from seamlessly upgrad-

ing, since there is otherwise no easy way to verify the chain. Android certificates are

typically 600 bytes to 2 kilobytes, so overall app size is not expected to be adversely

impacted by including several certificates. Since certificates and certificate chains are

8The certificate chain should be included in all subsequent versions from which the developer
wishes to allow transparent upgrades, or as long as there is reason to believe not all users have
performed the most recent certificate transition.
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intended to be public, backup copies may without risk be stored in the cloud or on a

shared drive.

Private key loss, even with Baton, remains a difficult problem. Losing a signing key

means it is no longer possible to issue a Baton certificate update, unless a signature

threshold system [109] is used. We believe solving this limitation would weaken

Android’s overall security model since a mechanism to issue an update without the

original key could be abused by an adversary.

6.7 Alternative Approaches

In this section, we consider three alternatives to improving the decentralized signing

model. As is common in PKI design, each alternative presents a set of trade-offs

relative as opposed to an unequivocal improvement compared to our Baton proposal.

6.7.1 Centralized Private Key Infrastructure

One alternative to the decentralized model is to use a full-fledged centralized PKI

where developers prove their identity to a certificate authority (CA) and are issued a

certificate. In this model, the certificate information can link developers together as

being the same person or from the same team without needing to use the exact same

key to sign every app. While this model has beneficial security properties, the added

complexity makes a centralized PKI a poor trade-off in our opinion. It would require

developers to obtain CA certificates and Android to decide on the set of trustworthy

CAs as well as make security decisions (or require the user to) based on certificate

attributes. Being a heavy-weight alternative for limited benefit, and one that does

not work particularly well in other domains (e.g., SSL/TLS), we do not recommend

a central PKI as an improvement to the Android ecosystem.
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6.7.2 Certificate Trees

The self-signed model can be combined with a constrained certificate hierarchy we

refer to as a one-level certificate tree. A development team (or single developer)

would establish a self-signed long-term CA certificate as the root of a one-level tree.

The signing key would be well-protected and used only infrequently to issue shorter

term certificates for actually signing apps. The update process would still use the leaf

certificate in the tree to decide on allowing an update to an existing app but the root

certificate could be used to establish a shared reputation amongst all certificates it

issues. In a team environment, this could be a shared reputation across distinct de-

veloper certificates. With a single developer, it could be a shared reputation amongst

distinct app certificates.

A certificate tree can reduce the need to replicate copies of the same key. It can also

be useful if a developer wants to transfer ownership of a signed and widely installed

app to another developer. If the signing key for an app is transferred to the buyer,

the buyer can issue updates to all apps signed with the key. A certificate tree can

allow individual signing keys for distinct apps while still allowing the developer to

maintain a reputable link to their other apps. However, this is not a fully satisfactory

solution as transferring a key does not sever the link to the CA certificate.

Certificate trees would require no changes to Android but redefine the purpose of a

CA. Typically, the identity of the holder of a CA-issued certificate is believed to have

been validated by the CA. Here, CA-issued certificates are used to collect several

signing keys under one shared reputation. For the latter type of CA to distinguish

itself from the former, they could use a naming convention that would be obvious (or,

more formally, use an X.509 extended attribute).

6.7.3 Distributed and Threshold Signatures

An approach to protecting against the theft of signing keys is to use distributed

signing, where n participants individually sign the app and all n participants are

required to sign each update (cf. TUF update framework [106]). Android currently

supports distributed signing. For each signature, an individual signature file (e.g.,

KEY1.SF) is created and signed, appending the signature to individual certificate files
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(e.g., KEY1.RSA). Android will allow updates only if the same exact set of signatures

are used with each update. Of all the apps in our dataset, only 42 had more than one

signature. For 30 of these, the additional certificate was a temporary (and expired)

debug certificate created by the Android app development tool for testing purposes.

For 4 of these, a publicly available key pair was used—see Section 5 for discussion of

this case. This leaves a small set of apps that appear to be using distributed signing

(in each case, a 2-out-of-2 access structure) for security purposes. One example is the

Mint app (com.mint), a financial management service.

In the current model, there is no cross-certification between the multiple signa-

tures. This means signatures can be selectively stripped in distributed signing in-

stances [117]. We verify that this is the case even if the first signatures applied

are included in the signature file for subsequent signatures (e.g., KEY2.SF includes

KEY1.SF and KEY1.RSA). In one app from Sprint, (ostensibly) HTC added a signa-

ture that updated MANIFEST.MF with Sprint’s SF and RSA files.9 We stripped Sprint’s

signature and verified that the validation tool ignores files recorded in MANIFEST.MF

that are located in the META-INF/ subdirectory.

Android could be modified to allow apps to specify in AndroidManifest.xml (a file

that is explicitly signed) the intention to use multiple signatures signing and pin the

set of public keys required to update the app (cf. certificate pinning10). A simple

extensions is to also permit developers to specify a t-out-of-n access structure that

requires the signatures of any t ≤ n of a set of n signatures. This maintains the

security of distributed signing while adding robustness against lost or unavailable

keys [57].

For completeness, we note that threshold (and distributed) signing can be conducted

externally to jarsigner. Threshold signing protocols are known for RSA signatures,

both with a trusted dealer that generates the key shares [109] and with distributed

key generation [37]. To the best of our knowledge, no tool is available that implements

a threshold signature scheme and easily allows developers to perform such a protocol.

9This changes the hash of MANIFEST.MF from the one reported in Sprint’s SF file, which the
verification tool ignored. It appears to only verify the MANIFEST entries themselves.

10IETF Internet-Draft: HTTP Strict Transport Security (HSTS)
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6.8 Summary

The analysis of real-world examples and high-profile applications clearly illustrates

the need for a mechanism to allow changing signing keys and certificates associated

with Android apps. We have demonstrated its viability by providing a practical

instantiation which has been tested and shown to be compatible with the current

Android ecosystem.

Baton demonstrates that what are typically considered as academic best-practices for

certificate update and package signing can be moved from theory to practice, to create

a practical and lightweight mechanism that establishes cryptographically verifiable

trust chains between certificates. With Baton, the responsibility of verifying integrity

and authenticity of updates is placed on the developer and the OS, lightening the load

on the user. While we have implemented and evaluated Baton under the constraints

of the Android ecosystem, we believe the overall Baton protocol will be of interest to

other decentralized environments as a general mechanism to delegate trust between

signing certificates.





Chapter 7

Applying and Enforcing
Application Security Policies

7.1 Introduction

Throughout this thesis, we have shown that decentralized environments allow (and

sometimes implicitly encourage) the installation of many applications from a broad

range of developers. While users may enjoy the freedom afforded by these types of en-

vironments, the absence of a central authority places responsibility of security hygiene

on the software installation framework, the OS and ultimately on users themselves.

In centralized ecosystems, an authority is in charge of vetting applications for in-

clusion in repositories and may even be authorized to remotely uninstall malicious

applications from user devices. Since security is provided at multiple levels, security

guarantees provided by the OS may not need to be as strong. Operating systems in

decentralized environments, on the other hand, attempt to deliver on security expec-

tations through the use of on-device application security policies which constrain the

privileges of installed applications and limit access to user data.

The previous chapters have focused on identifying legitimate applications and pre-

venting malicious updates. In this chapter, we discuss the final step in the software

installation process in which an application security policy is retrieved and applied to

the application being installed. We begin with a review of general mechanisms used to
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accomplish this goal in decentralized environments. Next, we focus our discussion on

Android’s policies for application integration and note that several limitations exist

in these policies. Application integration on Android is tied to digital signatures used

on packages, thus limiting the number of other applications with which an applica-

tion can be integrated. This model may also encourage bad practices such as sharing

private signing keys or code with other developers and key reuse. To address these

limitations, we propose Fluid, a flexible and secure policy to enable sharing privileges

between applications signed with different keys. We use empirical data obtained from

the Android Observatory (see Chapter 5) to inform our design such that Fluid can

be deployed with minimal impact to the current application ecosystem.

7.2 Security Policies in Decentralized Environments

Application security policies describe a set of privileges that are granted or denied to

a specific application once it is installed [107]. These application policies are designed

to provide security guarantees according to the principle of least privilege [103] for

stand-alone applications as well as define parameters for inter-application communi-

cation. Depending on the software installation model (see Section 2.3), policies may

be written by a number different entities, as described below.

7.2.1 Application developers

Developers may provide a policy defining an upper bound on privileges needed by

the application. The policy may be read by users or software to provide information

regarding the level of privilege that the application will be granted once installed.

Developers typically know what privileges are needed by their applications since they

are ultimately the authors. However, application over-privilege (i.e., requesting per-

missions beyond the set needed to provide expected functionality) becomes possible

due to complexity in writing policies, developer apathy towards security, or incompe-

tence [51].

On Android, developers must supply a policy in the form of a list of permissions
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that the application requires to function. The list of permissions requires manual

specification from developers, who are free to request as many permissions as they

want, even permissions not actually required for regular application use. On Android,

an implicit deny clause is added to the application’s security policy for all privileges

that are not explicitly requested.

7.2.2 Guardians

Guardians (recall Section 2.3.3) have a vested interested in the security of system, and

therefore are concerned with constraining applications that are installed by the users

they protect. Guardians may create policies based on the expected functionality

of an application. For example, if an application is believed to take input from

the command line, process the input and display output, a policy could be written

denying the application access to network sockets and file I/O. If the application was

found to have an arbitrary code execution vulnerability, this policy would prevent the

application from communicating via the network or reading and writing to local files.

A practical example illustrating guardian-written policies is the AppArmor [12] project.

AppArmor is a mandatory access control (MAC) framework for Linux that allows cus-

tom policies for userspace applications. AppArmor is widely deployed (default MAC

mechanism on Ubuntu and openSUSE, and available on most Linux distributions as

of 2014), and is highly configurable. In distributions where AppArmor is enabled

by default, the OS vendor acts as the guardian creating policies for many privileged

applications. System daemons such as ntpd and cupsd, and privileged applications

such as tcpdump are confined by AppArmor profiles allowing only necessary privi-

leged operations. Userspace applications installed outside of the distribution’s pack-

age manager are not protected with AppArmor unless a policy is explicitly supplied

by the application’s developer or user.

Another, less widely deployed example of guardian-written policies is found in the

SELinux project [84]. SELinux is the implementation of a MAC framework for Linux,

as is enabled by default in Fedora [50]. As in AppArmor, Fedora developers are the

guardians who maintain a set of policies confining applications that ship as part

of the default install. Third-party userspace applications are left by default in the
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unconfined domain, which gives applications most privileges. As of writing, Fedora

is experimenting with creating policies to restrict additional privileges for applications

in the unconfined domain.

7.2.3 Users

Users are often given the option to configure their systems, especially in decentralized

environments. While users are generally free to rewrite application policies (e.g., by

modifying an AppArmor profile), we expect most users to lack sufficient technical

knowledge to do so. Thus, security policies tend to be configured through user-

friendly system or application settings screens (often allowing only the modification

a few policy entries). These settings will allow users to further remove privileges

from installed applications, but generally will not allow the user to grant additional

privileges. Granting additional privileges can be accomplished, however, by disabling

the policy enforcement mechanism (e.g., setting SELinux or AppArmor to permissive

mode).

In Figure 7.1, we show a third-party Android build (CyanogenMod [36]) which in-

cludes a tool allowing users to deny individual permissions on a per-application basis.

The tool displays the list of permissions which were granted to the application at

install-time, including the number of times API calls protected by the permission

have been used by the application. Through this interface, users can configure per-

missions to be allowed, denied, or always ask. There is no mechanism to add new

permissions to the list. Blackberry OS and Apple iOS have supported a similar user-

configured policy for a subset of privileges assigned to applications.

7.2.4 OS Vendors

OS vendors may also create security policies for applications. In centralized environ-

ments, the central authority may have the capacity to create and distribute (either

through a separate channel or bundled within an application) policies for each third-

party application that is made available to users. This is possible because (1) all

available applications are known to the authority; and (2) all applications must be
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Figure 7.1: Screenshot of the AppOps tool on a CyanogenMod Android build. The
tool displays the permissions granted to the application (including time and date of
last access to a permission), and allows users to individually deny permissions for the
specified application.
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submitted to the authority for inclusion in an application marketplace. Decentralized

environments cannot know all possible applications that exist for the platform, and

thus OS vendors focus their application policies on only system-provided applications.

The SEAndroid [110] project maintains a set of SELinux policies for privileged An-

droid applications that ship as part of the base OS image such as the volume mounter

(vold), and the Android init process (zygote).

It may be tempting to think that OS vendors should write policies for third-party

applications in decentralized environments. However, without prior knowledge about

the behaviour of all possible third-party applications, these policies would need to be

permissive enough that malicious behaviour would ultimately be allowed. Otherwise,

benign applications may be inadvertently constrained and be unable to provide their

expected functionality. Similar to SEAndroid, on Samsung devices the Knox [104]

MAC framework includes policies to help prevent root access by enforcing security

policies on system applications. No guarantees beyond Android’s stock security model

(see Section 3.2) are provided regarding the security of third-party applications since

security policies are not provided for these applications.

7.3 Android Policies for UID Sharing

In Android’s current security model, new apps are assigned unique UIDs to enforce

filesystem and process isolation, as well as grant access to privileged device capabilities

(see Section 3.6). As previously discussed, UIDs are an essential component of the

Android security model. Android allows developers to write apps that share a UID.

To use this feature, developers set the sharedUserId directive to a common string

value in the AndroidManifest.xml file of each app that will share the UID. The apps

must be signed with the same key (or set of keys) for Android to allow a shared UID.

The common string allows, for example, two apps signed with the same key to each

belong to a different UID sharing group (and thus have a distinct UID).

While Android already allows developers to write modular apps that integrate with

each other via interprocess communication (IPC) [46], UID sharing allows develop-

ers to split app functionality into multiple installable components, yet share binary

resources such as fonts, images and sound clips. Android core applications installed
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SharedUID String Distinct apps Description
mgeek.dolphin.browser 41 Dolphin browser and extensions (e.g., PDF

viewer)
com.doodlemobile 22 Miscellaneous games
com.handcent.sms 14 Handcent SMS application and plugins (e.g.,

fonts, emoji)
com.jb.gosms 10 GO SMS Pro application and plugins (e.g.,

chat, support, Dropbox)
com.swn.netgallery 7 Wallpaper browser and wallpaper packs
com.mxtech 6 MX video player and related codecs
com.jb.gokeyboard.shared 6 GO Keyboard and language packs
android.uid.system 6 Miscellaneous applications installed as part of

the base OS image
org.jraf.android 5 Live wallpaper viewer and wallpaper packs
com.wsl.CardioTrainer 4 Miscellaneous fitness applications

Table 7.1: Top 10 most-used shared UID strings on the Android Observatory. For
each sharedUID, we list the number of distinct package names that use the stated
UID string, as well as a brief description of the applications that use the sharedUID.

in the base image use shared UIDs to interact with other system components. For

example, the sharedUserId “android.uid.system” is used by the Settings, VPN,

and AccountsAndSync settings in stock Android apps. These three applications share

a single logical sandbox, where privileges granted to any application can be used by

all applications in the group.

In a snapshot from April 15, 2014 of the Android Observatory (see Section 5) we

observed 258 distinct shared UID strings across all applications. These strings were

used by 426 distinct package names. However, of these, we observed 206 instances

of apps that declared a shared UID, but no other app in our dataset used the same

string (this is not surprising, as our dataset is still only a small subset of all Android

apps). For the remaining 52 shared UID strings, we found 226 distinct package names,

leading to a 4.34 apps/sharedUID ratio. In total, 874 binaries (in some cases multiple

versions of the same application) in our dataset used or attempt to use the shared

UID feature. One shared UID string was declared by 41 distinct package names

(mgeek.dolphin.browser). Table 7.1 lists the top 10 most used shared UID strings.
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Figure 7.2: Screenshots displaying permissions requested by installing the Desktop
Toggle browser extension via the Google Play Store (top left), via sideload (top right),
and via the web (bottom). In all cases, the Dolphin Browser had been previously
installed.
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7.3.1 Permission Inheritance through UID Sharing

Through its user interface, Android implicitly treats permissions as if they were as-

signed to apps. However, as described in Section 3.4, permissions are assigned to

UIDs. This distinction is generally inconsequential, except in the case when applica-

tions share a UID. Upon installation of a new app which will share a UID with an

existing app, the new app will be granted all the permissions that have been granted

to the existing app in addition to its own requested permissions. We call this effect

permission inheritance, where a new application inherits permissions that already

exist in the UID group. Likewise, the existing app will be granted all the permissions

associated with the new app. We call this retroactive permission inheritance.

An example of permission inheritance is shown in Figure 7.2. Here, we show de-

vice screenshots taken during the installation of a browser extension which requests

no permissions in its manifest, but shares a UID with a highly privileged browser.

When the extension is installed from the official Google Play Store1, the installation

framework states that “this app requires no special permissions to run”. However,

due to permission inheritance, the extension is granted the same permissions set as

the browser. The correct permission set is only displayed when the extension is side-

loaded. We note as well that if the extension is installed through the Google Play

web interface, a similar permission-less screen is displayed.

Permission inheritance inconsistencies occur when the application installer does not

have an accurate, updated view of all installed apps on a device. Google keeps track

of applications installed through the Google Play store, but does not know about side-

loaded apps. If Google knew about all apps installed (through the Play Store and

side-loaded), the Google Play app should be able to accurately display the effective

resulting permission set at install-time. The package installer invoked when side-

loading does have an accurate list of all installed apps, and can therefore correctly

display the permission list.

One possible solution to this problem is to always use the system-provided application

installation framework when installing apps that have the sharedUserId attribute

set in their manifest. The user experience in these cases may suffer, since users would

1This test was performed using the Google Play Store app version 3.5.16 on Android 4.0.4, but
this behaviour is also reproducible on earlier versions of Android.
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see an unfamiliar (i.e., different than that of Google Play) installation screen. The

application installation framework could additionally be augmented to display which

permissions are requested by each app in the shared UID group, rather than only

display the union of all permissions.

7.4 Improving Android’s UID Sharing Policies

The main limitation of UID sharing as currently implemented by Android is its in-

herent dependency on app signing, which precludes apps signed with different pri-

vate keys from sharing a UID. First, this policy conflicts with the reputation-based

model implicitly encouraged by Android’s app signing protocol (see Section 3.5). In

this model, developers re-use the same private key across multiple apps to leverage

reputation gained from the development of other apps, but sharing a UID with an

application signed with a different key becomes impossible. Second, it encourages de-

velopers to pursue application integration through custom mechanisms, such as IPC

which, by default, offers no authentication and is more open to developer error.

While developer-defined permissions can protect access to an API, the developer then

has to choose between either (1) granting every app the permission or (2) granting only

apps signed with the same key the permission (see Section 3.6). This dichotomy is a

direct result of permissions in Android being assigned to UIDs, and not applications.

We would like to retain the authentication properties afforded by digital signatures to

prevent untrusted applications to share a sandbox, but our goal is to create flexible

policy that allows authenticated applications to join UIDs, while excluding untrusted

applications.

As shown in Table 7.1, UID sharing is commonly used in situations where small por-

tions of functionality are split into multiple installable apps. One example of UID

sharing observed in our dataset was a web browser that shared its UID with browser

extensions. In this example, it is natural to consider that the extension may be au-

thored by a different developer than the browser, and yet the browser’s developer must

sign the extension for the extension to function correctly. This could be problematic

for the browser developer as code signing is typically considered as an implicit en-

dorsement of someone else’s code, and it also fails to allow the extension developer to
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preserve any reputation from other apps they have released. The extension developer

also loses attributed authorship.

We now consider alternatives for improving UID sharing by addressing the limitations

above.

Properties for UID Sharing

Android’s current model for UID sharing provides a number of important properties

which we have distilled into Properties 1 to 6 below (we denote apps that share a

UID as members of a group):

P1. Groups are Disjoint: Linux, and therefore Android processes, run under a

single UID. Thus, there is no way for an instance of a running app to be a

member of two or more groups.

P2. Groups are Consistent: If app A is in the same group as B, and app A is in

the same group as C, then B and C must be in the same group.

P3. Group Size is Arbitrary: It is possible to specify UID-sharing groups of size

1, 2 or greater than 2.

P4. Membership is Authorized: An app cannot join a group without being

authorized2 to join.

P5. Adding New Members is Efficient: If a new member is added to a group,

ideally no other group members require an update. In the next best case, only

one app requires update (denoted with ◦ in Table 7.2). In the worst case, all

members of the group require update.

P6. Different Groups with Same Key: It is possible for apps signed with the

same key to be members of different groups (while preserving the properties

above).

We seek to design a UID sharing mechanism that would satisfy all 6 properties above

as well as enable an additional property:

2Authorization on stock Android is expressed by signing all the apps in a group. Thus, it should
be impossible to join a group without access to the group’s private key.
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1. Groups are Disjoint • • • •
2. Groups are Consistent • • •
3. Group Size is Arbitrary • • •
4. Membership is Authorized • • • •
5. Adding New Member is Efficient† ◦ ◦ •
6. Different Groups with Same Key • • • •
7. Different Keys within Same Group • • •
Viable • •

Table 7.2: Comparison of proposed UID sharing mechanisms to signature-based shar-
ing (the current model). See inline discussion for explanation of “viable”.
† For new applications added to the group, • means only one member must be updated, ◦
means two members must be updated, and empty means all members must be updated.

P7. Different keys within the same group Applications in a UID sharing group

may be signed with different private keys.

However, in the course of redesigning the mechanism, we found that in every case,

adding property 7 precludes at least one other existing property. We therefore consider

the relative merits of trading off various properties in order to achieve property 7.

7.4.1 Alternative Mechanisms for UID Sharing

We consider three possible alternatives to Android’s currently implemented mech-

anism for UID sharing: mutual approval, pairs, and our own proposal, Fluid (see

Table 7.2 for a comparison matrix).

• Mutual Approval: Each app specifies in its manifest every other app in its

UID sharing group. Apps in the group are specified by package name and

fingerprint of their embedded signing certificate. This fulfills the goal of allowing

apps signed by different keys to share a UID, but makes it difficult to add new

members to the group as every app in the group must be updated (by having
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each developer create a new application release that specifies the newly added

group members) for each new member addition. Mutual approval is also prone

to group inconsistencies since it is possible that one app (A) approve two apps

unilaterally (e.g., B and C), without B and C mutually approving each other.

Android has no clear mechanism to resolve such inconsistencies, so we conclude

mutual approval is not a viable alternative to the current signature-based model.

• MaxTwo: This alternative constrains groups to a maximum size of two and can

be seen a sub-case of the Mutual Approval mechanism above. This restriction

helps ensure group consistency, but has the obvious disadvantage of not allowing

groups larger than two apps. In our dataset, many instances of apps sharing a

UID were larger than two, so we do not consider pairs to be a viable alternative.

• Fluid: In this alternative, one main app in each potential group of apps (e.g., a

browser) authorizes in its manifest all other apps (e.g., plugins, language packs,

etc.) in the group. This resolves the group inconsistencies of mutual approval

as well as meeting our original goal of separating UID sharing from application

signing. The main drawback of Fluid, as we discuss further below, is that the

main app must be updated every time a new group member is added.

7.4.2 Implementing “Fluid” UID Sharing

To implement the Fluid UID sharing mechanism, we made changes to the core An-

droid package installer framework classes (PackageManager.java and PackageManagerService.java).

Since we are modifying part of the base system image, we also add a new set of XML

attributes to the official API. This modification has the downside of requiring Google

(or a popular third-party Android build) to incorporate our Fluid modifications for

wide-scale deployment (i.e., Fluid is not installable as an app, but rather part of the

base OS installation framework). Google routinely updates their OS and manifest

specification. For example, in API level 3 (Android version 1.5), Google introduced

the sharedUserLabel directive [68].

We suggest adding the following XML attributes to the Android Manifest: sharedUserIdMode,

nodeRoot, and nodeLeaf. The sharedUserIdMode attribute specifies if the applica-

tion in question is intended to be a root (as in tree, not as in user) application, on
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which plugins and extensions are built; a leaf that provides an additional service

to a root application; or to use the pre-existing signature-based UID scheme. Not

specifying a sharedUserIdMode defaults to the pre-existing scheme for backwards

compatibility with apps that are no longer updated. The nodeLeaf attribute speci-

fies (for the main application) each of the plugins or extensions with which it should

share a UID. Plugin applications are specified via package name and certificate fin-

gerprint (see Figure 7.3). Finally the nodeRoot attribute specifies the package name

and certificate fingerprint of the main app with which to share a UID (see Figure

7.4).

We note that with our modifications, some new restrictions must be enforced by

Android at install-time to guarantee integrity and consistency.

• An application must not declare both nodeLeaf and nodeRoot.

• Applications must only specify one of “root”, “leaf” or “signature” for the

sharedUserIdMode attribute.

In Fluid, shared UID labels are not required as in the traditional signature-based

scheme, since both leaf apps and root apps specify other apps in their manifest. At

install-time, after verifying the restrictions listed above, the installer looks for apps

specified as nodeRoot or nodeLeaf in the newly installed app’s manifest. If matching

apps are found and manifests are consistent (i.e., the root and the leaf specify each

other), leaf apps are updated to use the root application’s UID.

7.4.3 Discussion

Mutual Authentication

Fluid requires authentication (by explicitly specifying the package name and certifi-

cate fingerprint of other apps in the group) from the main application as well as from

leaf applications to allow sharing UIDs. This prevents applications from arbitrarily

joining UIDs when they are not authorized to do so (a desirable property). Fluid also

removes the code signing requirement for sharing UIDs. Thus, developers can use

different signing keys and certificates on each application they author, following best
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<?xml version="1.0" encoding="utf -8"?>

<manifest xmlns:android="http:// schemas.android.com/apk/res/android"

...

package="com.cool.browser"

android:versionCode="12"

android:versionName="1.0.1"

android:sharedUserIdMode="root"

android:nodeLeaf="com.supercool.extension1 , 67709 F9D63BFD6A0"

android:nodeLeaf="com.supercool.extension2 , 774 A0E232918EE8B"

android:nodeLeaf="com.cool.extension , 0DCDD39F12A07A25" >

...

</manifest >

Figure 7.3: Example Android manifest of a web browser, acting as the root application
for 3 extensions. Note that all extensions are signed by a different key (denoted by
different fingerprints on the right). The first two extensions are written by the same
development company (but signed with different keys), while the third is written by
the browser vendor.

<?xml version="1.0" encoding="utf -8"?>

<manifest xmlns:android="http:// schemas.android.com/apk/res/android"

...

package="com.supercool.extension1"

android:versionCode="3"

android:versionName=".98"

android:sharedUserIdMode="leaf"

android:nodeRoot="com.cool.browser , 0DCDD39F12A07A25" >

...

</manifest >

Figure 7.4: Example Android manifest of a browser extension using Fluid. The
developer specifies that the extension should share a UID with the browser.
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practices. If developers sell one or more components in a UID group to a different

developer, a technique such as Baton could be used (see below).

Evicting Applications from a UID Group

Fluid gives developers control over which other applications to share UIDs with.

We consider the case of a browser extension developer, previously authorized via

Fluid to share a UID with a browser, going rogue (e.g., changing development from

benign to malicious). When malicious activity is detected by the browser developer

(e.g., through user or crash reports), the developer can issue an update removing

the malicious extension from the manifest. Upon installing the update, the malicious

extension would be removed from the group, but remain installed on the device.3

Baton Integration

Fluid could be adapted to work in the event of Baton-style certificate delegations (see

Chapter 6). Fluid requires developers to specify the fingerprint of the currently active

certificate in the Fluid section of the manifest. If certificates change, Baton will not

“kick out” applications from the group (see Section 6.5.1), allowing that behaviour to

be decided by the developers themselves. Fluid could be modified to look for either

the currently valid certificate, or a once-valid certificate in the certificate delegation

chain. This would allow shared UID leaf applications to continue functioning (without

changes or updates) even if the root application updated its signing certificate.

Incremental Deployment

To encourage adoption of Fluid, and enable incremental deployment, we preserve

traditional UID sharing functionality. However, as soon as one application in a UID

group enables Fluid UID sharing, all applications in the group must be updated as

well. If instead we had chosen to allow only root or only leaf applications to enable

Fluid, this could have resulted in arbitrary applications being assigned unauthorized

3Android has no built-in mechanism to uninstall a different application when updating an appli-
cation. Thus, the evicted application would remain installed. However, since the recently evicted
application no longer belongs to the previous UID group, it would no longer have access to the
privileges granted to that group.
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UIDs. This is regarded as a security risk, so we chose to disallow this functionality

in our design.

7.5 Related Work

Ontang et al. [97] propose the use of fine grained policies governing application in-

teraction on Android. Their proposal, Saint (Secure Application INTeraction) allows

the application developer to specify detailed rules for controlling access to exposed

application interfaces. For example, an application can make available an API to

other applications only if they satisfy a certain property that can be checked at run-

time (e.g., applications invoking the API must not have a blacklisted package name).

The Saint proposal focuses on IPC, and appears (though not explicitly) to not modify

or address UID sharing policies on Android. The Fluid architecture could be used

in conjunction with Saint, enabling app interaction policies for both IPC and UID

sharing.

Xu et al. [129] propose re-packaging applications to include custom runtime libraries

and security policy. This allows end-users to specify their own policies (e.g., this ap-

plication should not be granted network access). The repackaged applications should

therefore have lower privileges. One advantage of this proposal is that the OS requires

no modifications, since all changes are made to the applications themselves. However,

since applications must be re-packaged and re-signed, original authorship information

is lost, which might break UID sharing if enabled. Fluid could be used to augment

the proposal of Xu et al. by repackaging all applications in the UID sharing group,

and adding the correct entries to each of the group member’s manifests.

Xing et al. [128] identified a security risk in the way that OS updates enable new

functionality. Applications may request permissions to access features and function-

ality not available in an old version of Android, which the installer does not display to

users. If the app remains installed, the OS is updated, and the new features become

available, privileges will be granted automatically to previously installed applications.

This behaviour appears to be similar in nature to our permission inheritance attacks

(see Section 7.3.1), but require the updating of the full OS instead of only an appli-

cation update.



132 Chapter 7. Applying and Enforcing Application Security Policies

7.6 Summary

This chapter has reviewed different mechanisms to deliver application security poli-

cies to devices as part of the installation process. We have focused on application

security policies in decentralized environments, which by definition cannot use the

tools available in centralized environments.

We have discussed issues pertaining to Android’s implementation of UID sharing

privileges which at present is tied to digital signatures. Digital signatures provide

strong authentication guarantees, but prevent sharing privileges with applications

authored by other developers, unless private signing keys are shared. We proposed

Fluid as an alternative UID sharing scheme, which allows developers to specify which

other applications should share a UID using a flexible policy language. Based on the

analysis of over 50,000 applications collected from the Android Observatory, Fluid is

compatible with current practices, and should be incrementally deployable.



Chapter 8

Discussion and Conclusions

8.1 Revisiting Thesis Goals

In Section 1.1, we stated two overall goals for this thesis. We revisit these goals,

discussing how the contributions herein are in line with our objectives.

G1. Improve Decentralized Software Installation Security Mechanisms.

Our first major goal was to identify limitations in existing security mechanisms used in

decentralized environments, and to address these limitations without requiring signif-

icant architectural redesigns. Where possible, we wish to minimize negatively impact-

ing deployed applications, as well as enable incremental deployment and backwards

compatibility. In this thesis, we proposed two practical improvements to existing

security mechanisms used in real-world decentralized ecosystems.

First, in Chapter 6, we proposed Baton, a protocol that allows developers to update

or change the signing certificates used on their applications. Baton solves long-term

certificate lock-in in decentralized environments, which ultimately facilitates and sup-

ports the use cryptographic best-practices. Baton builds on existing academic work,

and has been implemented and tested as a proof-of-concept on Android. The Ba-

ton protocol is proposed to be a generic mechanism applicable to other decentralized

environments where digital signatures are used to authenticate installation packages.
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In Chapter 7, we discuss limitations in Android’s UID sharing design arising from

its dependence on digital signatures. To address these limitations, we propose Fluid,

a mechanism for specifying application integration policies based on mutual autho-

rization of applications. Fluid allows developers to integrate (i.e., share privileges

among) applications signed with different keys, and provides an effective mechanism

to remove established integration between apps as needed.

G2. Propose New Architectures to Enhance the Security of Decentralized

Software Installation.

Our second major goal was to propose novel architectures and tools that could be

incompatible with current ecosystems, but where the security benefits outweigh the

deployment challenges. With this objective in mind, in Chapter 4 we identify the key

differences between centralized and decentralized security installation and propose

Meteor as an alternative software discovery and pre-installation architecture. Meteor

leverages domain-specific expert crowd-sourced information to help end-users obtain

as much information as possible prior to installing an application. We propose the use

of decentralized kill switches to regain some of the security properties lost by moving

from a centralized to a decentralized structure.

In Chapter 5, we describe the design and implementation of the Android Observatory.

We have made the Android Observatory a publicly available web service that indexes

Android application metadata. It allows users (including non-experts) to quickly

display permissions, signing information, and other package properties by searching

or uploading applications. The Observatory has served as an invaluable tool used to

inform and motivate many proposals in this thesis, and has assisted other researchers

in areas beyond our current scope.

8.2 Open Problems in Decentralized Software Installation

While the collection of improvements to decentralized architectures presented in this

thesis have been demonstrated to offer concrete benefits, we now identify several

remaining open problems in decentralized software installation. We note that these
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open problems exist in similar domains where centralized PKIs are being replaced by

decentralized alternatives (e.g., SSL/TLS).

1. Bootstrapping trust. By definition, decentralized environments cannot rely

on a central authority to provide identity assurances. However, once the initial

trust between users and developers has been established, there are mechanisms

to preserve that trust across updates. The problem, then, lies in the first instal-

lation of an application, which bootstraps the trust relationship. Other than

creating tools to allow users to verify identities through multiple, distinct chan-

nels, it is unclear how to provide strong identity guarantees without a central

authority. Furthermore, it remains a challenge to bootstrap trust with accept-

able levels of both security and usability.

2. Efficient trust revocation. Similar to the point above, revoking trust (e.g., in

the case of private key theft or loss) is a known difficult problem in decentralized

environments. The main existing proposals to address this problem are to use

short-lived certificates and to disable trust if certificates expire. The Baton

proposal enables the use of short-lived certificates (through allowing certificate

agility), but offers no way to broadcast revocation of a certificate to all relying

parties. We note that efficient revocation, including in centralized architectures,

is a difficult problem.

8.3 Summary

In this thesis, we have shown that the properties of decentralized ecosystems present

challenges in providing secure software installation and updates. We have distilled

the software installation process breaking down and describing in detail each of its

three main steps: discovery, download and updates, and application of security poli-

cies. At each step, we identified security limitations, and proposed improvements and

new architectures to address those limitations. We have shown, through practical

implementation and evaluation on a real-world OS, that it is possible to retain many

of the security benefits of a centralized installation infrastructure through informed

and careful design. We note, however, that there appears to be a necessary trade-

off between freedom and convenience in decentralized environments. Certain users
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will prefer the more restrictive but less involved aspects of centralized models, while

others will gravitate toward fully decentralized ecosystems.
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Appendix A

Cognitive Walkthrough of the
Google Authenticator Upgrade

Process

A.1 Walkthrough Setup

To illustrate the deficiencies in the process currently required to modify an applica-

tion’s signing certificate(s), such as, by requiring users to be involved in updating

the application, we perform a cognitive walkthrough [124] of the update process as

implemented by Google when switching signing keys for their Authenticator app (see

Section 6.3). We refer to the versions of Authenticator with the initial signing key

certificate1 as Auth1 and the versions with the current (as of April 2014) certificate2

as Auth2. Technically, these are considered by the OS to be distinct applications

and thus must each have a unique package name3. However, users never see package

names on Android. Apps on the Google Play store are displayed to the user with an

app name and icon, which are identical in both Auth1 and Auth2.

A cognitive walkthrough aims to shed light on the user experience of performing a

1https://androidobservatory.org/cert/38918A453D07199354F8B19AF05EC6562CED5788
2https://androidobservatory.org/cert/24BB24C05E47E0AEFA68A58A766179D9B613A600
3Respectively: com.google.android.apps.authenticator and

com.google.android.apps.authenticator2
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specific task by relying on the interface for guidance. In a cognitive walkthrough, the

evaluator (both a domain and usability expert) performs the core tasks required of

the user and evaluates the experience against a set of guidelines or heuristics.

We consider a single core task: migrating from an installation of Auth1 to a fully

functional installation of only Auth2. Since the core task is software installation, we

looked to the literature for usability guidelines for installation, rather than regular

software use, and borrow the installation-relevant guidelines from a cognitive walk-

through of the installation and use of Tor [34]. These guidelines, in turn curated from

the literature, are:

(G1) Users should be aware of the steps they have to perform to complete a core

task [125].

(G2) Users should be able to determine how to perform these steps [124, 125].

(G3) Users should know they have successfully completed each core task [124, 79].

(G4) Users should be able to recognize, diagnose, and recover from non-critical er-

rors [124].

(G5) Users should not make dangerous errors from which they cannot recover [125].

(G6) Users should be comfortable with the terminology used in any interface dia-

logues or documentation [124, 79].

A.2 Evaluation

Since Auth2 is technically a new installation instead of an update (we assume users

can perform standard updates), it will not appear as an update in the Play Store.
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Thus, a user of Auth1 must first become aware of the existence of Auth2 through some

other means (G1). Upon launching the latest (and last) version of Auth1 (v0.91), the

user will encounter a prominent ribbon bar displayed at the top of the screen noting

that the app will “no longer be supported.” The phrase “Learn More” is offered as

a link. The warning conforms to G6 but does not communicate the idea that a new

version is available (G1), as opposed to the app simply being abandoned. Users may

grasp that no more updates will be issued and then henceforth ignore the ribbon,

never completing the core task of updating to Auth2.

If the user taps on “Learn More”, they are then informed in plain language (G6)

that a new version is available and are directed to the Play Store to download it.

This information is sufficient for G1 and G2, and should be displayed directly in the

app screen without requiring a user click-through to read it. The Play Store page

for the application displays no information that distinguishes Auth2 from the already

installed Auth1—it has the same app name and icon, and no language about the

unusual update process for this particular app is present. A user may conclude they

already have the app (contra G3). Diligent users, however, will notice the install

button, which does not appear if an app is already installed (it is replaced with the

option to open or uninstall).

If the user clicks to install Auth2, the app installs, automatically launches and trans-

fers the user data from Auth1 to Auth2. (Technically, arranging for the app to open

without a user click and securely transfer the data, which is private data used for

authentication, requires sophisticated instrumentation of both apps by very good de-

velopers.) This automation prevents dangerous errors (G5). The user is then notified

in plain language (G6) that the data has been transferred (G3) and is prompted to

“uninstall the prior version of the app” (G1 and G2).

If the user clicks to uninstall the app, the OS displays a dialogue containing the app

icon, app name (Authenticator), and question “do you want to uninstall this app”

(G6)? In isolation, this screen does not adequately communicate to the user that

the prior version is being uninstalled. Were the user instead to cancel the prompt

to uninstall, perhaps believing that they do not want to uninstall what appears to

be the exact app they just installed (based on the name and icon), they would have

on their homescreen two identical icons with identical names and no indication of

which is Auth1 and which is Auth2. If they manually uninstalled Auth2, they will
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lose their data (G5). However, if they opened Auth1, a warning would appear stating

that the new version is already installed and offering to uninstall this version (G4).

In addition, the user data is no longer available and the app is no longer functional

(G4).

The user may successfully complete the core task by uninstalling Auth1 by following

the instructions to do so when prompted during the installation of Auth2, or at any

time later by following the prompts in either Auth1 or Auth2.

A.3 Interpretation of Results

The intention of this cognitive walkthrough is not to criticize Google’s handling of

Authenticator’s certificate migration. If anything, the process was relatively seamless,

much of it automated, with care given to preventing dangerous errors and allowing

recoverability. While there is room for improvement, this represents a nearly ideal

execution of the certificate update process under the constraints of the existing OS.

However in the hands of less skilled developers (e.g., without clear instructions or

the automation of the data transfer process upon install), the process could be much

more difficult for users. Since Android currently leaves this migration process to app

developers, we are apprehensive of how much worse (with regards to security and

usability) a less thoughtful execution could be, and note that a consequence of user

error could be data loss.

By contrast, Baton (see Chapter 6) removes all the uncertainty of developer execution

and user behaviour from the equation. With Baton, the same core task can be

accomplished through a standard update indistinguishable from any other update,

which we assume a user can perform. Thus we can conclude, even without a cognitive

walkthrough or user study, that any user able to update apps can use Baton to

complete the core task.
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List of Android Permissions

As of December 2013, applications written for Android may request additional items

of functionality by requesting permissions. As of writing, the most recent API level

(19) lists 145 permissions [69]. The list, available on the Android developers website,

is provided below for quick reference since permissions are frequently listed when dis-

cussing Android throughout this thesis. We note that all permissions can be requested

by applications, but the system may not grant the permission in all cases (even in

the case of user approval). Some permissions are only given to system applications

(i.e., applications that are installed on the system partition). Finally we remind the

reader that new permissions may be defined by developers themselves, so the total

number of permissions has no upper bound.

Permission Description

ACCESS CHECKIN PROPER-

TIES

Allows read/write access to the ”properties”

table in the checkin database, to change val-

ues that get uploaded.

ACCESS COARSE LOCATION Allows an app to access approximate location

derived from network location sources such

as cell towers and Wi-Fi.

ACCESS FINE LOCATION Allows an app to access precise location from

location sources such as GPS, cell towers,

and Wi-Fi.
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ACCESS LOCATION EXTRA

COMMANDS

Allows an application to access extra location

provider commands.

ACCESS MOCK LOCATION Allows an application to create mock loca-

tion providers for testing.

ACCESS NETWORK STATE Allows applications to access information

about networks.

ACCESS SURFACE FLINGER Allows an application to use SurfaceFlinger’s

low level features.

ACCESS WIFI STATE Allows applications to access information

about Wi-Fi networks.

ACCOUNT MANAGER Allows applications to call into AccountAu-

thenticators.

ADD VOICEMAIL Allows an application to add voicemails into

the system.

AUTHENTICATE ACCOUNTS Allows an application to act as an Accoun-

tAuthenticator for the AccountManager.

BATTERY STATS Allows an application to collect battery

statistics.

BIND ACCESSIBILITY SER-

VICE

Must be required by an AccessibilityService,

to ensure that only the system can bind to

it.

BIND APPWIDGET Allows an application to tell the AppWid-

get service which application can access Ap-

pWidget’s data.

BIND DEVICE ADMIN Must be required by device administration

receiver, to ensure that only the system can

interact with it.

BIND INPUT METHOD Must be required by an InputMethodService,

to ensure that only the system can bind to

it.

BIND NFC SERVICE Must be required by a HostApduService or

OffHostApduService to ensure that only the

system can bind to it.



155

BIND NOTIFICATION LIS-

TENER SERVICE

Must be required by an NotificationListen-

erService, to ensure that only the system can

bind to it.

BIND PRINT SERVICE Must be required by a PrintService, to ensure

that only the system can bind to it.

BIND REMOTEVIEWS Must be required by a RemoteViewsService,

to ensure that only the system can bind to

it.

BIND TEXT SERVICE Must be required by a TextService.

BIND VPN SERVICE Must be required by a VpnService, to ensure

that only the system can bind to it.

BIND WALLPAPER Must be required by a WallpaperService, to

ensure that only the system can bind to it.

BLUETOOTH Allows applications to connect to paired

bluetooth devices.

BLUETOOTH ADMIN Allows applications to discover and pair blue-

tooth devices.

BLUETOOTH PRIVILEGED Allows applications to pair bluetooth devices

without user interaction.

BRICK Required to be able to disable the device

(very dangerous!).

BROADCAST PACKAGE RE-

MOVED

Allows an application to broadcast a notifi-

cation that an application package has been

removed.

BROADCAST SMS Allows an application to broadcast an SMS

receipt notification.

BROADCAST STICKY Allows an application to broadcast sticky in-

tents.

BROADCAST WAP PUSH Allows an application to broadcast a WAP

PUSH receipt notification.
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CALL PHONE Allows an application to initiate a phone call

without going through the Dialer user inter-

face for the user to confirm the call being

placed.

CALL PRIVILEGED Allows an application to call any phone num-

ber, including emergency numbers, without

going through the Dialer user interface for

the user to confirm the call being placed.

CAMERA Required to be able to access the camera de-

vice.

CAPTURE AUDIO OUTPUT Allows an application to capture audio out-

put.

CAPTURE SECURE VIDEO

OUTPUT

Allows an application to capture secure video

output.

CAPTURE VIDEO OUTPUT Allows an application to capture video out-

put.

CHANGE COMPONENT EN-

ABLED STATE

Allows an application to change whether an

application component (other than its own)

is enabled or not.

CHANGE CONFIGURATION Allows an application to modify the current

configuration, such as locale.

CHANGE NETWORK STATE Allows applications to change network con-

nectivity state.

CHANGE WIFI MULTICAST

STATE

Allows applications to enter Wi-Fi Multicast

mode.

CHANGE WIFI STATE Allows applications to change Wi-Fi connec-

tivity state.

CLEAR APP CACHE Allows an application to clear the caches of

all installed applications on the device.

CLEAR APP USER DATA Allows an application to clear user data.

CONTROL LOCATION UP-

DATES

Allows enabling/disabling location update

notifications from the radio.

DELETE CACHE FILES Allows an application to delete cache files.



157

DELETE PACKAGES Allows an application to delete packages.

DEVICE POWER Allows low-level access to power manage-

ment.

DIAGNOSTIC Allows applications to RW to diagnostic re-

sources.

DISABLE KEYGUARD Allows applications to disable the keyguard.

DUMP Allows an application to retrieve state dump

information from system services.

EXPAND STATUS BAR Allows an application to expand or collapse

the status bar.

FACTORY TEST Run as a manufacturer test application, run-

ning as the root user.

FLASHLIGHT Allows access to the flashlight.

FORCE BACK Allows an application to force a BACK op-

eration on whatever is the top activity.

GET ACCOUNTS Allows access to the list of accounts in the

Accounts Service.

GET PACKAGE SIZE Allows an application to find out the space

used by any package.

GET TASKS Allows an application to get information

about the currently or recently running

tasks.

GET TOP ACTIVITY INFO Allows an application to retrieve private in-

formation about the current top activity,

such as any assist context it can provide.

GLOBAL SEARCH This permission can be used on content

providers to allow the global search system

to access their data.

HARDWARE TEST Allows access to hardware peripherals.

INJECT EVENTS Allows an application to inject user events

(keys, touch, trackball) into the event stream

and deliver them to ANY window.
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INSTALL LOCATION

PROVIDER

Allows an application to install a location

provider into the Location Manager.

INSTALL PACKAGES Allows an application to install packages.

INSTALL SHORTCUT Allows an application to install a shortcut in

Launcher.

INTERNAL SYSTEM WIN-

DOW

Allows an application to open windows that

are for use by parts of the system user inter-

face.

INTERNET Allows applications to open network sockets.

KILL BACKGROUND PRO-

CESSES

Allows an application to call killBackground-

Processes(String).

LOCATION HARDWARE Allows an application to use location features

in hardware, such as the geofencing api.

MANAGE ACCOUNTS Allows an application to manage the list of

accounts in the AccountManager.

MANAGE APP TOKENS Allows an application to manage (create, de-

stroy, Z-order) application tokens in the win-

dow manager.

MANAGE DOCUMENTS Allows an application to manage access to

documents, usually as part of a document

picker.

MASTER CLEAR Not for use by third-party applications.

MEDIA CONTENT CONTROL Allows an application to know what content

is playing and control its playback.

MODIFY AUDIO SETTINGS Allows an application to modify global audio

settings.

MODIFY PHONE STATE Allows modification of the telephony state &

power on, mmi, etc.

MOUNT FORMAT FILESYS-

TEMS

Allows formatting file systems for removable

storage.

MOUNT UNMOUNT FILESYS-

TEMS

Allows mounting and unmounting file sys-

tems for removable storage.
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NFC Allows applications to perform I/O opera-

tions over NFC.

PERSISTENT ACTIVITY This constant was deprecated in API level 9.

This functionality will be removed in the fu-

ture; please do not use. Allow an application

to make its activities persistent.

PROCESS OUTGOING CALLS Allows an application to monitor, modify, or

abort outgoing calls.

READ CALENDAR Allows an application to read the user’s cal-

endar data.

READ CALL LOG Allows an application to read the user’s call

log.

READ CONTACTS Allows an application to read the user’s con-

tacts data.

READ EXTERNAL STORAGE Allows an application to read from external

storage.

READ FRAME BUFFER Allows an application to take screen shots

and more generally get access to the frame

buffer data.

READ HISTORY BOOK-

MARKS

Allows an application to read (but not write)

the user’s browsing history and bookmarks.

READ INPUT STATE This constant was deprecated in API level

16.The API that used this permission has

been removed.

READ LOGS Allows an application to read the low-level

system log files.

READ PHONE STATE Allows read only access to phone state.

READ PROFILE Allows an application to read the user’s per-

sonal profile data.

READ SMS Allows an application to read SMS messages.

READ SOCIAL STREAM Allows an application to read from the user’s

social stream.

READ SYNC SETTINGS Allows applications to read the sync settings.
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READ SYNC STATS Allows applications to read the sync stats.

READ USER DICTIONARY Allows an application to read the user dic-

tionary.

REBOOT Required to be able to reboot the device.

RECEIVE BOOT COM-

PLETED

Allows an application to receive the AC-

TION BOOT COMPLETED that is broad-

cast after the system finishes booting.

RECEIVE MMS Allows an application to monitor incoming

MMS messages, to record or perform process-

ing on them.

RECEIVE SMS Allows an application to monitor incoming

SMS messages, to record or perform process-

ing on them.

RECEIVE WAP PUSH Allows an application to monitor incoming

WAP push messages.

RECORD AUDIO Allows an application to record audio.

REORDER TASKS Allows an application to change the Z-order

of tasks.

RESTART PACKAGES This constant was deprecated in API level 8.

The restartPackage(String) API is no longer

supported.

SEND RESPOND VIA MES-

SAGE

Allows an application (Phone) to send a re-

quest to other applications to handle the

respond-via-message action during incoming

calls.

SEND SMS Allows an application to send SMS messages.

SET ACTIVITY WATCHER Allows an application to watch and control

how activities are started globally in the sys-

tem.

SET ALARM Allows an application to broadcast an Intent

to set an alarm for the user.
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SET ALWAYS FINISH Allows an application to control whether ac-

tivities are immediately finished when put in

the background.

SET ANIMATION SCALE Modify the global animation scaling factor.

SET DEBUG APP Configure an application for debugging.

SET ORIENTATION Allows low-level access to setting the orien-

tation (actually rotation) of the screen.

SET POINTER SPEED Allows low-level access to setting the pointer

speed.

SET PREFERRED APPLICA-

TIONS

This constant was deprecated in API level

7. No longer useful, see addPackageToPre-

ferred(String) for details.

SET PROCESS LIMIT Allows an application to set the maximum

number of (not needed) application processes

that can be running.

SET TIME Allows applications to set the system time.

SET TIME ZONE Allows applications to set the system time

zone.

SET WALLPAPER Allows applications to set the wallpaper.

SET WALLPAPER HINTS Allows applications to set the wallpaper

hints.

SIGNAL PERSISTENT PRO-

CESSES

Allow an application to request that a signal

be sent to all persistent processes.

STATUS BAR Allows an application to open, close, or dis-

able the status bar and its icons.

SUBSCRIBED FEEDS READ Allows an application to allow access the sub-

scribed feeds ContentProvider.

SUBSCRIBED FEEDS WRITE No description given.

SYSTEM ALERT WINDOW Allows an application to open windows using

the type TYPE SYSTEM ALERT, shown on

top of all other applications.

TRANSMIT IR Allows using the device’s IR transmitter, if

available.
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UNINSTALL SHORTCUT Allows an application to uninstall a shortcut

in Launcher.

UPDATE DEVICE STATS Allows an application to update device

statistics.

USE CREDENTIALS Allows an application to request authtokens

from the AccountManager.

USE SIP Allows an application to use SIP service.

VIBRATE Allows access to the vibrator.

WAKE LOCK Allows using PowerManager WakeLocks to

keep processor from sleeping or screen from

dimming.

WRITE APN SETTINGS Allows applications to write the apn settings.

WRITE CALENDAR Allows an application to write (but not read)

the user’s calendar data.

WRITE CALL LOG Allows an application to write (but not read)

the user’s contacts data.

WRITE CONTACTS Allows an application to write (but not read)

the user’s contacts data.

WRITE EXTERNAL STOR-

AGE

Allows an application to write to external

storage.

WRITE GSERVICES Allows an application to modify the Google

service map.

WRITE HISTORY BOOK-

MARKS

Allows an application to write (but not read)

the user’s browsing history and bookmarks.

WRITE PROFILE Allows an application to write (but not read)

the user’s personal profile data.

WRITE SECURE SETTINGS Allows an application to read or write the

secure system settings.

WRITE SETTINGS Allows an application to read or write the

system settings.

WRITE SMS Allows an application to write SMS mes-

sages.
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WRITE SOCIAL STREAM Allows an application to write (but not read)

the user’s social stream data.

WRITE SYNC SETTINGS Allows applications to write the sync set-

tings.

WRITE USER DICTIONARY Allows an application to write to the user

dictionary.
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