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Preface

This volume contains the papers presented at the 15th International Symposium on
Foundations and Practice of Security (FPS 2022), which was hosted by University of
Ottawa in Ottawa, Canada, on December 12–14, 2022.

FPS 2022 received 83 submissions from countries all over the world. The Program
Committee selected 26 regular papers and 2 short papers for presentation. The agenda
was complementedwith a panel on the use ofCyberRanges and three keynotes. The panel
included the participation of Emmanuel Druon (Université du Québec à Chicoutimi),
Guy-Vincent Jourdan (University of Ottawa), Paul Berthier (RHEAGroup), Reda Yaich
(IRTSystemX), andMarc-AntoineFaillon (PolytechniqueMontréal).Keynotes included
Alexandra Boldyreva (Professor of Computer Science and the Associate Chair for Grad-
uate Studies in the School of Cybersecurity and Privacy at the Georgia Institute of Tech-
nology), Reihaneh Safavi-Naini (Professor of Computer Science and the NSERC/Telus
Industrial Research Chair in Information Security at the University of Calgary), and
Stephanie Carvin (Associate Professor of International Relations at the Norman Pater-
son School of International Affairs at Carleton University). Many thanks to all of them
for their participation in the program of FPS 2022!

The best paper award of FPS 2022was granted to the contribution “Security Analysis
of Improved EDHOC Protocol” by Baptiste Cottier and David Pointcheval, from the
Ecole Normale Supérieure in Paris, France. The best paper runner-up award of FPS
2022 was granted to the contribution “Towards Characterizing IoT Software Update
Practices” by Conner Bradley and David Barrera, from Carleton University in Ottawa,
Canada.

Many people contributed to the success of FPS 2022. First and foremost, we would
like to thank all the researchers who submitted their research to the conference. The
selection was a challenging task, and we sincerely thank all the Program Committee
members, as well as the external reviewers, who volunteered to read and discuss the
papers.

We are very grateful to our local organization chairs Paula Branco and Paria Shirani,
to our publicity chair Paria Shirani, to our publication chair Joaquin Garcia-Alfaro, and
to our Steering Committee, in particular to Nora Cuppens and Frédéric Cuppens for their
guidance.

We also want to express our gratitude to all the volunteers that have helped us make
this edition of the conference a success: William Aiken, Bernard Asare, Mayukh Bhat-
tacharjee, Samuel Brie, Jean-Gabriel Gaudreault, Asmaa Hailane, Md Sabbir Hossein,
Alireza Toghiani Khorasgani, Paul Mvula, Ehsan Nazari, David Owusu, and Sam Yuen.

Finally, special thanks to Latifa El Bargui for her help and incredible support before,
during, and after the conference.

We hope the articles contained in this proceedings volume will be valuable for your
professional activities in the area.



vi Preface

This year’s edition of FPS was made possible thanks to the generous sponsorship
received from the University of Ottawa, the Faculty of Engineering of the University of
Ottawa, Fortinet, IBM, and SystemX.

December 2022 Guy-Vincent Jourdan
Laurent Mounier
Carlisle Adams
Florence Sèdes

Joaquin Garcia-Alfaro



Organization

General Chairs

Carlisle Adams University of Ottawa, Canada
Florence Sèdes Université Toulouse III Paul Sabatier, France

Program Committee Chairs

Guy-Vincent Jourdan University of Ottawa, Canada
Laurent Mounier Université Grenoble Alpes, France

Local Organization Chairs

Paula Branco University of Ottawa, Canada
Paria Shirani University of Ottawa, Canada

Publications Chair

Joaquin Garcia-Alfaro Institut Polytechnique de Paris, France

Publicity Chair

Paria Shirani University of Ottawa, Canada

Program Committee

Carlisle Adams University of Ottawa, Canada
Furkan Alaca Queen’s University, Canada
Esma Aïmeur Université de Montréal, Canada
Ken Barker University of Calgary, Canada
David Barrera Carleton University, Canada
Abdelmalek Benzekri Université Toulouse 3 Paul Sabatier, France
Anis Bkakria IRT SystemX, France



viii Organization

Gregory Blanc Institut Polytechnique de Paris, France
Guillaume Bonfante Université de Lorraine, LORIA, France
Paula Branco University of Ottawa, Canada
Ana Rosa Cavalli Institut Polytechnique de Paris, France
Xihui Chen University of Luxembourg, Luxembourg
Frédéric Cuppens Polytechnique Montréal, Canada
Nora Cuppens-Boulahia Polytechnique Montréal, Canada
Xavier de Carné de Carnavalet Hong Kong Polytechnic University, China
Mourad Debbabi Concordia University, Canada
Steven Ding Queen’s University, Canada
Benoit Dupont Université de Montréal, Canada
Amy Felty University of Ottawa, Canada
Sébastien Gambs Université du Québec à Montréal, Canada
Joaquin Garcia-Alfaro Institut Polytechnique de Paris, France
Arash Habibi Lashkari York University, Canada
Talal Halabi Laval University, Canada
Abdessamad Imine University of Lorraine, France
Jason Jaskolka Carleton University, Canada
Mathieu Jaume Sorbonne University, France
Houda Jmila Institut Polytechnique de Paris, France
Guy-Vincent Jourdan University of Ottawa, Canada
Raphaël Khoury Université du Québec à Chicoutimi, Canada
Hyoungshick Kim Sungkyunkwan University, South Korea
Evangelos Kranakis Carleton University, Canada
Romain Laborde Université Toulouse III Paul Sabatier, France
Pascal Lafourcade Université Clermont Auvergne, France
Maryline Laurent Télécom SudParis, France
Olivier Levillain Institut Polytechnique de Paris, France
Luigi Logrippo Université du Québec en Outaouais, Canada
Taous Madi King Abdullah University of Science and

Technology, Saudi Arabia
Suryadipta Majumdar Concordia University, Canada
Jean-Yves Marion Université de Lorraine, France
Ashraf Matrawy Carleton University, Canada
Daiki Miyahara University of Electro-Communications, Japan
Benoît Morgan University Toulouse III Paul Sabatier, France
Djedjiga Mouheb Laval University, Canada
Paliath Narendran University at Albany, USA
Guillermo Navarro-Arribas Autonomous University of Barcelona, Spain
Omer Landry Nguena Timo Université du Québec en Outaouais, Canada
Jun Pang University of Luxembourg, Luxembourg
Karthik Pattabiraman University of British Columbia, Canada



Organization ix

Marie-Laure Potet Université de Grenoble Alpes, VERIMAG, France
Isabel Praça Instituto Superior de Engenharia do Porto,

Portugal
Silvio Ranise Fondazione Bruno Kessler, Italy
Jean-Marc Robert École de technologie supérieure, Canada
Michaël Rusinowitch LORIA-INRIA Nancy, France
Kazuo Sakiyama The University of Electro-Communications, Japan
Khosro Salmani Mount Royal University, Canada
Rei Safavi-Naini University of Calgary, Canada
Florence Sèdes University Toulouse III Paul Sabatier, France
Paria Shirani Concordia University, Canada
Renaud Sirdey Commissariat à l’Energie Atomique, France
Natalia Stakhanova University of Saskatchewan, Canada)
Chamseddine Talhi École de Technologie Supérieure, Canada
Nadia Tawbi Université Laval, Canada
Valérie Viet Triem Tong Centrale Supelec, France
Sadegh Torabi George Mason University, USA
Ahmad Samer Wazan Zayed University, Abu Dhabi
Reda Yaich IRT SystemX, France
Jun Yan Concordia University, Canada
Nicola Zannone Eindhoven University of Technology,

The Netherlands
Mengyuan Zhang Hong Kong Polytechnic University, China
Lianying Zhao Carleton University, Canada

Steering Committee

Frédéric Cuppens Polytechnique Montréal, Canada
Nora Cuppens-Boulahia Polytechnique Montréal, Canada
Mourad Debbabi University of Concordia, Canada
Joaquin Garcia-Alfaro Institut Polytechnique de Paris, France
Evangelos Kranakis Carleton University, Canada
Pascal Lafourcade University of Clermont Auvergne, France
Jean-Yves Marion Mines de Nancy, France
Ali Miri Toronto Metropolitan University, Canada
Rei Safavi-Naini Calgary University, Canada
Nadia Tawbi Université Laval, Canada



x Organization

Additional Reviewers

Abdulaziz Abdulghaffar
Tahir Ahmad
Emmanuel Alalade
Walid Arabi
Sepideh Avizheh
Beatrice Berard
Stefano Berlato
Julien Cassagne
Romain Dagnas
Sabyasachi Dutta
Vaibhav Garg
Therese Hardin
Vinh Hoa La
Daniel S. Hono
Md Nazmul Hoq
Padmavathi Lyer
Alvi Jawad
Majid Khabazin

Gildas Kouko
Riccardo Longo
Wissam Mallouli
Souha Masmoudi
Manh-Dung Nguyen
Huu Nghia Nguyen
Charles Olivier-Anclin
Hélène Orsini
Somnath Panja
Md Wasiuddin Pathan Shuvo
Andrew Pulver
Vincent Raulin
Leo Robert
Khaled Sarieddine
Sofya Smolyakova
Shiva Sunar
Ziming Zhao



Contents

Cryptography

Security Analysis of Improved EDHOC Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Baptiste Cottier and David Pointcheval

A Survey on Identity-Based Blind Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Mirko Koscina, Pascal Lafourcade, Gael Marcadet,
Charles Olivier-Anclin, and Léo Robert

Do Not Rely on Clock Randomization: A Side-Channel Attack
on a Protected Hardware Implementation of AES . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Martin Brisfors, Michail Moraitis, and Elena Dubrova

Post-quantum and UC-Secure Oblivious Transfer from SPHF with Grey
Zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Baptiste Cottier,
and David Pointcheval

A New Class of Trapdoor Verifiable Delay Functions . . . . . . . . . . . . . . . . . . . . . . . 71
Ahmed Zawia and M. Anwar Hasan

Practical Homomorphic Evaluation of Block-Cipher-Based Hash
Functions with Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Adda Akram Bendoukha, Oana Stan, Renaud Sirdey, Nicolas Quero,
and Luciano Freitas

Towards a Maturity Model for Crypto-Agility Assessment . . . . . . . . . . . . . . . . . . . 104
Julian Hohm, Andreas Heinemann, and Alexander Wiesmaier

Machine Learning

Reducing the Cost of Machine Learning Differential Attacks Using Bit
Selection and a Partial ML-Distinguisher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Amirhossein Ebrahimi, Francesco Regazzoni, and Paolo Palmieri

Data-Driven Evaluation of Intrusion Detectors: A Methodological
Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Solayman Ayoubi, Gregory Blanc, Houda Jmila, Thomas Silverston,
and Sébastien Tixeuil



xii Contents

CHIEFS: Corneal-Specular Highlights Imaging for Enhancing Fake-Face
Spotter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Muhammad Mohzary, Khalid Almalki, Baek-Young Choi, and Sejun Song

Cybercrime and Privacy

Where is the Virtual Machine Within Cpython? . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Guillaume Bonfante and Anuyan Ithayakumar

Automating Device Fingerprinting Attacks in 4G and 5G NSA Mobile
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Daniel Fraunholz, Dominik Brunke, Lorenz Dumanski,
and Hartmut Koenig

Malicious Human Behaviour in Information System Security: Contribution
to a Threat Model for Event Detection Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 208

Olivier de Casanove and Florence Sèdes

A Taxonomy and Gap-Analysis in Digital Privacy Education . . . . . . . . . . . . . . . . 221
Sumit Kumar Paul and D. A. Knox

Differentially Private Friends Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Kamalkumar Macwan, Abdessamad Imine, and Michael Rusinowitch

Physical-Layer Security

Underwater Confidential Communications in JANUS . . . . . . . . . . . . . . . . . . . . . . . 255
Yannick Beaupré, Michel Barbeau, and Stéphane Blouin

Defense Models for Data Recovery in Industrial Control Systems . . . . . . . . . . . . 271
Alvi Jawad and Jason Jaskolka

SCADA Radio Blackbox Reverse Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Jean-Benoit Larouche, Sébastien Roy, Frédéric Mailhot,
Pierre-Martin Tardif, and Marc Frappier

Blockchain

Finding Unchecked Low-Level Calls with Zero False Positives
and Negatives in Ethereum Smart Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Puneet Gill, Indrani Ray, Alireza Lotfi Takami, and Mahesh Tripunitara



Contents xiii

Decentralized Vision-Based Byzantine Agent Detection in Multi-robot
Systems with IOTA Smart Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

Sahar Salimpour, Farhad Keramat, Jorge Peña Queralta,
and Tomi Westerlund

Money Transfer on Transaction Signature-Based Ledger . . . . . . . . . . . . . . . . . . . . 338
Momoko Shiraishi and Hitoshi Aida

A Decentralized Mnemonic Backup System for Non-custodial
Cryptocurrency Wallets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Thierry Sans, Ziming Liu, and Kevin Oh

IoT and Security Protocols

If-This-Then-Allow-That (to Phone Home): A Trigger-Based Network
Policy Enforcement Framework for Smart Homes . . . . . . . . . . . . . . . . . . . . . . . . . . 373

Anthony Tam, Furkan Alaca, and David Barrera

Reducing Trust Assumptions with OSCORE, RISC-V, and Layer 2
One-Time Passwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Konrad-Felix Krentz and Thiemo Voigt

Towards Characterizing IoT Software Update Practices . . . . . . . . . . . . . . . . . . . . . 406
Conner Bradley and David Barrera

Two-Layer Architecture for Signature-Based Attacks Detection
over Encrypted Network Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

Omar Tahmi, Chamseddine Talhi, and Yacine Challal

Short Papers

A Decision-Support Tool for Experimentation on Zero-Hour Phishing
Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

Pavlo Burda, Luca Allodi, and Nicola Zannone

Deep-Learning-Based Vulnerability Detection in Binary Executables . . . . . . . . . 453
Andreas Schaad and Dominik Binder

Robustness of Affine and Extended Affine Equivalent Surjective S-Box(es)
Against Differential Cryptanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

Shah Fahd, Mehreen Afzal, Dawood Shah, Waseem Iqbal, and Atiya Hai

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473



Cryptography



Security Analysis of Improved EDHOC
Protocol

Baptiste Cottier(B) and David Pointcheval

DIENS, École normale supérieure, CNRS, Inria, PSL University, Paris, France

baptiste.cottier@ens.fr

Abstract. Ephemeral Diffie-Hellman Over COSE (EDHOC) aims at
being a very compact and lightweight authenticated Diffie-Hellman key
exchange with ephemeral keys. It is expected to provide mutual authen-
tication, forward secrecy, and identity protection, with a 128-bit security
level.

A formal analysis has already been proposed at SECRYPT ’21, on
a former version, leading to some improvements, in the ongoing evalu-
ation process by IETF. Unfortunately, while formal analysis can detect
some vulnerabilities in the protocol, it cannot evaluate the actual secu-
rity level.

In this paper, we study the protocol as it appeared in version 15.
Without complete breaks, we anyway exhibit attacks in 264 operations,
which contradict the expected 128-bit security level. We thereafter pro-
pose improvements, some of them being at no additional cost, to achieve
128-bit security for all the security properties (i.e. key privacy, mutual
authentication, and identity-protection).

1 Introduction

A key agreement is under analysis by IETF [10], under the name Ephemeral
Diffie-Hellman Over COSE (EDHOC). EDHOC aims at being a very compact
and lightweight authenticated Diffie-Hellman key exchange with ephemeral keys.
It is expected to provide mutual authentication, forward secrecy, and identity
protection, with a 128-bit security level.

This protocol is deeply inspired from SIGMA [7] and OPTLS [8] and targets
constrained devices over low-power IoT radio communication technologies. For
this reason, very aggressive parameters are proposed to minimize the communi-
cations. This paper follows a request from the LAKE working group to study the
computational security of the EDHOC protocol with such aggressive parameters.

1.1 Related Work

A formal analysis of the May 2018 version has already been proposed by Bruni et
al. in [2] and later completed and updated by [3,6,9], leading to some improve-
ments. But such a formal analysis, when successful, does not give any insight
about the actual security level, in terms of time complexity of the best possible

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G.-V. Jourdan et al. (Eds.): FPS 2022, LNCS 13877, pp. 3–18, 2023.
https://doi.org/10.1007/978-3-031-30122-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30122-3_1&domain=pdf
https://doi.org/10.1007/978-3-031-30122-3_1


4 B. Cottier and D. Pointcheval

attack. While our computational analysis covers the MAC-based authentication
method, other ongoing works cover other authentication methods based on sig-
natures.

1.2 Contributions

In this paper, we analyse the August 2022 version of EDHOC proposal [10].
We are able to prove the three expected security properties in the random oracle
model, under a Diffie-Hellman assumption and with secure encryption primitives.
However, because of the aggressive settings, we exhibit attacks in 264 operations,
against authentication, which is not acceptable for a 128-bit security level.

We thereafter propose some improvements to get better security, at no
communication cost. Firstly, adding more inputs to some hash value allows
to speed-up the simulator when searching in some tables. Secondly, one con-
verts an authenticated encryption scheme into a simple one-time secure encryp-
tion scheme, for hiding the identity of the Initiator, and sends a larger tag
together with the External Authorization Data, in plaintext. We convert an
authenticated ciphertext into a smaller ciphertext encrypting only a part of
the message, and the remaining of the message is sent as plain values rather
than encrypted, but with better authentication. This conversion globally has
no communication impact, but increases from 64 to 128-bit security level for
initiator-authentication. Last, we confirm that a fourth message provides a 128-
bit security level for responder-authentication.

2 Preliminaries

2.1 Computational Assumptions

For security analysis in the computational setting, we rely on some compu-
tational assumptions: the Gap Diffie-Hellman problem and some properties of
symmetric encryption.

Gap Diffie-Hellman (GDH). The Gap Diffie-Hellman problem aims to solve a
Diffie-Hellman instance (U = gu, V = gv), in a group G with generator g, where
u, v

$← Zp, by computing guv, with access to a Decisional Diffie-Hellman oracle
DDH returning 1 if a tuple-query (ga, gb, gc) is a Diffie-Hellman tuple, and 0
otherwise. We define the advantage Advgdh

G
(t, qddh), as the maximum advantage

over all algorithms A in outputting guv, with time-complexity at most t and
making at most qddh queries to the DDH oracle.

One-Time Pad Encryption. We will use several symmetric encryption schemes,
such as the one-time pad: given a random key sk ∈ {0, 1}k, the encryption of
the message m ∈ {0, 1}k is c = E(sk,m) ← m ⊕ sk, while the decryption just
consists in m = D(sk, c) ← c ⊕ sk. It satisfies the injective property:

∀sk,m0,m1 ∈ {0, 1}k, E(sk,m0) = E(sk,m1) =⇒ m0 = m1.
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It also guarantees perfect privacy: for a random secret key sk, c does not leak
any information about the plaintext. We stress this is of course for a one-time
use only, as there is no additional oracle access.

Authenticated Encryption with Associated Data (AEAD). We will also use an
Authenticated Encryption with Associated Data scheme Π ′ = (E ′,D′), with a
key sk and initialisation vector IV. For a message m ∈ M and some associated
data a ∈ A, the ciphertext is c = E ′(sk, IV;m; a)1, while the decryption process
provides m = D′(sk, IV; c; a) in case of valid ciphertext c with respect to sk, IV,
and a, or ⊥ otherwise. Two security properties are expected from such an AEAD.

Indistinguishability. Π ′ = (E ′,D′) should protect message-privacy (IND-CPA,
for Indistinguishability under Chosen-Plaintext Attacks). More precisely, we con-
sider the Experiment Expind-cpa

Π′ (A) in which we randomly choose b ∈ {0, 1} and
a secret key sk, A can ask multiple queries (IV, a,m0,m1), all with different IV,
and for each we compute and send c = E ′(sk, IV;mb; a) to A. Let b′ ∈ {0, 1} be
the output of A. Then, the Experiment Expind-cpa

Π′ (A) outputs 1 if b′ = b and 0
otherwise. We define the advantage of A in violating IND-CPA security of Π ′ as
Advind-cpa

Π′ (A) = Pr[Expind-cpa
Π (A) = 1] and the advantage function Advind-cpa

Π′ (t),
as the maximum value of Advind-cpa

Π′ (A) over all A with time-complexity at most
t. We stress that c only aims at protecting the message-privacy, but does not
provide any security for the associated data. Thanks to multiple queries, we are
in the chosen-plaintext setting, and not a one-time security as before.

Authentication. An AEAD scheme is also expected to guarantee some unforge-
ability property (UF-CMA, for Unforgeability under Chosen-Message Attacks),
also for the associated data (not encrypted). More precisely, we consider the
Experiment Expuf-cma

Π′ (A) in which A is given access to the encryption oracle
E ′(sk, ·; ·; ·), for a random secret key sk. The Experiment returns 1 if A outputs
some data a, an initialisation vector IV and a ciphertext c accepted with respect
to IV and a, which means that D′(sk, IV; c; a) �= ⊥, while c has not been obtained
as the output of an encryption query to E ′(sk, ·; ·; ·). We define the advantage of
A in violating UF-CMA security of Π′ as Advuf-cma

Π′ (A) = Pr[Expuf-cma
Π′ (A) = 1]

and the advantage function Advuf-cma
Π′ (t) as the maximum value of Advuf-cma

Π′ (A)
over all A with time-complexity at most t.

2.2 Brief Description of EDHOC

As with any key exchange protocol, EDHOC aims to provide a common session
key to two parties. We briefly sketch the key elements of the EDHOC protocol.
Due to the page limitations, we refer the reader to [10] for a detailed description.
EDHOC protocol can be instantiated with several settings:

– Authentication Method : Each party (Initiator and Responder) can use an
authentication method: either with a signature scheme (SIG), or with a static
Diffie-Hellman key (STAT).

1 We use semicolons here to distinguish keying material, message and Additional Data.
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Fig. 1. Key Derivation (for the STAT-STAT Method) from [9]. Green vertical hatchs
denote additions and red horizontal hatchs denote removals compared to the initial
version. (Color figure online)

– Cipher Suites: Ordered set of protocol security settings. Initial paper offers
many possible suites, but we focus on the most aggressive cipher suites setting
the MAC length to 8 bytes, while still using SHA-256 as a hash function, with
256-bit outputs.

– Connection Identifiers: Data that may be used to correlate between messages
and facilitate retrieval of protocol state in EDHOC and application.

– Credentials and Identifiers: They are used to identify and optionally transport
the authentication keys of the Initiator and the Responder.

We suppose both the Initiator and the Responder are aware that the authenti-
cation method is STAT/STAT. Also, we ignore the Cipher Suite ID Suites I (as
it appears in [10]) in the first message of the protocol.

Extract and Expand. In the EDHOC Key-Schedule, recalled in Fig. 1 (ignor-
ing the vertically hatched patterns for the initial protocol), the pseudoran-
dom keys (PRK) are derived using an extraction function. In our context,
Extract(salt, IKM) = HKDF-Extract(salt, IKM) is defined with SHA-256, where
IKM holds for Input Keying Material (in our context, this will be some Diffie-
Hellman keys) and Expand(PRK, info, len) = HKDF-Expand(PRK, info, len) where
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Fig. 2. Notations

info contains the transcript hash (TH2, TH3 or TH4), the name of the derived
key and some context, while len denotes the output length.

Transcript hashes, denoted THi, are used as input to the HKDF-Expandfunc-
tion. More precisely, with SHA-256 as H, we have:

TH2 = H(Ye,CR,H(m1)) TH3 = H(TH2,m2) TH4 = H(TH3,m3[,m′
3])

where m1 is the first message sent by the Initiator, m2 and m3 (possibly con-
catenated to m′

3 in our improvement, to preserve the authentication property)
respectively are the plaintexts respectively encrypted in the message 2 and mes-
sage 3. More notations are provided in Fig. 2.

Protocol. The detailed description of the initial protocol is given in Fig. 3, ignor-
ing the gray highlights which will be for our improvements. The final session key
is SK = PRKout.

3 Our Improvements

We here make some remarks on the initial protocol, with some improvements,
that appear in gray highlights in Fig. 3, and to the removed/additional hatched
patterns in Fig. 1.

3.1 On Mutual Authentication

The encryption key sk3, used by the initiator to encrypt its second message m3,
is computed by calling HKDF-Expandon PRK3e2m. However, even an adversary
that plays in the name of a non-corrupted user, is able to compute PRK3e2m,



8 B. Cottier and D. Pointcheval

Fig. 3. Optimized EDHOC with four messages in the STAT/STAT Authentication
Method. Our modifications compared to [10] (draft-ietf-lake-edhoc-15) are represented

by and additions by gray highlights
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when knowing the Initiator ephemeral key xe, as PRK3e2m does not depend on
xs, the long term secret key of the Initiator. In order to break the Initiator
authentication, with respect to a Responder, an adversary can play on behalf of
any user as an Initiator. It will be able to compute sk3, but not t3, for which
value it will need some luck, but this is only 64-bit long! Which is not enough
for a 128-bit security.

To get around this issue, we suggest to modify the construction of Initiator’s
second message as follows: Initial message m3 = (IDI‖t3||EAD3) is split as m3 ←
(IDI) and m′

3 ← (t3||EAD3)2. Thus, m3 is encrypted using sk3 (with a one-time
pad encryption scheme Π = (E ,D), under sk3 still depending on PRK3e2m)
into c3. Then m′

3 does not need to be encrypted. We introduce the value κsec,
always set as the expected bit-security parameter, independently of the �mac

value. Then, we set the length of t3 to be κsec, as it already authenticates CTX3 =
(IDI‖TH3‖Xs‖EAD3). Concretely, the second message sent by the initiator to the
responder is: c3‖m′

3, where c3 = E(sk3,m3),m′
3 = t3||EAD3. Once the Responder

receives (c3,m′
3), he first decrypts c3, retrieves Xs using m3, computes PRK4e3m

and is then able to verify the tag t3, allowing to check the authenticity of IDI,
as well as all the other values is CTX3 = IDI‖TH3‖Xs‖EAD3. The extra required
length for the tag t3 is perfectly compensated by the absence of the tag jointly
sent when using Authenticated Encryption, and the plaintext length of m3 is the
same as the encryption of m3. Therefore, this does not impact the communication
cost of the protocol, until κsec ≤ 2 × �mac, but improves to κsec-bit security for
Initiator-Authentication.

About the Responder-Authentication, t2 also provides a 64-bit security level
only: by guessing it, any active adversary can make the initiator terminate, and
thus breaking the responder-authentication, if one does not wait for the fourth
flow c4,m

′
4. However, with this fourth flow, we can show the 2×�mac-bit security

level is achieved.

3.2 On Reduction Efficiency

After analysis, we also notice another improvement: the key PRK2e is computed
according to gxeye only, as the salt used in HKDF-Extractis an empty string.
When considering several parellels sessions, this allows an adversary to find a
collision with any of the session making a single call to HKDF-Extract. Therefore,
we replace the empty string used as salt with TH2 that depends on the session
variables and is different for each session. Thus, an adversary has to make a call
to HKDF-Extract with a chosen TH2, linked to a specific session. This makes the
reduction cost of the key-privacy game independent of the number of sessions.

4 Security Analysis

Security Goals. The security goals of an authenticated key exchange protocol
are:
2 One can move EAD3 in m3, if privacy is required. It is still secure with any one-time

secure encryption, but increasing the key size in the particular case of one-time pad.
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– Key Privacy : Equivalent to Implicit Authentication. At most both partici-
pants know the final session key, which should remain indistinguishable from
random to outsiders. With additional Perfect Forward Secrecy, by compro-
mising the long-term credential of either peer, an attacker shall not be able
to distinguish past session keys from random keys. In our context, this will
rely on a Diffie-Hellman assumption.

– Mutual Authentication: Equivalent to explicit authentication. Exactly both
participants have the material to compute the final session key.

– Identity Protection: At most both participants know the identity of the
Initiator and the Responder. While the identity of the Initiator should be
protected against active adversaries, the identity of the Responder should be
protected against passive adversaries only.

Random Oracle Model. For the security analysis, we model Hash and Key Deriva-
tion Functions as random oracles. Respectively, the random oracles ROT and
ROP will model HKDF-Extract and HKDF-Expand functions as perfect random
functions.

4.1 Key Privacy

We describe in Fig. 4 the security game introduced in [5] following the framework
by Bellare et al. [1]. After initializing the game, the adversary A is given multiple
access to the following queries:

– NewUser: Generates a new user by generating a new pair of keys.
– Send: Controls activation and message processing of sessions
– SessionKeyReveal: Reveals the session key of a terminated session.
– LongTermKeyReveal: Corrupts a user and reveals its long term secret key.
– Test: Provides a real-or-random challenge on the session key of the queried

session.

Then, the adversary makes a single call to the Finalize algorithm, which returns
the result of the predicate [b′ = b], where b′ is the guess of A and b is the
challenge bit, after succeeding through the Sound and Fresh predicates.

The advantage of an adversary A against the key privacy is its bias in guessing
b, from the random choice: Advkp−ake(A) = Pr[b′ = b] − 1/2. A formalized
description of the EDHOC protocol can be found in the full version [4]. It is
compliant with the security game made in Fig. 4. The protocol is analyzed in
the random oracle model, therefore, HKDF can be substituted by respective
random oracles.

Theorem 1. The above EDHOC protocol satisfies the key privacy property under
the Gap Diffie-Hellman problem in the Random Oracle model. More precisely,
with qRO representing the global number of queries to the random oracles, N
the number of users, and �hash the hash digest length, Advkp−ake

EDHOC(t; qRO, N) is
upper-bounded by

(2N + 1) · AdvGDH
G (t, qRO) +

qRO
2 + 4

2�hash+1
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Fig. 4. Authenticated Key Exchange Key Privacy Security Game Gkp−ake
AKE,A

Game G0. This game is the key privacy security game Gkp−ake
AKE,A (defined in

Fig. 4) played by A using the KeyGen, Activate and Run algorithms. The
KeyGen algorithm generates a long term pair of key, calling Activate with an
user with identity u, A creates its i-th session with u, denoted πi

u.

Pr[Succ0] = Pr[Gkp−ake
AKE,A ],

where the event Succ means b′ = b.
We stress that in this security model, with Perfect Forward Secrecy, we use the
weak definition of corruption, meaning that a query to LongTermKeyReveal
only reveals the long-term key, while the ephemeral key remains unrevealed.
We say a party/session is non-corrupted if no query to LongTermKeyReveal
has been made before the time of acceptance tacc, where we consider each
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block (InitRun1, InitRun2, RespRun1, RespRun2) as atomic. Then corruptions
can only happen between two calls to simulated players.

Game G1. In this game, we simulate the random oracles by lists that are empty
at the beginning of the game. As ROT and H always return a digest of size
�hash, we simply use the simulation oracle SOT and SOH respectively. How-
ever, ROP may return values of several lengths. We thus define a simulation
oracle by digest size: SOsize

P , for size in {�2, �id, �hash, �key, �iv, �mac, κsec}
The simulation oracles SOP and SOH work as the usual way of simulating the
answer with a new random answer for any new query, and the same answer
if the same query is asked again. For the simulation oracles SOT , the oracle
consists in a list that contains elements of the form (str, Z, (X,Y );λ), where
when first set, either Z or (X,Y ) is non-empty. Indeed, when making a call
to a random oracle, the official query is of the form (str, Z), where str is any
bit string, that can be empty or a pseudo-random key, and Z is a Diffie-
Hellman value. Then, the simulator checks in the list for an entry matching
with (str, Z, ∗;λ). If such an element is found, one outputs λ, otherwise one
randomly set λ

$← {0, 1}κ and append (str, Z,⊥;λ) to the list. But later,
the simulator will also ask queries of the form (str, (X,Y )), where (X,Y ) is a
pair of group elements. Then one checks in the list for an entry matching with
either (str, ∗, (X,Y );λ) or (str, Z, ∗;λ) such that DDH(g,X, Y, Z) = 1. If such
an element is found, one outputs λ, otherwise one randomly set λ

$← {0, 1}κ

and append (str,⊥, (X,Y );λ) to the list. When such new kinds of elements
exist in the list, for the first kind of queries (str, Z), one checks in the list for
an entry matching with either (str, Z, ∗;λ) as before, or (str, ∗, (X,Y );λ) such
that DDH(g,X, Y, Z) = 1. Thanks to the DDH oracle, this simulation is per-
fect, and is thus indistinguishable to the adversary: Pr[Succ0] = Pr[Succ−1].

Game G2. In order to prevent collisions in the future PRK generation, we modify
the simulation oracles SOT ,SO�hash

P and SOH, such that if a collision occurs,
the simulator stops. From the birthday paradox bound, we have:

Pr[Succ0] − Pr[Succ−1] ≤
qSOT

2 + q
SO

�hash
P

2 + qSOH
2

2�hash+1
.

Game G3. One can note that thanks to the above simulation of the random
oracles, the simulator does not need anymore to compute Diffie-Hellman val-
ues. Then, for every simulated player, the simulator generates Xe or Ye at
random in the group, and the simulation is still performed as in the previ-
ous game. As corruption queries only reveal long-term secret, still known to
the simulator, the view of the adversary is perfectly indistinguishable of the
previous game and we have: Pr[Succ0] = Pr[Succ−1].

Game G4. In this game, when simulating any initiator receiving a forged tuple
(Ye, c2,CR) from the adversary in the name of a non-corrupted user, one
simulates PRK3e2m thanks to a private oracle SOPRK3e2m

, which makes it per-
fectly unpredictable to the adversary. If the pair (Ye,CR) is forged, TH2 and
salt3e2m are different from the values obtained by a possibly simulated respon-
der, thanks to the absence of collisions as they are respectively computed
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using SOH and SO�hash
P . Otherwise, sk2 is not modified. So if the ciphertext

c2 is forged, thanks to the injective property of the one-time pad encryption
scheme (E ,D) when the key is fixed, m2, then TH3 and salt4e3m are different
from the values obtained by a possibly simulated responder. In order to detect
the inconsistency of PRK3e2m with respect to the public oracle answer, the
adversary must have asked SOT on the correct Diffie-Hellman value Xe

ys . We
denote the event F1, that query Xe

ys is asked whereas ys is the long-term
secret key of a non-corrupted user and Xe has been generated by the sim-
ulator. If this event happens (which can easily be checked as the simulator
knows ys), one stops the simulation: |Pr[Succ0] − Pr[Succ−1]| ≤ Pr[F1].

Game G4′ . We now provide an upper-bound on Pr[F1]: given a GDH challenge
(X = gx, Y = gy), one simulates all the Xe as Xe = X · gr, for random
r

$← Zp, but chooses one user to set Ys = Y . Even if ys is therefore not
known, simulation is still feasible as the simulator can make query to the
SOT oracle with input (Xe, Ys). Then, one can still answer all the corruption
queries, excepted for that user. But anyway, if F1 happens on that user, this
user must be non-corrupted at that time: one has solved the GDH problem,
and one can stop the simulation. If the guess on the user is incorrect, one
can also stop the simulation: Pr[F1] ≤ N · AdvGDH

G (t, qRO), where N is the
number of users in the system.

Game G5. In this game, when simulating any responder receiving a forged
message m1 from the adversary in the name of a non-corrupted user, still
non-corrupted when sending c3 to RespRun2, one simulates PRK4e3m thanks
to a private oracle SOPRK4e3m

, which makes it perfectly unpredictable to the
adversary. Since m1 is forged, thanks to the absence of collisions, TH2,TH3,
and salt4e3m are different from the values obtained by a possibly simulated
responder. In order to detect the inconsistency of PRK4e3m with respect to
the public oracle answer, the adversary must have asked SOT on the correct
Diffie-Hellman value Ye

xs . We denote the event F2, that query Ye
xs is asked

whereas xs is the long-term secret key of a non-corrupted user and Ye has
been generated by the simulator. If this event happens, as above, one stops
the simulation: |Pr[Succ0] − Pr[Succ−1]| ≤ Pr[F2].

Game G5′ . We now provide an upper-bound on Pr[F2]: given a GDH challenge
(X = gx, Y = gy), one simulates all the Ye as Ye = Y · gr′

, for random
r′ $← Zp, but chooses one user to set Xs = X. Then, one can still answer all
the corruption queries, excepted for that user. But anyway, if F2 happens on
that user, this user must be non-corrupted at that time: one has solved the
GDH problem, and one can stop the simulation. If the guess on the user is
incorrect, one can also stop the simulation: Pr[F2] ≤ N · AdvGDH

G (t, qRO).
Game G6. In this game, we simulate the key generation of PRK2e, for all the

passive sessions (m1 received by a simulated responder comes from a simu-
lated initiator, or (Ye, c2,CR) received by a simulated initiator comes from a
simulated responder, and both used the same m1 as first message), thanks to
a private oracle SOPRK2e

, acting in the same vein as SOT , but not available
to the adversary. This makes a difference with the previous game if the key
PRK2e has also been generated by asking SOT on the correct Diffie-Hellman
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value Z = gxeye . We denote by F3 the latter event, and stop the simulation
in such a case: |Pr[Succ0] − Pr[Succ−1]| ≤ Pr[F3].

Game G6′ . We now provide an upper-bound on Pr[F3]. Given a GDH challenge
(X = gx, Y = gy), one simulates all the Xe as Xe = X · gr, for random
r

$← Zp, and all the Ye as Ye = Y ·gr′
, for random r′ $← Zp. As the key PRK2e

now depends on the session context, any query Z to the SOT oracle can make
F3 occurs on a single pair (Xe = X · gr, Ye = Y · gr′

). Hence, qRO DDH-
oracle queries might be useful to detect F3 on an input Z = CDH(Xe, Ye) =
gxy ·Xr′ ·Y r ·grr′

, solving the GDH challenge (X,Y ): Pr[F3] ≤ AdvGDH
G (t, qRO).

Game G7. In this game, when simulating any initiator receiving the second
message (Ye, c2,CR), from the adversary in the name of a non-corrupted
user, one simulates PRK3e2m thanks to a private oracle SOPRK3e2m

. This
makes a difference with the previous game only if this is a passive session,
in which case PRK2e is unpredictable, and thus different from the public
one excepted with probability 2−�hash . As there are no collisions, salt3e2m is
different from the value obtained by a possibly simulated responder. In order
to detect the inconsistency of PRK3e2m with respect to the public oracle
answer, the adversary must have asked SOT on the correct Diffie-Hellman
value Xys

e , which is not possible as event F1 already stops the simulation.
Hence, we just have |Pr[Succ0] − Pr[Succ−1]| ≤ 2−�hash .

Game G8. In this game, when simulating any initiator receiving the second
message (Ye, c2,CR), from the adversary in the name of a non-corrupted
user, one simulates PRK4e3m thanks to a private oracle SOPRK4e3m

. In this
case, PRK3e2m is unpredictable, as well as salt4e3m and PRK4e3m: Pr[Succ0] =
Pr[Succ−1].

Game G9. In this game, when simulating any responder receiving c3, from
the adversary in the name of a non-corrupted user, one simulates PRK4e3m

thanks to the private oracle SOPRK4e3m
. This makes a difference with the pre-

vious game only if this is not a passive session, in which case PRK2e is unpre-
dictable, and thus different from the public one excepted with probability
2−�hash . As there are no collisions, salt3e2m, PRK3e2m, and salt4e3m are dif-
ferent from the values obtained by a possibly simulated responder. In order
to detect the inconsistency of PRK4e3m with respect to the public oracle
answer, the adversary must have asked SOT on the correct Diffie-Hellman
value Y xs

e , which is not possible as event F2 already stops the simulation:
|Pr[Succ0] − Pr[Succ−1]| ≤ 2−�hash .

Game G10. In this game, for any fresh session, one simulates PRKout thanks to
the private oracle SOPRKout . A session being fresh means that no corruption
of the party or of the partner occurred before the time of acceptance: the
initiator is not corrupted before receiving (Ye, c2,CR) and the responder is not
corrupted before receiving c3. By consequent, they are not corrupted before
PRK4e3m was computed. We have seen above that in those cases, the key
PRK4e3m is generated using the private oracle SOPRK4e3m

: it is unpredictable.
The use of the private oracle SOPRKout can only be detected if the query
PRK4e3m is asked to SOP : |Pr[Succ0] − Pr[Succ−1]| ≤ q

SO
�hash
P

× 2−�hash .
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Globally, one can note that the gap between the initial and the last games is
upper-bounded by

(2N + 1) · AdvGDH
G (t, qRO) +

qSOT
2 + q

SO
�hash
P

2 + qSOH
2

2�hash+1
+

2 + q
SO

�hash
P

2�hash

≤ (2N + 1) · AdvGDH
G (t, qRO) +

qRO
2 + 4

2�hash+1

Eventually, for all the fresh sessions, in the real case (b = 0), the private
oracle is used, and outputs a random key, while in the random case (b = 1),
the session key is random too: Pr[Succ0] = 1/2. This concludes the proof.

4.2 Explicit Authentication

Explicit authentication (or mutual authentication) aims to ensure each partici-
pant has the material to compute the final session key (accepts) when the partner
terminates. In the EDHOC protocol, this means the responder (resp. the initia-
tor) owns the private long-term key ys (resp xs) associated to the long-term
public key Ys (resp. Xs), and the private ephemeral keys, when the partner
terminates (Fig. 5).

Fig. 5. Finalize Function for the Explicit Authentication Security Game

To do so, the responder uses ys in RespRun1 to compute PRK3e2m used for
the tag t2 and the key sk3. In the same way, the initiator uses xs to compute
PRK4e3m, used for the tag t3. Furthermore, they both have to use their ephemeral
keys to compute PRK2e, used for sk2.

Responder Authentication. Consider a simulated initiator receiving a forged
message (Ye, c2,CR) from the adversary in the name of a non-corrupted user.
In such a case, consider the modifications made in the key privacy proof up
to the game G7. Hence, we have replaced the generation of PRK3e2m with a
private oracle. Then the advantage of the adversary in breaking the explicit
authentication of the responder in this game is bounded by 2−�mac , added to the
gap induced by the modifications made up to the game G7. This leads to the
following theorem:
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Theorem 2. The above EDHOC protocol satisfies the responder-authentication
property under the Gap Diffie-Hellman problem in the Random Oracle model.
More precisely, with qRO representing the global number of queries to the random
oracles, N the number of users, �hash the hash digest length and �mac the MAC
digest length, we have Advauth−resp

EDHOC (t; qRO, N) is upper-bounded by

(2N + 1) · AdvGDH
G (t, qRO) +

qRO
2 + 2

2�hash+1
+

1
2�mac

.

Optimal Reduction. One cannot expect more after these three flows, as the
adversary can play the role of the responder with known ye. Without knowing
ys, it just gets stuck to compute PRK3e2m and thus t2. But it can guess it (with
probability 2−�mac), breaking authentication. But it will not know SK. However,
by waiting for the fourth message containing an authenticated encryption c4, as
said in the documentation, this will add a factor Advuf-cma

Π′ (t) ≈ 2−�mac to the
Responder Authentication security: Advauth−resp

EDHOC (t; qRO, N) is upper-bounded by

(2N + 1) · AdvGDH
G (t, qRO) +

qRO
2 + 2

2�hash+1
+

1
2�mac

× Advuf-cma
Π′ (t).

Initiator Authentication. We now consider any responder receiving a forged
message c3 from the adversary in the name of a non-corrupted user. As above,
considering the modifications made in the key privacy proof up to the game G8,
we have replaced the generation of PRK4e3m with a private oracle. Then the
advantage of the adversary in breaking the explicit authentication of the initiator
in this game is bounded by 1

2κsec . Added to the gap induced by the modifications
made up to the game G7. This leads to the following theorem:

Theorem 3. The above EDHOC protocol satisfies the initiator-authentication
property under the Gap Diffie-Hellman problem in the Random Oracle model.
More precisely, with qRO representing the global number of queries to the random
oracles, N the number of users, �hash the hash digest length and κsec the expected
bit-security, we have Advauth−init

EDHOC (t; qRO, N) upper-bounded by

(2N + 1) · AdvGDH
G (t, qRO) +

qRO
2 + 4

2�hash+1
+

1
2κsec

.

4.3 Identity Protection

Let us now consider anonymity, with identity protection. More precisely, we want
to show that the initiator’s identity (IDI) is protected against active adversaries,
while responder’s identity (IDR) is protected only against passive adversaries.

The values IDI and IDR are the authentication credentials containing the
public authentication keys of the Initiator and the Responder, respectively.

Both those values are sent to the other respective party using One-Time Pad
encryption, that perfectly protects the privacy. Then, in one hand we have IDR

that is part of CTX2 used to compute t2 and in the other hand, we have IDI that
is part of CTX3 used to compute t3. We thus define the similar responder and
initiator identity protection experiment as follows:
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ExpID−resp−b
EDHOC

1 : IDR0 , IDR1 ← A(peerid)
2 : m1 ← A(InitRun1(.))
3 : b ← {0, 1}
4 : IDR ← IDRb

5 : ys ← skIDR

6 : (Ye, c2,CR) ← RespRun1(IDR, ys,m1)
7 : b′ ← A(c2)
8 : return b = b′

ExpID−init−b
EDHOC

1 : IDI0 , IDI1 ← A(peerid)
2 : (Ye, c2,CR) ← A(RespRun1(.))
3 : b ← {0, 1}
4 : IDI ← IDIb

5 : xs ← skIDI

6 : Ys ← peerpk[IDI]
7 : c3 ← InitRun2(IDI, xs, Ys, (Ye, c2,CR))
8 : b′ ← A(c3)
9 : return b = b′

In both cases, we consider the modifications made in the key privacy proof up
to the game G7, making PRK2e and PRK3e4m random, and by consequent, so
are sk2 and sk3.

Responder Identity Protection. The responder’s identity has to be protected
against passive adversaries only. To distinguish ExpID−resp−0

EDHOC and ExpID−resp−1
EDHOC ,

one must distinguish between an encryption of IDR0 and IDR1 , as sk2 is random,
this implies breaking the injective property and the indistinguishability of Π =
(E ,D), both being perfect with the one-time pad.

Initiator Identity Protection. The initiator’s identity has to be protected against
active adversaries. However, if the adversary plays in the name of a responder,
he will be detected with high probability with the tag t2 before reaching game
G7. Therefore, distinguish between ExpID−init−0

EDHOC and ExpID−init−1
EDHOC also implies

breaking the injective property and the indistinguishability of Π = (E ,D), both
being perfect with the one-time pad.

Theorem 4. The above EDHOC protocol protects Initiator and Responder’s
Identity under the Gap Diffie-Hellman problem in the Random Oracle model.
More precisely, with qRO representing the global number of queries to the random
oracles, N the number of users, and �hash the hash digest length, both advantages
AdvID−init−b

EDHOC (t; qRO, N) and AdvID−resp−b
EDHOC (t; qRO, N) are upper-bounded by

(2N + 1) · AdvGDH
G (t, qRO) +

qRO
2 + 2

2�hash+1
.

5 Conclusion

Our computational analysis proved the EDHOC protocol instantiated with the
STAT-STAT authentication method, with �mac = 64 and κsec = 128, provides
nearly a 128-bit security level for key privacy and identity protection for both
the responder and the initiator. In a three-flow scenario, Initiator Authentication
reaches a 128-bit security level, using our improvements without extra-cost in our
settings, but only a 64-bit security level for the responder. However, as suggested
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in their documentation, a fourth message using authenticated encryption (AEAD)
from the responder to the initiator increases this security up to a 128-bit level.
Hence, our improvement of EDHOC, at no communication cost, provides a global
128-bit security level.

Acknowledgments. This work was supported in part by the French ANR Project
Crypto4Graph-AI.
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Abstract. Blind signatures are well-studied building blocks of cryptography,
originally designed to enable anonymity in electronic voting and digital bank-
ing. Identity-based signature were introduced by Shamir in 1984 and gave an
alternative to prominent Public Key Infrastructure. An identity-based blind sig-
nature (IDBS) allows any user to interact directly with the signer without any
prior interaction with a trusted authority. The first IDBS has been proposed in
2002 and several schemes were proposed since then. Seeking for a full compari-
son of these primitives, we propose a survey on IDBS and list all such primitives
that seems to maintain some security. We also classify their security assumptions
based on the existing security expectation that have not been formalized yet in
the literature. Moreover, we empirically evaluate the complexity of all the opera-
tions used in those schemes with modern cryptographic libraries. This allows us
to perform a realistic evaluation of their practical complexities. Hence, we can
compare all schemes in terms of complexity and signature size.

Keywords: Identity-based Blind Signature · Survey · Complexity Evaluation

1 Introduction

Since the creation of the Internet, physical cash is progressively replaced through digiti-
zation by electronic payments methods like smart card or phone using NFC technology.
Within this transformation, specific properties of cash were lost such as anonymity or
unlinkability of the customer. In 1982, D. Chaum introduced a cryptographic response
to this problem, called blind signature [13]. He described this concept as an analogue
of an envelope composed of carbon paper that could be signed from the outside where
the signature is engraved on a message inside.

For a concrete example, consider the following case where blind signature is help-
ful. Suppose that a customer wishes to buy a product at 10AC in a store. It asks to its
bank a (blind) signature which is worth 10AC1. The customer then gives this signature
to the shopkeeper against the 10AC worth product. The latter sends the signature back to
the bank for payment. In this setting double spending is checked by the bank since each
payment corresponds to a signature. Moreover, unlinkability is ensured since the bank
knows that the customer has withdrawn 10AC but it cannot link it with the inquiry from

1 In this example, a signature defines a given amount of money.
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the shopkeeper. Another well-known application for this primitive is the voting scheme
in order to ensure that only registered voter can actually vote [42,49].

One of the first scheme using blind signature was developed by D. Chaum, A. Fiat,
M. Naor in 1988 [14]. In 1992, S. Von Solms and D. Naccache [80] described a hostage
taking that could lead to a crime without possibility to trace down a ransom pay to the
criminal through coins made of blind signatures. It shows the necessity to extend the
definition of blind signature to give more power to the signer. The goal is to be able
to apply blind signature without threat. Therefore, extensions of blind signature such
as partially blind signature [3], signer-friendly blind signature, fair blind signature [71]
and many others were developed. Those properties allow more control for the signer by
adding information or putting constraints on the use of a signature.

Before 1994, factorization was the only hard problem that yield to blind signature.
That year was a turnover for the domain, J.L. Camenisch et al. [12] introduced the first
a blind signature scheme based on the discrete logarithm problem. This scheme was
an adaptation of the Nyberg-Rueppel scheme [61] leading to a relatively efficient blind
signature. This scheme was also the first blind signature to have an additional property:
message recovery (signed message is recovered from the public key and the signature).

Following A. Shamir’s introduction of identity-based cryptography [68], signature
and blind signature schemes were developed using this paradigm. The first ID-based
blind signature was introduced by F. Zang and K. Kim [90] in 2002, only one year
after the first use of pairing. In 2004, C. Sherman et al.[18] opened up the way to ID-
based partially blind signature with a new scheme achieving partial restrictive blindness.
The next year D. Galindo et al. [24] gave a general construction of IDBS only requir-
ing a secure signature and a secure blind signature. This general framework achieved
relatively good efficiency, but the signatures generated are about twice as large as a
signature of made out schemes (the signature is the concatenation of both signature
schemes).

There exist numerous properties proposed by a variety of IDBS schemes with the
same practical applications as blind signature. Each situation has specific requirements
and depending on the context one may use one schemes or another. Our main goal in this
survey is to answer the question of how to choose an IDBS (with which property) for
practical use. We list all existing schemes, classify them accordingly to their properties
and security assumption; we also compare them using an empirical evaluation. We have
included all IDBS2 as they are for a vast majority independent works. Some does not
meet the requirement to be use in practice, but we mention them for exhaustiveness as
this may be of interest for authors trying to design new schemes. In such cases we have
written the mentions “No reduction”, “No proof” or “Not formal” depending on the
category the fall within. The authors do not recommend usage of any schemes with one
of these mentions in the upcoming table. Their evaluation is not included as this would
be irrelevant to compare them with scheme that have guaranteed security.

Contributions. Our contribution aims at bringing new considerations on IDBS. Our
first contribution is a survey presenting the existing portfolio to someone seeking to
implement these primitives. In this paper, we evaluate all existing IDBS, this is not less
than 71 schemes. We classify them within several categories that we discuss throughout
this paper. Some reach additional properties that we all present in here. This allows us

2 The authors apologies if any scheme have been omitted in this survey.
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to give a full overview of the literature in the field and the existing properties reached by
some existing IDBS scheme. We notice that among the existing schemes, some of them
(at least 24 schemes) do not reach today’s security requirements as no formal security
argument have been given by their authors or in the literature we have investigated. We
point them out without going into further details on them. Scheme with existing secu-
rity arguments are investigated further. We start by empirically evaluate the cost of all
operations used in existing IDBS schemes. It allows us to establish a metric to evalu-
ate the time efficiency of each part of the given signatures. This answers our goal i.e.,
obtaining a taxonomy of the reliable schemes in terms of efficiency and cryptographic
assumption. This enables us to give insights on the schemes that actually reach the best
efficiency in practice.

Seeking for more formalism and security consideration. The long version of this
paper provides some formal security definitions for all type of the scheme we are inves-
tigating in this paper. These results are given in the appendix of the long version of the
paper [5]. We hope it will bring up the security of the new ID-based blind signature that
will be designed in the future or at least help giving some further formalization of their
security as this has never been achieved for some of them.

Related Work. A few surveys related to blind signature schemes have been presented.
To the best of the authors’ knowledge, we noticed three of them. The first one [6], gives
an overview of 8 existing blind signature schemes and other notions that are directly
related to blind signature. It also presents some properties of blind signatures. A second
short paper called survey on IDBS was proposed in 2015 by Girish et al. [30], but it
does not give insights on the existing schemes instead it presents the concept and some
existing property without much formalism. In 2018, M. Khater et al. [48] compared
some blind signatures based on ElGamal. Only 5 schemes derived from the well-known
signature are presented and evaluated. They compare the influence of modification in
the scheme parameters, such as the number of blinding factor and its influence on the
complexity. We include their signatures in our Survey.

All the above cited works only offer a partial view of existing identity-based blind
signature schemes and yet it is hard to get a realistic view of the state of the art of
the existing literature. Moreover, they do not compare the performance of the schemes
in the literature. Our objective is to present a full overview of the existing literature,
while our achievement is a detailed taxonomy of all existing IDBS schemes and of the
numerous sub-properties. Unlike the above cited papers, we ambition to be exhaustive
and to give a full description of field of IDBS.

Outline: Section 2 introduces the security assumptions and the definitions of an ID-
based blind signature schemes and its additional properties. Details about our evaluation
process are given in Sect. 3. In Sect. 4.1, we are comparing the existing schemes. Finally,
in Sect. 5 we give insights of some work that should be done to put forward the domain.
In Sect. 6 we conclude our study.

2 Cryptographic Definitions

Blind signature schemes rely on hard mathematical problems for their security. Those
assumptions should be well-studied, and assumed to be intractable in reasonable time.
The Discrete Logarithm problem (DL) relies on the difficulty to compute the discrete
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logarithm of an element in some groups. The Decision Diffie-Hellman (DDH), Com-
putational Diffie-Hellman (CDH), Gap Diffie-Hellman (GDH) and the Chosen Target
Accompanied Computational Diffie-Hellman problems (CT-ACDH) [15] result directly
from it. There are also some variants such as the q-Strong Diffie-Hellman (q-SDH), the
k-Bilinear Diffie-Hellman Inversion (k-BDHI), the One-more Bilinear Diffie-Hellman
Inversion (1m-BDHI) or the Collusion Attack Algorithm with k traitors (k-CAA). These
problems are mostly used for schemes based on elliptic curves. Recently, a polynomial
time (PT) algorithm was disclosed solving the Over-determined Solvable System of
Linear Equations modulo q with Random inhomogeneity problem (ROS). This led to
attacks on many schemes [8] and some IDBS were relying on it.

Alternatives to elliptic curves have been investigated aiming at post-quantum secu-
rity. Those solutions are essentially based on lattices, notably the Short Integer Solution
problem (SIS), the Shortest Vector problem (SV) and its variant on quotient ring the
Ring Short Integer Solution problem (R-SIS). One last rather unusual problem that we
need here is the Chebyshev Polynomial Computation problem (CPC) [73]. This prob-
lem is known to have a reduction to the discrete logarithm in a finite group GF (p), for
some prime p [72]. These assumptions are formally defined in the long version of this
paper [5]. All existing IDBS are based on one of these problems, we formally introduce
the concept of IDBS and informally present the multiple properties that have been put
based on this definition.

Definition 1 (IDentity-based Blind Signature - IDBS). An IDBS with security
parameter K is a 4-tuple of polynomial-time algorithms (Setup, Extract, 〈S,U〉, Verif)
involving an authority M, a signer S and a user U . Algorithms are as follows:

– Setup(1K) −→ (mpk,msk) calls K to generate a master key pair (mpk,msk).
– Extract(msk, ID) −→ sk[ID] on input S’s identity and a master key msk. It returns

a secret key sk[ID] later sent to S via a secure channel.
– 〈S(sk[ID]), U(mpk,m, ID)〉 −→ σ is the signature issuing protocol between the

signer S and the user U for a message m ∈ {0, 1}∗. It generates the signature σ.
– Verif(mpk, ID,m, σ) outputs 1 if the signature σ is valid for m, otherwise 0.

Secure IDBS must meet the three following security properties. Correctness, mean-
ing that for any keys and any messages, the signature must always be accepted if all
algorithms are honestly executed. Blindness requires that no information about the mes-
sage could be revealed to the signer during the protocol. Finally, unforgeability requires
that a user cannot forge new signatures from any set of existing signatures. Any of
the upcoming schemes will have to meet these three basic properties. For their formal
definition see the extended version of this paper [5].

We now describe in turn the other primitives based on IDBS.

ID-Based Proxy Blind Signature - IDPrBS. An original signer S delegates its right to
sign to a proxy signer P . After being provided with a key and a public agreement, P is
allowed to sign any message coming from a user U and falling within the agreement.
IDPrBS should satisfy the security properties of correctness, blindness and unforge-
ability. But should also meet additional properties [11]: Prevention of misuse: proxy
signing key cannot be used for purposes other than generating valid proxy signatures.
In case of misuse, the responsibility of the proxy signer should be determined explic-
itly. Verifiability: From a proxy signature, a verifier can be convinced of the original
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signer’s agreement on the signed message. Strong Identifiability: Anyone can deter-
mine the identity of the proxy signer from a proxy signature. Strong Undeniability: A
proxy signer cannot repudiate a proxy signature it created.

ID-Based (Restrictive) Partially Blind Signature - IDPBS/IDPRBS [3]. Prior to the
protocol, the user and the signer have to agree on a common part denoted info. Instead of
signing the usual message, m||info is signed. Restrictiveness is an additional constraint
put by the signer on the user. U is only able to get a signature on a message of a certain
form, specified by the signer. Those schemes have almost the same security properties
as IDBS schemes. The only added difference is the inability of the user to modify the
common part unilaterally. We also have a modified version of blindness called partial
blindness where the signer always knows the common part of the message.

ID-Based Fair Blind Signature - IDFBS [71]. Fairness gives the capability to a trusted
entity to perform one or two types of link recoveries:

Type I: The trusted entity can output information that enables the signer to recognize
the corresponding message-signature pair.

Type II: The trusted entity can output information that enables the signer to efficiently
identify the sender or to find the corresponding view of the signing protocol.

ID-Based Blind Signature with Message Recovery - IDBSMR. For a given signature
and public key pair, there exists a verification algorithm that outputs the signed mes-
sage. This property is useful to reduce the size of exchanged information. It requires
a bijection between the possible messages and the group elements that will be used
during the signing process.

ID-Based Forward-Secure Blind Signature - IDFSBS [94]. Consider the lifetime of a
system divided into N time periods. In a blind signature context, forward secrecy means
that unforgeability of signatures is valid in previous time periods even if current signing
secret key of the signer is compromised. Thus, if the private key is compromised, only
the signature for the current time period are forgeable. No signature for any previous
time period can be forged, hence they remain safe to use.

ID-Based Blind Signature with Batch Verification - IDBSBV [7]. Batch verification
has been designed to allow fast verification of multiple signatures. In practice a specific
algorithm of verification VerifMult allows to verify a list of message-signature pair
{(m1, σ1), . . . , (mn, σn)} with the public key pk and output 1 if all signatures are
valid, otherwise 0. We can allow this verification to be probabilistic with negligible
probability of failure. Yet we want this verification to run significantly faster than n
computations of the Verif algorithm.

ID-Based Weak Blind Signature - IDWBS [96]. This type of scheme does not achieve
unlinkability when the signature is revealed to the signer i.e., the signer is able to link
the revealed signature to a user when it has a clear view of the message-signature pair.

3 Evaluation Process

We have evaluated all known IDBS schemes with a proven security to choose the most
practical one. Here we present a metric to evaluate their complexity. An evaluation of
all secure schemes is given in the full version of this paper [5].
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Table 1. Conversion in TMUL3072 .

Operation 256 512 3072 Operation 256 512 3072

TPairing 89.72 698.53 TGCD 0.62 1.19 8.69

TTR 52.12 TINV 0.30 1.14 4.03

TEXP 3.34 18.52 712.15 TECADD 0.16 0.67

TPH 3.99 4.65 TMUL 0.08 0.10 1.00

TECMUL 2.99 12.14 TCHEBY 0.05

TH 1.05 1.71 TADD 0.04 0.07 0.20

TGCD 0.63 1.19 8.64

In order to evaluate the schemes we had to choose concrete evaluation parameters.
Our chosen parameters follow the recommendations of the ECRYPT’s reports on key
length [22]. These are similar to the more recent NIST’s recommendations. We use
3072 bits integers and equivalent 256-bits elliptic curves i.e., over finite field Fq , with q
of size 256 bits. In practice, it provides around 128 bits of security. Notice that recom-
mendations for parameters of lattice differ from scheme to scheme, moreover, almost
none of the authors of the listed papers gave concrete parameters for there schemes.
Based on these elements, we chose to left out reduction for lattice based scheme as
parameters for these schemes are still imprecise. However, we evaluate the number of
operations that each existing scheme requires.

In order to compare all the existing scheme, we first compare the execution time
of each operation with the execution time of a standard 3072 bits integer multiplica-
tion. Based on these result we can reduce the complexity of each signature scheme in
terms of an unified unit: TMUL3072 . Table 1 expresses the execution time of relevant
operation op with the proposed conversion. Top corresponds to the ratio between the
execution time of each operation and a 3072 bits integer multiplication.3 Our results are
based on benchmarks on an Intel Core i7-1065G7 CPU @ 1.30 GHz processor without
parallelism and generated using modern cryptographic libraries like GMP library [31]
(arithmetical operations on integers), MPHELL library [1] (elliptic curve’s operations),
PBC library [59] (pairing functions) and OpenSSL/Crypto [2] library (hash functions)
using state-of-the-art speed up.

We use the notations Minv, Mmul, Mtran, Madd for associated arithmetical oper-
ations on matrices. MVmul denotes a multiplication between a matrix and a vector.
SVmul is the multiplication of a vector by a scalar. Vadd stands for the addition of two
vectors. Vh and Mh are hash functions returning respectively a vector or a matrix. Sam-
ple is a sampling operation defined in [29]. We also use the following notations for usual
scalar operations: EXP, MUL, ADD, INV. Moreover, ECMUL4 and ECADD hold for
multiplication and addition on elliptic curve. PAIR is the evaluation of a pairing func-
tion. H is for evaluation of a hash function and PH holds for hash function mapping on
elliptic curve. Less common operation as CHEBY denotes the evaluation of a Cheby-
shev polynomial. TR denotes the trace function TR(h) = h+h2+h4 in GF (p6) in the
context of XTR (Efficient and Compact Subgroup Trace Representation [55]) schemes.

3 Note that our conversion are relatively similar to some existing literature [46,60,76].
4 It is not clear whether authors recommend symmetric or asymmetric pairing for their schemes.

Based on that, we chose to unified the execution time for the two based group G1 and G2.
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We summarize our results in two types of tables. The first type of table (e.g., Table 2)
gives a quick overview of a scheme with the following characteristics: mathematical
setting (EC, pairing, etc.), security assumptions (CDH, ECDL, etc.), number of needed
interactions and the number of random elements generated by a user to blind a message,
also called blinding factor.

The second type of table evaluates and compare the complexity of the schemes. It
is postponed to the full version [5] due to length limitation.

4 Schemes Presentation

4.1 ID-Based Blind Signature - IDBS

We have identified 32 IDBS schemes in the literature, they are listed in Table 2. The
table gives the mathematical setting, the hard problem when a reduction is provided for
the signature, the number of communications and the blinding factor. We chose these
characteristics because communication between two distant machines can sometime be
longer than running time of any algorithm of the signature edition. On another hand,
we specify the number of random parameters to be generated each time. Generating
cryptographically-secure randomness is costly, hence a low number of blinding factors
can speed up the signature issuing and requires less resources.

Most schemes rely on pairing function and the CDH problem. Some such as [33,52]
are pairing free and consequently faster to execute. Due to the increasing development
of post-quantum cryptography, new IDBS schemes have been designed based on the
SIS problem. Another base concept is XTR. Introduced by Lenstra et al. [55], this
cryptographic basis leads to smaller signatures for the same security level. For instance,
one would need 512-bits prime integers to achieve equivalent security to discrete log-
arithm problem with prime of 3072 bits. We have used the conversions from [55] to
evaluate the operation of scheme from [75] as parameters of the scheme in [92] are not
clear. Thus, we cannot propose a rigorous evaluation for this scheme. However, we can
infer its relatively slow speed since a zero-knowledge proof procedure is used to sign a
message.

Complexity evaluations and further details on the schemes are provided in the full
version [5]. From this evaluation we note that the execution of an elliptic curves based
signature gives better complexity than evaluation of a pairing function. Thus, pairing
based signatures are less efficient. We have observed that Chebyshev polynomials are
fast to evaluate, hence it produces an efficient scheme. Chaotic maps can be efficient,
but their security needs to be more studied, yet a reduction to the discrete logarithm
problem is given [73].

We conclude that the fastest pairing based scheme is 4 times faster than the slowest
one. And again, the best pairing free scheme is 5 times faster than the best pairing
based scheme. The complexity of [52] and [33] is close, and the difference might be
negligible regarding time needed for cache affectation during the execution of properly
implemented scheme. The only advantage is for [33], it uses less random values, but it
might be compensated by the lowest complexity of the former scheme. Elliptic curve
schemes still remain the most efficient schemes relying on a well-studied problem.
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Table 2. Identity-Based Blind Signature. (∗ Weak Linkability)

Ref Year Mathematical base Security reduction Interactions Blinding factor

[52] 2018 Elliptic curve ECDL 3 4

[33] 2011 3

[21] 2020 Pairing CDH 3 3

[92] 2010 1

[67] 2010 2

[4] 2010

[41] 2009

[40] 2005

[90] 2002

[90] 2002

[39] 2010 2 4

[63] 2009 1

[28] 2012 1m-BDHI 2 2

[28] 2012

[27] 2008 1

[51] 2017 ECDL 2 1

[38] 2011 Q-SDH 4 5

[53] 2017 GDH 3 1

[75] 2013 No reduction 3 2

[95] 2014

[87] 2013

[44] 2013

[41] 2009

[41] 2009

[47] 2008

[91] 2003

[96]∗ 2007 3

[57] 2020 Lattice SIS 4 3

[25] 2016 2 1

[26] 2017

[69] 2018 Modular Groups No reduction 3 3

[73] 2020 Chaotic map CPC 3 1

4.2 ID-Based Proxy Blind Signature - IDPrBS

Sorting the scheme by type of underlying problem, we give an overview of the existing
IDPrBS in Table 3. Part of the existing schemes lack of formal security arguments.
Three schemes are still recorded in our survey, but this is specified in the table. There
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Table 3. ID-based Proxy Blind Signature Scheme.

Scheme Year Mathematical base Security proof Interactions Blinding factor

[46] 2020 Elliptic curve ECDL 3 2

[74] 2013

[62] 2016 No proof 3 3

[64] 2013

[34] 2012 Pairing ECDL 3 2

[35] 2008 k-BDHI 3 2

[89] 2008 No proof 3 2

[54] 2004

[66] 2017 Not formal 3 2

[81] 2009

[88] 2008

[86] 2005

[83] 2012 4 2

[93] 2014 Lattice Attacked 2 3

[97] 2018 2

Table 4. ID-based Partially Blind Signature Scheme. (*Scheme with Restrictiveness)

Scheme Year Mathematical base Security proof Interactions Blinding factor

[20]* 2019 Elliptic curve ECDL 3 4

[43] 2016 2

[56] 2013 Pairing CDH 2 2

[84] 2007 3 4

[85]* 2008 4

[17] 2007 4

[37]* 2007 4

[17]* 2007 7

[16]* 2005 7

[18]* 2004 3

[15] 2009 CT-ACDH 2 2

[36] 2007 Attacked 3 2

[77] 2009 Not formal 3 2

[82]* 2008 7

exist IDPrBS based on the tree prominent type of problems: elliptic curves, pairing and
lattice. Proxyness is the most studied property for IDBS, a generic construction exist
for this primitive as highlighted in Sect. 4.5. The first scheme was introduced in 2003,
only two years after the first appearing of pairing in cryptography in [54]. Ten years
later was published the first paring-free scheme [74]. It led to one of the most efficient
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schemes of this survey and was proven as hard as the well-studied ECDL problem. With
the development of quantum computer and the growing threat on classical assumptions,
two lattice based schemes were developed [65,70]. Sadly, attacks were found on both
primitives. Thus, finding a lattice based IDPrBS is still an open problem.

Complexity evaluation of pairing based schemes are reported in the extended ver-
sion [5]. With our comparison, we claim that the most efficient, proven secure, ID-based
proxy blind signature is the one from S. James et al. [46].

4.3 ID-Based Partially Blind Signature - IDPBS

IDPBS sometime with restrictiveness as described in Sect. 2 are exposed in Table 4.
These signatures allow adding auxiliary information to the message making them rel-
evant for practical usages. This common information put in context improves manage-
ment of signature and security. For example, it allows the signer to add an expiration
date to its signatures. Up to today, 14 IDPBS have been published. As explained before,
restrictiveness requires the user to fit its message to a specific structure. The user has
fewer capabilities while the signer has more control. Due similarities between restrictive
IDPBS and classical IDPBS, we are evaluating them all together.

As usual we let the reader refer to the full version [5] for in depth evaluation of the
schemes. IDPBS were published from 2004. The first published scheme had restrictive-
ness and was based on pairing. Only later, in 2016, a first scheme was proposed avoiding
the use of pairing based cryptography, published by H. Islam et al. [43] it introduced
the first elliptic curve based scheme leading to better efficiency when issuing signatures.
Pairing free schemes are faster than pairing based by a factor of 1.5 to more than 10. Up
to now, no lattice based or quantum resistant blind signature has been proposed with the
aforementioned properties. The scheme’s signature sizes varies from 2 elements (i.e.,
514 bits), being relatively short, up to 6 elements (i.e., 1542 bits) clearly leading to more
computation during the verification process.

Scheme from [43] seems to be the best fitted algorithms as it is one of the most
efficient schemes that we have recorded in our survey. Although its security is proven
in the random oracle model, it is an efficient signature algorithm with a short signature,
thus could be use in practice.

4.4 ID-Based Blind Signature with Other Properties

We describe and evaluate IDBS schemes with additional properties: message recovery,
fairness, forward security and batch verification. These notions are quickly introduced
in Sect. 2. Fewer signatures have been presented in the literature with these properties.
A brief overview of their usefulness is given, followed by the usual evaluation routine
(see Sect. 3). For a short overview of the characteristics of the schemes see Table 5. For
their evaluation refer to the full version [5].

ID-Based Blind Signature with Message Recovery - IDBSMR
IDBS schemes with message recovery allow to recover the message from the signature
and the public key. The six existing schemes are presented in Table 5. They rely for the
most recent one on elliptic curves and on pairing function for the rest of them. Efficiency
of these schemes are comparable to the most efficient of this survey. The best known
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pairing based IDBSMR here only requires half of the computation expected toward the
best pairing based IDBS. For their evaluation refer to the full version [5].

A scheme with message recovery has to handle carefully the verification phase. All
schemes with message recovery have a small signature only composed of two group
elements. The size of the signature can be reduced to 514 bits via a simple compression
algorithm. It is still an open problem to present a round-optimal IDBS with message
recovery. The existing IDBS with message recovery all need 3 communications. This
is an essential point for a blind signature scheme as communication comes at a cost in
terms of time efficiency of the protocol.

ID-Based Fair Blind Signature - IDFBS
With a moderate cost, Wand et al. [83] where able to introduce an ID-based Fair Blind
Signature. Moreover, it has two additional properties: enabling proxy signature and
weak linkability. The drawbacks consist in a relatively long signature (1028 bits) and 4
communications to obtain the signature. Note that the weak linkability property could
also be considered as a weakness of the scheme. Latter, an alternative was proposed
by Verma et al. [78]. The scheme relies on a Fiat-Shamir signature and is based on
oblivious transfer, which is known to be a relatively expensive primitives. Hence, the
scheme has a low efficiency and needs many communications. We are not providing a
complexity analysis of the latest as one willing to put such a signature in practice may
not consider it due to its deficiency of proven security. The authors want to highlight
that none of the schemes have been proven secure. In [83], discussion of the security of
the scheme is provided, but no attention is given to unforgeability. Security proofs are
almost mandatory in today’s development of cryptography and here no model has ever
been proposed for these schemes. Despite the real practicality provided by fairness,
none of the scheme would be considered as reliable enough. We conclude that some
work remains to do to propose to the community an efficient and secure IDFBS. We
propose a security model for IDFBS in the full version of the paper [5].

ID-Based Forward-Secure Blind Signature - IDFSBS
Forwards security is gradually becoming a central property in cryptography. In the con-
text of signature scheme is allows to divide the lifetime of a key pair into N periods.
The secret key is modified for each period while keeping the same public key, thus pro-
viding additional security as on leakage of a secret key, previous signature are no longer
affected by this security breach. Thus, signatures made during the N − 1 others are still
reliable. This increase the global security of signatures.

IDFSBS are not possible to compare since the authors of [94] were the only one
to propose such a signature. It relies on the well-studied SIS problem over lattices and
requires 3 communications and 2 blinding factor. The signature is composed of one
vector of size m (the message) with elements in Zq. Lattice based signatures known
to produce relatively long outputs which is a drawback compensated by the absence of
known algorithm to be efficient against them even on quantum computers. We further
evaluate this signature in the full version of the paper [5].

ID-Based Blind Signature with Batch Verification - IDBSBV
Batch verification allows faster signature verification. For signatures with batch veri-
fication it is possible to specify an algorithm verifying multiples instance in the same
time and significantly faster than the normal verification.
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Table 5. IDBS with properties.

Ref Year Mathematical
base

Security
reduction

Interactions Blinding
factor

Message Recovery

[50] 2019 Elliptic curve ECDL 3 4

[32] 2005 Pairing ECDL 3 2

[79] 2018 k-CAA

[19] 2018 Q-SDH

[23] 2008 CDH

[45] 2017 Not formal 3 2

Fairness

[83] 2012 Pairing No reduction 4 2

[78] 2016 2 with Oblivious Transfer 2K+ 1

Forward-Security

[94] 2016 Lattice SIS 3 2

Batch Verification

[58] 2006 Pairing k-CAA 2 2

We have observed only one such scheme by Li et al. [58]. The scheme is efficient,
still relying on pairing function known to be costly. They proposed an efficient signature
process leading a relatively short signature with fast verification. Note also that the
scheme has a costly verification process, based on pairing. The batch verification allows
to drastically reduce the need of pairing function for the verification and thus gives
scheme that is comparable to the best pairing free algorithm of the literature.

4.5 Comparison to the Generic Construction

Generic construction of IDBS have been introduced by D. Galindo et al. [24]. It gives
a generic framework based on a signature scheme S = (KGS ,SGN S ,VFY S) and a
blind signature scheme BS = (KGBS ,SGNcom

BS ,SGNblind
BS ,SGNsgn

BS ,SGNunb
BS ,VFYBS).

Combining these two structures we can construct a IDBS scheme. In order to accom-
plish their roles the three entities (user, signer, verifier) have to execute the following
algorithm to output and verify a signature: User: VFY S ,SGNblind

BS ,SGNunb
BS ; Signer:

SGNcom
BS ,SGNsgn

BS ; Verifier: VFY S ,VFYBS .
The authors of [24] proposed an instantiation for their ID-based blind signature con-

struction based on two schemes: the Boneh-Lynn-Shacham (BLS) signature [10] and
Boldyreva’s blind signature [9]. At the time D. Galindo et al. idea was published, they
claimed to be among the most efficient schemes. We detail the cost of their proposed
instantiation in the full version [5].

Based on our reduction, we can deduce that the total complexity of the generated
scheme is barely the addition of the cost of both schemes and is around the average of
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the observed complexity for the existing IDBS schemes. Relying on secure pairing free
schemes would lead to a secure IDBS with improved complexity.

A more recently study [11] introduced a new generic construction for IDPBS. As
in the previous construction, they rely on a signature and a blind signature. They are
organized in a manner reaching an acceptable complexity as explained in the article,
with approximately the same complexity as the previous construction.

5 Synthesis of the Current Literature

There exists an extensive literature on IDBS, numerous schemes have been presented
by multiple authors. In total 71 schemes are presented in this survey. We noticed that the
literature is mostly independent and that no global courses of action was followed by
the authors of these schemes. Only few works mostly based on lattices were following
previous work due to some attacks found on them: the latest schemes were made to fix
some security breach in the existing work. This survey aims at putting some coherence
in future work in the field, it brings up formalism for security assumption based on
the existing security expectation for each of the properties. In the long version of this
paper [5], we have tried to formalize these securities properties for the various security
that such a scheme was expected to withdraw when an attack comes in place through
security games. Even if these experiments needs further discussion before being fully
adopted by the community, we believe it as a step forward in the study of the security
of these primitives.

This is motivated by the fact that no security proofs or formal arguments have been
disclosed for 22 of the investigated schemes. It implies that it may remain unknown
vulnerabilities for existing schemes and possible attacks might be found in the future.
We do not recommend using any unproven schemes for practical purposes. Also, some
authors provided a reduction for their scheme. Yet, the security may not be ensured as
their assumption are weak e.g., IDBS rely on quite unusual hypothesis and some other
schemes rely on the broken ROS problem. The later should no longer be used as they
do not bring any security to their users.

While exploring the literature, we noticed that it lacks pairing free IDFBS, IDFSBS
or IDBSBV schemes. Further studies could potentially improve efficiency and quantum
resistance of such primitives. No pairing free IDFBS or IDBSBV yet exists and no post
quantum assumption was ever used to design an IDPBS, IDPrBS, IDBSMR, IDFBS or
IDBSBV that withdraw proven security until today. A big step forward on the develop-
ment of new schemes on post quantum assumptions is necessary to guarantee the future
of these primitives.

On another hand, minimizing the number of transmission to obtain round optimal
IDBS is also of interest for the field as it brings a non-negligible speedup as most con-
struction achieves a computational cost comparable of to the order of magnitude of a
Round Trip Time. For example, no round optimal IDBSMR have ever been introduced,
combined with this type of primitive that seems to achieve efficient computational time
would be of interest.

As highlighted in [90], numerous schemes had issues while being performed in par-
allel execution. This is mostly due to a polynomial time algorithm capable of solving the
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ROS problem [8]. Other studies could focus on bringing an IDBS with proven security
under parallel execution.

We see that some works are still to be done in this domain to guarantee the future
security and the practicality of the IDBS and other signature schemes evoked in this
paper.

6 Conclusion

In this survey we review the literature on ID-based blind signature with several existed
properties presented throughout this paper. We show that depending on the case of
use, there exist several IDBS schemes to consider. The studied schemes have specific
properties and their efficiency relies on manifold requirements. In this survey we answer
the question: how to choose an IDBS scheme? For that we have listed all existing IDBS
schemes, we present them all with their most notable properties and a reproducible,
bias free evaluation of their complexity. Providing a time reduction of all arithmetical
operations used for IDBS schemes in order to evaluate them all at the same security
level is our first contribution. We directly exploit it to give a metric on the complexity
of any these scheme. With this metric we can compute the total computational cost of a
signature issuing and verification process. Hence, it is easy to compare their efficiencies.

We can conclude thanks to our study that the most computationally efficient IDBS
scheme using EC is [52]. But schemes can be chosen from other kind of feature such as
number of communications, number of blinding factors or the size of the signature. We
enable anybody to quickly choose from the existing literature the best feted properties
and signature for its use based on their characteristics. In the extended version [5],
we also give new insights by proposing formal security experiment and open axes of
research for these primitives.
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2005. LNCS, vol. 3574, pp. 316–328. Springer, Heidelberg (2005). https://doi.org/10.1007/
11506157 27

19. Cui, W., Jia, Q.: Efficient provably secure ID-based blind signature with message recov-
ery. In: 4th Workshop on Advanced Research and Technology in Industry (WARTIA 2018).
Atlantis Press (2018)

20. Cui, W., Jia, Q.: Provably secure pairing-free identity-based restrictive partially blind signa-
ture scheme. In: Information Technology, Networking, Electronic and Automation Control
Conference. IEEE (2019)

21. Deng, L., He, X., Xia, T.: Secure identity-based blind signature scheme for online transac-
tions. Wirel. Pers. Commun. 116, 1525–1537 (2021)

22. ECRYPT-CSA. Algorithms, Key Size and Protocols Report. Technical report (2018)
23. Elkamchouchi, H.M., Abouelseoud, Y.: A new blind identity-based signature scheme with

message recovery. IACR Cryptology ePrint Archive (2008)
24. Galindo, D., Herranz, J., Kiltz, E.: On the generic construction of identity-based signatures

with additional properties. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 178–193. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 12

25. Gao, W., Hu, Y., Wang, B., Xie, J.: Identity-based blind signature from lattices in standard
model. In: Chen, K., Lin, D., Yung, M. (eds.) Inscrypt 2016. LNCS, vol. 10143, pp. 205–218.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54705-3 13

26. Gao, W., Hu, Y., Wang, B., Xie, J., Liu, M.: Identity-based blind signature from lattices.
Wuhan Univ. J. Nat. Sci. 22(4), 355–360 (2017). https://doi.org/10.1007/s11859-017-1258-
x

27. Gao, W., Wang, G., Wang, X., Li, F.: One-round ID-based blind signature scheme without
ROS assumption. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209,
pp. 316–331. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85538-5 21

https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/978-3-031-08147-7_3
https://doi.org/10.1007/978-3-031-08147-7_3
https://doi.org/10.1007/BFb0053458
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/0-387-34799-2_25
https://doi.org/10.1007/0-387-34799-2_25
https://doi.org/10.1007/11596981_17
https://doi.org/10.1007/11596981_17
https://doi.org/10.1007/11506157_27
https://doi.org/10.1007/11506157_27
https://doi.org/10.1007/11935230_12
https://doi.org/10.1007/978-3-319-54705-3_13
https://doi.org/10.1007/s11859-017-1258-x
https://doi.org/10.1007/s11859-017-1258-x
https://doi.org/10.1007/978-3-540-85538-5_21


34 M. Koscina et al.

28. Gao, W., Wang, G., Wang, X., Li, F.: Round-optimal ID-based blind signature schemes with-
out ROS assumption. J. Commun. (2012)

29. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic
constructions. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Com-
puting, STOC (2008)

30. Girish, K., Phaneendra, D.: Survey on identity based blind signature (2015)
31. Granlund, T.: GNU MP: The GNU Multiple Precision Arithmetic Library (2020)
32. Han, S., Chang, E.: A pairing-based blind signature scheme with message recovery. Int. J.

Inf. Technol. 2, 187–192 (2005)
33. He, D., Chen, J., Zhang, R.: An efficient identity-based blind signature scheme without bilin-

ear pairings. Comput. Electr. Eng. 37, 444–450 (2011)
34. He, J., Qi, C., Sun, F.: A new identity-based proxy blind signature scheme. In: IEEE Interna-

tional Conference on Information Science and Technology. IEEE (2012)
35. Heng, P., Ke, K., Gu, C.: Efficient ID-based proxy blind signature schemes from pairings.

In: International Conference on Computational Intelligence and Security. IEEE (2008)
36. Hu, X., Huang, S.: An efficient ID-based partially blind signature scheme. In: Eighth ACIS

International Conference on Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing (SNPD). IEEE (2007)

37. Hu, X., Huang, S.: An efficient ID-based restrictive partially blind signature scheme. In:
Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Net-
working, and Parallel/Distributed Computing (SNPD) (2007)

38. Hu, X., Wang, J., Yang, Y.: Secure ID-based blind signature scheme without random oracle.
In: International Conference on Network Computing and Information Security. IEEE (2011)

39. Hu, X.-M., Huang, S.-T.: Secure identity-based blind signature scheme in the standard
model. J. Inf. Sci. Eng. 26, 215–230 (2010)

40. Huang, Z., Chen, K., Wang, Y.: Efficient identity-based signatures and blind signatures. In:
Desmedt, Y.G., Wang, H., Mu, Y., Li, Y. (eds.) CANS 2005. LNCS, vol. 3810, pp. 120–133.
Springer, Heidelberg (2005). https://doi.org/10.1007/11599371 11

41. Huang, Z., Chen, Q., Huang, R., Lin, X.: Efficient Schnorr type identity-based blind signa-
tures from bilinear pairings. In: WRI World Congress on Computer Science and Information
Engineering. IEEE (2009)

42. Ibrahim, S., Kamat, M., Salleh, M., Aziz, S.: Secure e-voting with blind signature. In: 4th
National Conference of Telecommunication Technology (2003)

43. Islam, S.H., Amin, R., Biswas, G., Obaidat, M.S., Khan, M.K.: Provably secure pairing-free
identity-based partially blind signature scheme and its application in online e-cash system.
Arabian J. Sci. Eng. 41, 3163–3176 (2016)

44. Jain, R., Patel, A.A.: Computationally efficient ID-based blind signature scheme in e-voting.
Int. J. Sci. Res. Dev. (2013)

45. James, S., Gowri, T., Babu, G., Reddy, P.V.: Identity-based blind signature scheme with
message recovery. Int. J. Electr. Comput. Eng. (2017)

46. James, S., Thumbur, G., Reddy, P.: An efficient pairing-free identity based proxy blind sig-
nature scheme with message recovery. ISC Int. J. Inf. Secur. (2021)

47. Kalkan, S., Kaya, K., Selcuk, A.A.: Generalized ID-based blind signatures from bilinear
pairings. In: International Symposium on Computer and Information Sciences. IEEE (2008)

48. Khater, M.M., Al-Ahwal, A., Selim, M.M., Zayed, H.H.: Blind signature schemes based on
ELGamal signature for electronic voting: a survey. Int. J. Comput. Appl. (2018)

49. Kucharczyk, M.: Blind signatures in electronic voting systems. In: Kwiecień, A., Gaj, P.,
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Abstract. Clock randomization is one of the oldest countermeasures
against side-channel attacks. Various implementations have been pre-
sented in the past, along with positive security evaluations. However, in
this paper we show that it is possible to break countermeasures based
on a randomized clock by sampling side-channel measurements at a fre-
quency much higher than the encryption clock, synchronizing the traces
with pre-processing, and targeting the beginning of the encryption. We
demonstrate a deep learning-based side-channel attack on a protected
FPGA implementation of AES which can recover a subkey from less
than 500 power traces. In contrast to previous attacks on FPGA imple-
mentations of AES which targeted the last round, the presented attack
uses the first round as the attack point. Any randomized clock counter-
measure is significantly weakened by an attack on the first round because
the effect of randomness accumulated over multiple encryption rounds is
lost.

Keywords: Side-channel attack · Random Execution Time ·
Randomized Clock · Countermeasure · Oversampling · Deep Learning ·
FPGA · AES · Correlation Power Analysis

1 Introduction

The idea of randomizing the execution time of cryptographic algorithms to pro-
tect implementations against side-channel attacks is as old as the attacks them-
selves [1,2]. There have been numerous papers exploring the topic in the past,
mostly for software implementations [3]. Several papers have also suggested ways
of implementing randomized clocks to protect FPGA implementations. Their
security evaluations have shown that the proposed countermeasures are resistant
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to Differential Power Analysis (DPA)/Correlation Power Analysis (CPA) [4–16],
or Deep Learning (DL)-based EM analysis [16].

However, in this paper, we show that it is possible to break countermea-
sures based on clock randomization by using a sampling frequency that is much
higher than the clock of the cryptographic implementation, synchronizing the
traces with pre-processing, and carefully selecting the attack point. The main
contributions of the paper are:

– We highlight the importance of oversampling in side-channel analysis by
demonstrating how a seemingly secure countermeasure can be broken when
the oversampling rate is sufficiently high. Ignoring oversampling may lead to
an overestimation of the security of randomized clock countermeasures.

– We present a deep learning-based side-channel attack on a protected FPGA
implementation of AES which targets the first round. To the best of our
knowledge, all previous attacks on an FPGA implementation of AES with
randomized clock targeted the last round [4–16]. Attacking the first round
significantly weakens any randomized clock countermeasure because the effect
of randomness accumulated over the multiple encryption rounds is lost.

– We propose a randomized clock implementation in which the varying fre-
quency is achieved by an asynchronous switching between four stable fre-
quencies using a fifth frequency and a random number generator.

The rest of the paper is organized as follows. Section 2 reviews the previous
work on randomized clock countermeasures. Section 3 presents our randomized
clock implementation. Section 4 describes the methods which we use to break
the randomized clock countermeasure. Section 5 summarizes the experimental
results. Finally, Sect. 6 concludes the paper.

2 Previous Work

Various techniques for randomizing the execution time of cryptographic algo-
rithms have been proposed over the years to protect implementations against
side-channel attacks, including using randomized clocks, the addition of random
delays or dummy operations, random execution re-ordering, and random branch-
ing [3]. In hardware, the majority of countermeasures focus on inserting random
delays or randomizing the clock.

To the best of our knowledge, the first hardware-based random delay inser-
tion method was presented in [4]. The main idea is to insert random delays in
the datapath of a cryptographic processor in order to randomize its power con-
sumption profile. To realize that, a gate-level implementation of a random delay
and a random wait flip-flop was proposed. In [5] the concept is transferred to
FPGAs and the resistance of the resulting countermeasure to Differential Power
Analysis (DPA) is evaluated.

In [8] a key scheduler controlled by a True Random Number Generator
(TRNG) is introduced to create the effect of a randomized clock. To achieve
that, the scheduler randomly selects between the output of a set of positive edge
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and negative edge flip-flops. The approach is further extended in [9] by injecting
dummy data during the idle periods.

In [6] a design that uses a different frequency to encrypt each 128-bit plaintext
block of an AES-128-CTR FPGA implementation is presented (CTR stands for
the counter mode operation of a block cipher). In this design, multiple frequen-
cies f1, . . . , fn are generated by dividing a base frequency f given by a single-
input ring oscillator. In addition, four out of the n generated frequencies are
phase shifted using Digital Clock Managers (DCMs) to obtain their phase shifted
copies {fi 0◦ , fi 90◦ , fi 180◦ , fi 270◦}, for i ∈ {1, 2, 3, 4}. The selection among mul-
tiple frequencies is performed pseudo-randomly using a multiplexer controlled
by a Linear Feedback Shift Register (LFSR). Later, in [7] it is suggested that
performing frequency switching in every clock cycle instead of every new plain-
text block offers greater security. In [10], following the same idea, a base clock
frequency f is phase shifted through DCMs to create n new frequencies, each
shifted by 360/n degrees. The selection among multiple frequencies is performed
using a clock multiplexer tree controlled by a TRNG. In [11], the design pre-
sented in [10] is improved by incorporating the floating mean method [12,13] to
generate uniform random numbers.

In [14], four generated frequencies that are multiples of a base clock frequency
are used. The selection among frequencies is performed using a multiplexer con-
trolled by an LFSR which is polled at the end of each clock cycle.

In [15] an implementation that leverages the ability of MMCMs to be recon-
figured at runtime is presented. The FPGA Block RAMs (BRAMs) are utilized
to store different MMCM configurations that define selected sets of frequencies.
For each MMCM, m possible configurations, with n output frequencies defined in
each, are stored. The implementation proposed in [15] uses n = 3 and m = 1024,
resulting in 3, 072 different clock frequencies in total. Since the reconfiguration
of MMCMs takes a considerable amount of time (equivalent to 82 encryptions
in their case), at least two MMCMs have to be deployed so that one is working
while the other one is being reconfigured to achieve runtime frequency tuning.
As in [10], the selection among frequencies is performed using a multiplexer
controlled by an RNG. The authors use the number of different cumulative com-
pletion times generated by their approach as a metric of its resilience. With an
AES-128 implementation that takes r = 10 clock cycles to complete an encryp-
tion, the number of different cumulative times to completion is calculated as
r+n−1Cr × m = 66 × 1024 = 67, 5841.

In [16] a more lightweight and scalable solution that can generate even more
different times to completion is presented. To generate different frequencies,
MMCMs apply a scaling factor to an input clock. Thus, in a constant MMCM
configuration, different input frequencies produce different output frequencies.
Taking that into consideration, the authors of [16] propose a design that consists
of a software-based clock randomizer that generates frequencies in a given range
that are fed into an MMCM with constant configuration. The clock random-
izer module consists of a processing system core (available in modern FPGAs

1 Note that nCr is an alternative notation of
(
n
r

)
.
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such as Xilinx Ultrascale) that controls the configuration of two programmable
clock dividers. A Phase-Locked Loop (PLL) creates a stable clock frequency
that passes through the clock dividers and is subsequently fed into an MMCM
through a glitch-free clock gate. The MMCM generates n different frequencies by
applying the preset scaling factors to the input frequency. Finally, the selection
among these n frequencies is done using an RNG-controlled clock multiplexer
(that allows glitch-free switching between clocks) which outputs the randomized
clock used for the encryption.

The advantage of this approach over the one in [15] is that it does not require
the use of BRAMs to store different MMCM configurations2 and that it is more
agile since the input frequencies are controlled in software. The authors adopted
the number of cumulative completion times metric to evaluate their approach.
They tested two implementations, one with n = 4 MMCM output frequencies
and one with n = 8. Their AES-128 implementation takes r = 13 clock cycles to
complete an encryption and uses m = 257 different base frequencies. This results
in r+n−1Cr×m = 560×257 = 143, 920 for n = 4 and 77, 520×257 = 19, 922, 640
different cumulative times to completion for n = 8.

In [17], a lightweight countermeasure offering resistance to remote power
attacks for up to one million encryptions is presented. The idea is to add noise to
the timing measurements of digital converters which are used in remote attacks.
This is realized by adding a random delay in the magnitude of picoseconds to
each clock cycle.

3 Proposed Randomized Clock Implementation

The block diagram of the proposed randomized clock is shown in Fig. 1. It con-
sists of an MMCM block, five global clock simple buffers (BUFG), two FDRE D
flip flops, a 4-to-1 multiplexer and a 2-input AND gate. A detailed description
of the Xilinx 7 series FPGA components referenced in this work is available in
the user guide UG953 [18].

The MMCM block has one clock input, four clock outputs and a locked sig-
nal to indicate when the generated clocks are ready to be used. The generated
clocks pass through one BUFG each and then connect to the 4-to-1 multiplexer.
In the implementations presented in the related work [15,16], the multiplexers
are implemented through a tree of 2-to-1 global clock MUX buffers (BUFG-
MUX CTRL). A BUFGMUX CTRL is a primitive of Xilinx 7 series FPGAs that
allows a clean, glitch-free switching between two input frequencies. To achieve
that, whenever setup/hold conditions are about to be violated by the switching
of the select signal, the output clock appears one clock later. In our implemen-
tation, we do not want to have this functionality because our aim is to have
the selector signal forcefully change between frequencies to create a randomized
clock. Such a design choice leads to a clock whose cycles are occasionally too

2 An alternative design with dynamically reconfigurable MMCMs is mentioned, but
not implemented.
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Fig. 1. The block diagram of the proposed randomized clock implementation.

short for the AES core to complete the encryption in time. Therefore, the mul-
tiplexer in our design can be implemented either by three BUFGMUXs set to
asynchronous switching,3 or a single 6-input 2-output look-up table (LUT6).

The selector signal comes from two FDRE D flip flops that are clocked with
the base frequency and store values from a random number generator (RNG).
The RNG can be a TRNG or a PRNG (e.g. an LFSR). In our experiments, we
used a set sequence of pre-generated pseudo-random numbers. By adding these
two registers, the random numbers arrive at the multiplexer with half the fre-
quency of the base clock, regardless of the frequency of the RNG implementation.
This assures a stable select signal.

Finally, the randomized frequency created at the output of the multiplexer is
combined with the locked signal of the MMCM (high when the MMCM frequen-
cies are ready to be used) using a 2-input AND gate. Its output passes through
a BUFG which outputs the randomized clock used for encryption.

In Fig. 2 the randomized clock generation of the presented implementation
is illustrated. On every positive edge of the base clock, fbase, the randomized
clock’s value, fenc, switches asynchronously to the value of one of the four clocks,
f1, f2, f3, f4, depending on the value of the select signal, SEL, generated by
the TRNG. To assess how many different frequencies our implementation can
generate, we performed a simulation. In the simulation, each base clock cycle

3 A BUFGMUX CTRL is a Global Clock Control Buffer (BUFGCTRL) with the
clock enable (CE) inputs set to constant 1 and select inputs (S) connected to the
selection signal. When the select signal is connected to the CE inputs, the glitch-free
functionality is lost and the switching occurs asynchronously.
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Fig. 2. Proposed randomized clock generation.

Fig. 3. 100 randomly selected power traces captured with 80× oversampling represent-
ing a complete encryption. A lack of gaps implies good randomization.

is represented with a precision of 100K samples and the clocks are simulated
3.7M times. The results show that our randomized clock implementation can
generate pulses of at least 403 different frequencies. Therefore, assuming an AES
implementation with r = 10, the number of cumulative completion times of our
randomized clock is r+n−1Cr × m = 10+403−1C10 × 1 ≈ 3.478 × 1019.
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4 Side-Channel Analysis in the Presence of a Randomized
Clock

In this section we describe the methods we use to break the randomized clock
countermeasure: oversampling, trace pre-processing, and CPA and DL-based
side-channel analysis.

4.1 Oversampling

In signal processing, oversampling is the process of sampling a signal at a sam-
pling frequency significantly higher than the Nyquist rate4. A signal is said to be
oversampled by a factor of N if it is sampled at N times the Nyquist rate. It is
known that oversampling can improve resolution and signal-to-noise ratio [19].

4.2 Pre-processing

Several pre-processing methods have been proposed to combat trace misalign-
ment and re-enable a successful analysis. These methods include dynamic time
wrapping (DTW)/elastic alignment [20], pattern matching [21], fast Fourier
transform (FFT) [22], principal component analysis (PCA) [23], rapid alignment
method (RAM) [24] and sliding window (SW) [25].

In this paper, we test two pre-processing methods: (1) sliding window [25]
with a window size of 20 and (2) trace synchronisation based on deviation from
the mean. We apply trace synchronisation on sufficiently oversampled power
measurements using the following simple approach.

By setting a threshold based on the deviation from the mean of the value
being more than 1.5σ, we identify peaks corresponding to the rising edge of the
randomized clock which is used for encryption. As one can see from Fig. 4, traces
captured with a high oversampling factor have distinct power peaks. These peaks
can be used to synchronize traces for a specific round of the algorithm. The lower
the oversampling factor is, the less distinct the peaks are. So, traces captured
with a high oversampling factor are easier to synchronize. They are also more
likely to accurately reflect the power consumption.

Using the threshold, we synchronize traces for the first round of AES by
finding, for each trace, the first point where the trace crosses the threshold after
setup instructions are completed. Selecting a window around this point yields a
good synchronization as one can see in Fig. 5.

A similar synchronization strategy can be applied to the last round of AES
by going backwards.

4.3 Correlation Power Analysis

We perform the CPA in a usual way [26], by assigning a power hypothesis to
every trace in the data set, for every subkey guess, with the subkey size being
4 The Nyquist rate is defined as twice the bandwidth of the signal.
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Fig. 4. Comparison of traces captured with 80× (top) and 8× (bottom) oversampling
using the same threshold for identifying peaks. Insufficient oversampling may lead to
an incorrect sampling/measurement of peak power consumption.

Fig. 5. A zoomed-in interval of traces from Fig. 3 representing the first round of AES
after synchronization. This interval is given as input to MLPs.
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a byte. The Hamming distance between the states of round 9 and round 10 is
used as a power hypothesis:

Pi = HW (ShiftRows−1(ci) ⊕ Sbox−1(ci ⊕ RK10i)),

where ci is the ith byte of the ciphertext, RK10i is the guess for 10th round
subkey i, and HW is the Hamming weight, for i ∈ {1, 2, . . . , 16}.

To recover each subkey, we calculate the Pearson correlation coefficient for
the corresponding power hypotheses and trace measurements and choose the
subkey guess which maximizes the absolute value of the correlation coefficient.

4.4 Deep Learning-Based Analysis

It is known that deep learning-based side-channel analysis can handle trace mis-
alignment caused by jitter without any pre-processing [27]. This makes it a good
choice for dealing with temporal noise introduced by randomized clocks.

We use the profiling approach in which, at the profiling stage, a neural net-
work model is trained to learn the power profile of the target algorithm imple-
mentation for all possible values of the subkey and, at the attack stage, the
model is used to classify traces captured from the device under attack.

We train multilayer perceptron (MLP) neural networks of type Ni : Rn →
I
256 for the subkey i ∈ {1, 2, . . . , 16}, where n is the number of data points in

traces, R is the set of real numbers, and I := {x ∈ R | 0 ≤ x ≤ 1}. The MLP
architecture is listed in Table 1. Sbox output values in the first round were used
as labels for traces.

For training, we use a set of 10M traces captured for random messages. From
this set, 70% is used for training and 30% for validation. The training is carried
out using Nadam optimizer with a learning rate of 0.002. The maximum number
of epochs is set to 12 with a batch size of 1024. Only the model with the best
validation accuracy is saved.

To test the models, we use two metrics:

1. Accuracy of subkey prediction from a single trace, and
2. Average number of traces required for the subkey recovery.

Note that the single-trace prediction accuracy metric is not applicable to CPA
since single-trace CPA is impossible. The average number of required traces is
defined as the average number of traces required to recover the subkey in the
majority of tests performed on a randomly permuted test data set.

4.5 Importance of Using the First Round as the Attack Point

In previous work, the last round of AES is used as the attack point. This is
because for a typical5 FPGA implementation of AES, DPA/CPA attacks on the
first round are not successful.
5 Here by “typical” we mean the AES implementation in which one round is computed

per clock cycle and the state is stored at the end of the round.
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Table 1. MLP Architecture.

Layer (type) Output Shape Param #

batch normalization 1 (None, 50) 200

dense 1 (Dense) (None, 1024) 52224

batch normalization 2 (None, 1024) 4096

relu 1 (ReLU) (None, 1024) 0

dense 2 (Dense) (None, 512) 524800

batch normalization 3 (None, 512) 2048

relu 2 (ReLU) (None, 512) 0

dense 3 (Dense) (None, 256) 131328

batch normalization 4 (None, 256) 1024

relu 3 (ReLU) (None, 256) 0

dense 4 (Dense) (None, 256) 65792

softmax 1 (Softmax) (None, 256) 0

Total params: 781,512

Trainable params: 777,828

Non-trainable params: 3,684

However, as our experiments show, the DL-based analysis can recover the key
from the first round. Despite the weaker leakage of the first round as compared
to the last, such an approach is preferable when a randomized clock is used as a
countermeasure for the following reasons. In a first-round attack, the cumulative
times to completion metric is reduced to the number of different frequencies.
This considerably weakens any randomized clock countermeasure. For example,
for a first round attack with r = 1 in [16], the number of different times to
completion gets reduced from 67, 584 to r+n−1Cr × m = 3 × 1024 = 3, 072
and from 19, 922, 640 to r+n−1Cr × m = 8 × 257 = 2, 056. Furthermore, when
attacking the first round, the overall effect of randomness accumulated6 over
multiple encryption rounds is lost.

5 Experimental Results

This section presents the results of our experiments.

5.1 Equipment

The equipment used for our experiments is a CW1173 ChipWhisperer-Lite and
a CW305 Artix 7 FPGA target board.
6 The cumulative effect of randomness can be described by a random walk, and the

variance of a random walk increases with the walk length. Thus, if the timing shifts
are randomly distributed, the uncertainty in the first round is provably smaller than
the uncertainty in the last.
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ChipWhisperer [28] is a fully open-source, low-cost toolkit for hardware secu-
rity evaluation. It handles power trace acquisition and communication of target
devices with a computer, making side-channel attacks easier to perform. The
power measurements are taken over a shunt resistor connected between the power
supply and the target device. ChipWhisperer-Lite employs a synchronous cap-
ture method, which greatly improves trace synchronization while also lowering
the required sample rate and data storage. ChipWhisperer-Lite has a buffer size
of up to 24,400 samples that can be captured at a maximum sampling rate of
105 MS/s.

The CW305 target board used in our experiments is equipped with an Artix
7 XC7A35T-2FTG256 FPGA. The cryptographic algorithm implementation in
which we integrated our randomized clock countermeasure is Google’s AES-128
implementation which can be found in the Vault Project repository [29]. The
AES core module is integrated into the ChipWhisperer interface [30]. The design
synthesis and bitstream generation is performed with Vivado 2019.1.

5.2 Trace Acquisition with Oversampling

Side-channel analysis with a high oversampling rate requires the use of mea-
suring equipment that allows high sampling frequencies. Our equipment,
ChipWhisperer-Lite, can handle sampling rates of only up to 105 MS/s. There-
fore, the FPGA must run at 1.3 MHz to approximate a 40× oversampling or at
0.65 MHz to approximate an 80× oversampling. This goes against the MMCM
specification which requires an input frequency in the range of 10–800 MHz.

To overcome this limitation imposed by our equipment, we use a 10Mhz base
frequency and add a clock divider after each frequency with the division param-
eter d = 10. The frequencies generated by the MMCM are: f1 = 11.9713 MHz
MHz, f2 = 7.7315 MHz MHz, f3 = 9.2778 MHz MHz, f4 = 12.6515 MHz MHz,
with an fmean = 10.408 MHz. When oversampling, we assume an FPGA base
frequency of 1 MHz, e.g. for 40× oversampling we sample at 80 MHz (taking
into account the Nyquist rate).Since the frequency of the randomized clock is
unknown, not all traces are oversampled by this nominal degree. Furthermore,
the asynchronous frequency switching (discussed in Sect. 3) causes about 3%
of ciphertexts to be incorrect. Incorrect encryptions are typically acceptable in
applications in which re-encryption is possible, e.g. the encryption of a nonce for
challenge-response authentication. To achieve an 80× oversampling, a sampling
frequency of 160 Ms/s is required. This exceeds the maximum frequency of 105
Ms/s that is specified in the Chipwhisperer datasheet. However, we found out
that the hardware can periodically capture traces at this requested frequency.
Therefore, with the additional step of discarding the measurements where our
equipment failed to meet the required sampling frequency, we were able to cap-
ture and analyse traces with 80× oversampling.

In a real attack, slowing down the clock of an FPGA implementation would
require a different approach, especially if countermeasures to prevent it, e.g. the
clock manipulation detector [10], are present. In our threat scenario, we do not
consider such attacks. We assume that, to oversample, the adversary will use an
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Table 2. Comparison of CPA results with previous work.

Method # Traces to recover full key Key Enumer How Evaluated

Unprotected Protected

RFTC [15] <2K >4M No not defined

DFR [16] 20-30K >1-5M < 225 avg of 20 tests

Presented <1.1K >10M* No avg. of 10 tests
∗For 8× oversampling factor

oscilloscope that can capture traces at a much higher rate than the frequency of
the clock used in the encryption core of the FPGA.

5.3 Overhead Evaluation

We compared our randomized clock implementation with two state-of-the-art
architectures that offer the highest level of side-channel resistance: the Runtime
Frequency Tuning Countermeasure (RFTC) [15] and the Dynamic Frequency
Randomization (DFR) [16].

Table 3 lists the FPGA resources and timing overhead. One can see that the
presented implementation has the smallest hardware and timing overhead.

5.4 Comparison Considerations

To compare countermeasures properly, one has to take into account the number
of traces required to break the unprotected implementation, as well as the sam-
pling and operating frequency of the implementations. The number of traces for
CPA is shown in Table 2. When comparing these numbers it should be taken into
account that [16] uses EM side-channels while [15] and the presented method
use power. EM side-channels are usually noisier and attacks typically require an
order of magnitude more traces.

Regarding sampling and operating frequencies, in [15], power measurements
are collected using an oscilloscope with a 100 MHz bandwidth and a maximum
sampling rate of 1 Gs/s. The randomized clock frequencies are in the range of
12–48 MHz.

In [16] an oscilloscope with a bandwidth of 500 MHz and maximum sam-
pling rate of 5 Gs/s is used. The frequencies of the randomized clock are in
the range of 17.5–213.3 MHz for the implementation based on four clocks, and
17.5–426.5 MHz for the one based on eight clocks.

No information about the sampling frequency is given in [15,16]. We can
make a rough estimation as follows. Taking into account the maximum sampling
frequency of their equipment, and considering the mean operating frequency as
nominal, in [15] up to 17× oversampling can be achieved while in [16] up to
22× and 12× for the four and eight clock implementations, respectively. Since
there is a big gap between their lowest and highest operating frequencies, these
numbers are certainly not accurate. However, they are our best estimate.
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Table 3. Overhead comparison with the state-of-the-art implementations of random-
ized clock.

Method FPGA resources Timing overhead

# BRAM # MMCM # BUFG

RFTC [15] 20 2 N/A 1.72×
DFR [16] 0 1 12-23 1.54-58.9×
Presented 0 1 5 1.27×

Table 4. CPA and MLP subkey recovery results for different oversampling factors on
the proposed randomized clock implementation (average of 10 tests).

Over-sampling factor Last round attack First round attack

CPA-SYNC SW-CPA MLP

# Traces # Traces single-trace acc,% # Traces

Unprotected 2× 400 1000 0.66 112

Protected 8× >10M >10M 0.39 >10M

Protected 20× 50k >10M 0.49 582

Protected 40× 5k >10M 0.51 319

Protected 80× 3k 5M 0.52 430

In our case, we sample 2n× data points per clock cycle, for n ∈ {8, 20, 40, 80}.
The frequencies of the randomized clock are in the range of 7.73–12.65 MHz.

5.5 Attack Results

Table 4 presents the results of our CPA and DL-based power analysis for different
oversampling factors. In the table, we show results for the MLP networks only.
We also performed experiments with Convolutional Neural Networks (CNN).
The results were similar to the MLPs. This is probably because we synchronized
traces at the pre-processing stage.

We can see that both methods fail for the 8× oversampling case. This is due to
the poor synchronization and measurement quality caused by low oversampling.
For 20× oversampling, we can see that both the CPA and DL-based attacks are
able to recover the subkey and, as the oversampling factor grows, fewer traces
are required.

Figure 6 shows the probability of recovering a subkey using the attack on the
first round of AES after synchronizing the traces. The 8× oversampling case is
omitted because the subkey cannot be recovered. Despite a slightly lower single-
trace accuracy, the 40× model recovers subkeys faster than the 80× model.
However, this may due to the fact that the number of tests was small.

The results of Table 4 highlight the importance of oversampling for side-
channel analysis and show that ignoring oversampling may lead to an overesti-
mation of the security of randomized clock countermeasures.
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Fig. 6. MLP subkey recovery success rate.

5.6 Comparison to Previous DL-based Attacks

Next, we compare our results to [16] where a DL-based analysis based on MLP
and CNN is also performed.

In one of their implementations, DFR-4-Ø, the MMCM has four output fre-
quencies and a constant input frequency. This implementation does not have the
best security/overhead trade-off, but it has a structure similar to ours. The only
difference is that, in DFR-4-Ø, the switching between frequencies is done syn-
chronously. Our implementation switches asynchronously to get a more unpre-
dictable output clock.

According to [16], DFR-4-Ø can be attacked with 1M traces using FFT-CPA,
200K traces using FFT-MLP, and 20K traces using CNN. All attacks target
the last round. Considering that EM-based attacks typically need an order of
magnitude more traces compared to power analysis, these numbers translate to
roughly 100K for the FFT-CPA, 20K for the FFT-MLP and 2K for the CNN.
Also, considering that they need approximately twice as many traces as us to
attack unprotected AES, these numbers are similar to the 10× oversampling
case in Table 4. Their attack use key enumeration up to 316 ≈ 225 (equivalent to
key guessing entropy ≤2) while we do not use key enumeration.

6 Conclusion

We presented a powerful side-channel attack on an FPGA implementation of
AES with a randomized clock targeting the first round as the attack point. Such
an approach has a greater potential to break any randomized clock countermea-
sure than the attacks on the last round because the effect of randomness accu-
mulated over the multiple rounds is lost. We also demonstrated the importance
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of high oversampling in the security analysis of randomized clock countermea-
sures. Our results show that these countermeasures have a fundamental flaw.
Oversampling enabled us to synchronize power traces and this led to successful
attacks.

All our scripts and the source code of the randomized clock implementation
are publicly available at https://github.com/MichailM7/Do not rely on clock
randomization.
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Abstract. Oblivious Transfer (OT) is a major primitive for secure
multi-party computation. Indeed, combined with symmetric primitives
along with garbled circuits, it allows any secure function evaluation
between two parties. In this paper, we propose a new approach to build
OT protocols. Interestingly, our new paradigm features a security analy-
sis in the Universal Composability (UC) framework and may be instan-
tiated from post-quantum primitives. In order to do so, we define a
new primitive named Smooth Projective Hash Function with Grey Zone
(SPHFwGZ) which can be seen as a relaxation of the classical Smooth
Projective Hash Functions, with a subset of the words for which one can-
not claim correctness nor smoothness: the grey zone. As a concrete appli-
cation, we provide two instantiations of SPHFwGZ respectively based
on the Diffie-Hellman and the Learning With Errors (LWE) problems.
Hence, we propose a quantum-resistant OT protocol with UC-security in
the random oracle model.

1 Introduction

Smooth Projective Hash Function (SPHF), or Hash Proof System as introduced
by Cramer and Shoup in [11], is a cryptographic primitive initially designed
to provide IND-CCA encryption schemes. Over the years, SPHFs have been
used for many applications such as Password-Authenticated Key Exchange [1,
2,14,18], Zero-Knowledge Proofs [3,16] or Witness Encryption [12]. Since their
introduction, SPHFs have been developed over classical hard problems such as
discrete logarithm or factorization. However, post-quantum cryptography does
not seem to be as easily compliant with SPHF. In [17], Katz et al. introduced
Approximate Smooth Projective Hash Functions. The correctness property of an
SPHF claims that the hash value and the projective hash value are required
to be equal on words in an NP-language, when knowing a witness, while the
smoothness property expects them to be independent when no witness exists.
Approximate SPHF uses an approximate correctness, that allows those values
to be close, relatively to a given distance. Furthermore, languages relying on
code-based or lattice-based ciphertexts result in a gap between the set of valid
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G.-V. Jourdan et al. (Eds.): FPS 2022, LNCS 13877, pp. 54–70, 2023.
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ciphertexts of a given value μ, and the values that decrypt into μ. As mentioned
in [5], an adversary could maliciously generate one of those ciphertexts and open
the door for practical attacks. The presence of this gap can also be problematic
when expecting to work in the Universal Composability framework [9].

Related Works. In this section, we focus on SPHF-related previous construc-
tions. In code-based cryptography, the first proposition was made by Persichetti
in [21]. The SPHF proposed there uses a weaker smoothness definition, called
universality. Strictly speaking, this is not a drawback as we can transform an
SPHF with universality property to a word-dependent SPHF with smoothness
property. However, the main issue with this candidate is that the proof is done
on random keys, rather than the whole keys. This has for consequence that an
adversary can exploit some well-chosen keys resulting in a failure of the proof.
A second construction was designed in [5]. As said before, when working with
lattices and codes, languages based on ciphertexts present a grey zone. In this
work, Bettaieb et al. withdraw this gap using a zero-knowledge proof asserting
if two different ciphertexts of the same message are valid, reducing the SPHF on
the set of valid ciphertexts, resulting in the first gapless post-quantum SPHF. A
solution based on codes is also given in [24], but their solution offers an Approx-
imate SPHF with computational smoothness, while real SPHF expects statis-
tical/perfect smoothness. In lattice-based cryptography, the first construction
was given in [17] where Katz et al. introduced the notion of Approximate SPHF.
Their language not being exactly defined as the valid LWE-ciphertexts, decod-
ing procedure was expensive, as detailed in [4]. This latter article, motivated by
this issue, offers the first non-approximated SPHF based on lattices later used
with the framework from [6] in [7] to build a Post-quantum UC-secure Oblivious
transfer. Their construction, in the standard model, is UC-secure against adap-
tive corruptions but lacks of efficiency. While the two previous constructions
of SPHF are in the standard model, Zha et al. [25] propose a SPHF requiring
access to a random oracle. Indeed, their language relies on simulation-sound non-
interactive zero-knowledge proofs, that we are not able to construct efficiently
without random oracles.

Contribution. As mentioned above, a gap appears when working with cryptogra-
phy based on lattices or codes. Rather than withdraw this gap as done in [5], we
focus on the requirements needed in order to tame this gap, with an additional
notion of Decomposition Intractability when trying to exploit this gap. Therefore,
we introduce Smooth Projective Hash Functions with Grey Zone (SPHFwGZ) as
an SPHF with the Decomposition Intractability property: we will require a lan-
guage L, hard to decide, as for any non-trivial SPHF, but also with additional
intractability for finding two complementary words in L or the gap. As an appli-
cation of SPHFwGZ, we show that one can design an Oblivious Transfer from any
SPHF with Grey Zone on languages of ciphertexts for homomorphic encryption,
where the security relies on the semantic security.

We provide two concrete instantiations of SPHFwGZ: the first one relies on
the Diffie-Hellman Problem and the ElGamal cryptosystem. As no decryption
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failure occurs with the ElGamal cryptosystem, the grey zone is empty and the
decomposition intractability is obvious. One can note that the resulting SPH-
FwGZ is de facto an SPHF. The idea behind this instantiation is, on the one
hand, to familiarise the reader with our construction, and on the other hand, to
point out the fact that the construction is also available from any classical SPHF.
A second instantiation is based on lattices and more precisely from the Learning
with Errors problem. This allows to underline the genericity of our framework.

2 Preliminaries

Oblivious Transfer. Oblivious transfer, introduced by Rabin [22], involves a
sender with input two messages m0,m1 and a receiver with input a selection bit
b so that the latter receives mb and nothing else, while the former does not learn
anything. It provides sender-privacy (no information leakage about m1−b) and
receiver-privacy (no information leakage about b).

Universal Composability. Universal Composability is a security model intro-
duced by Canetti [9] taking into account the whole environment (i.e. all exterior
interactions) of the execution. Concretely, if a protocol is proven to be universally
composable (or UC-secure), it can be used concurrently with other protocols
without compromising the global protocol security. Proving universally compos-
able security is done thanks to the real world/ideal world paradigm. In the ideal
world, we consider an access to a trusted third party. A protocol Π is UC-secure,
if, for all environment E , there exists a simulator S such that the execution of
the protocol Π with adversary A in the real world, is indistinguishable with the
execution of the functionality F with simulator S in the ideal world.

Smooth Projective Hash Functions. Introduced in 2002 [11], Smooth Pro-
jective Hash Functions (SPHF), also known as Hash Proof System (HPS), ini-
tially aim to build the first public key encryption scheme secure against chosen
ciphertext attacks. Nowadays, SPHF are mainly used for Honest Verifier Zero
Knowledge Proofs or Witness Encryption. Such functions work on NP-languages
L ⊂ X , defined by a binary relation R such that for any word x ∈ X , x ∈ L
if and only if there exists a witness w such that R(x,w) = 1. Then, an SPHF
defined on L ⊂ X with values in V is defined by five algorithms:

– Setup(1κ): Generates the parameters param from κ, the security parameter
where param includes a description of L, a language in X ;

– HashKG(param): Generates a random hash key hk;
– ProjKG(hk): Derives the projection key hp;
– Hash(hk, x): Returns the hash value Hhk ∈ V associated to the word x;
– ProjHash(hp, x, w): Returns Hhp ∈ V using a witness w linked to the word x.

Those algorithms should ensure two requirements:

– Correctness: For any x ∈ L, with witness w, Hhk = Hhp under the condition
that R(x,w) = 1;
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– Smoothness: For any x ∈ X\L, the distributions of (hp,Hhk) and (hp, v ←
V) are indistinguishable.

The aforementioned definition of smoothness was introduced by Cramer and
Shoup in [11]. Two variants of this definition have later been proposed: The
first variation has been provided by Gennaro and Lindell in [14], leading to
the notion of GL-SPHF. The only difference with the definition of Cramer and
Shoup (recalled above) is that the projection key hp may depend on the word
w of the language. The second variant, introduced by Katz and Vaikuntanathan
in [17] considers the ability for an attacker to maliciously generate the word w
after seeing the projection key hp. In KV-SPHF, the projection depends only on
the hashing key and ensures the smoothness even if the word w is chosen after
having seen the projection key. GL-SPHF will be enough for our applications,
with word-dependent projection keys, as the word will be known beforehand.

3 Smooth Projective Hash Functions with Grey Zone

Our first contribution is the formalization of Smooth Projective Hash Functions
with a Grey Zone (SPHFwGZ) which is a relaxation of the classical SPHF in
which one cannot claim correctness nor smoothness for a subset of the words.
Later, we will provide a quantum-resistant SPHFwGZ based on lattices. With
this new definition, we will have two disjoint languages L,L′ ⊂ X that will not
necessarily partition the superset X : the remaining subset X\(L ∪ L′) will be
the grey zone.

3.1 Basic Definitions

Let us describe our relaxation of Smooth Projective Hash Function from [10] to
encompass a Grey Zone. An SPHFwGZ is defined with a tuple of algorithms:

– Setup(1κ): Generate the parameters param from κ, the security parameter,
or an explicit random tape (σ, ρ) in S0 × R0. param includes a description
of L,L′,X , where L ∪ L′ ⊂ X and L ∩ L′ = ∅, and L is a language hard to
decide in X ;

– HashKG(param): Generates a random hash key hk;
– ProjKG(hk, x): Derives the projection key hp (it may need x as input);
– Hash(hk, x): Returns the hash value Hhk ∈ V, where V is the set of hash

values, associated to the word x;
– ProjHash(hp, x, w): Returns Hhp ∈ V using a witness w linked to the word x.

As the classical SPHF, our SPHFwGZ verifies the following statistical properties,
for any setup execution that provides param, defining L,L′,X :

– Correctness: For any x ∈ L, Hhk = Hhp, where hk ← HashKG(param),
hp ← ProjKG(hk, x), Hhk ← Hash(hk, x), and Hhp ← ProjHash(hp, x, w) for
the witness w of x ∈ L;
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– Smoothness: For any x ∈ L′, the distributions of (hp,Hhk) and (hp, v) are
indistinguishable, where hk ← HashKG(param), hp ← ProjKG(hk, x), Hhk ←
Hash(hk, x), and v

$← V;

The algorithms and properties described above are the basic algorithms for SPH-
FwGZ. For a later use, we need to define several additional properties.

3.2 Word Indistinguishability and Trapdoor

First, we assume languages L and L′ in X are defined according to a random tape
(σ, ρ) sampled in a set S0 × R0 (i.e. from param ← Setup(σ, ρ)). The samplable
set S0 is defined together with its twin set S1 such that when σ ∈ S1, and
param ← Setup(σ, ρ), there exists a trapdoor tdσ that allows to test if a given
word x ∈ X is in L′ or not. We then also need the following algorithms:

– WordGenL(param): Samples and returns x
$← L, together with its witness w;

– WordTest(tdσ, x), using the trapdoor tdσ, tests if x ∈ L′.

As we assumed L to be a hard subset of X when σ ∈ S0, we have the Word-
Indistinguishability Property: An adversary can not distinguish between
random words in L and random words in X , for any σ ∈ S0, with more than a
negligible advantage.

The string σ can be seen as a CRS, that admits a trapdoor when sampled
from S1. The normal use is with σ

$← S0, which needs to be efficiently samplable.
When σ ∈ S1, the trapdoor tdσ must be easy to compute from σ.

3.3 Decomposition Intractability and Trapdoor

We also define the alternate sets R1 and R′
1 for R0. During normal use, ρ is

sampled from R0, which needs to be efficiently samplable. When ρ ∈ R1, and
param ← Setup(σ, ρ), there exists a trapdoor tdρ = (x, x′, w, w′), that must be
easy to compute from ρ. When ρ ∈ R′

1, and param ← Setup(σ, ρ), there exists a
trapdoor tdρ = (x, x′), that must be easy to compute from ρ. Let us define the
complement algorithm, for any ρ ∈ R0 ∪ R1 ∪ R′

1:

– ComplementWord(param, ρ, x): from any word x ∈ X , it outputs x′;

From this complement algorithm, we expect the following statistical property,
for any σ ∈ S0 ∪ S1 but ρ ∈ R0:

– Complement: for any x ∈ X , if x′ ← ComplementWord(param, ρ, x), then
x = ComplementWord(param, ρ, x′);

But we also need a computational assumption: the Decomposition
Intractability, which states that no adversary can generate, with non-negligible
probability, for random (σ, ρ) $← S1 × R0, two words x, y �∈ L′ such that
y = ComplementWord(param, ρ, x), and so even with the trapdoor tdσ.

On the other hand, when ρ ∈ R1, the trapdoor tdρ = (x, x′, w, w′)
satisfies x and x′ are uniformly random in L with witnesses w,w′, and
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x′ = ComplementWord(param, ρ, x). And when ρ ∈ R′
1, the trapdoor

tdρ = (x, x′) satisfies x and x′ are uniformly random in L′, and x′ =
ComplementWord(param, ρ, x).

Again, the string ρ can be seen as a CRS, that admits a trapdoor when
sampled from R1 or R′

1. The normal use is with ρ
$← R0, which needs to be

efficiently samplable. When ρ ∈ R1 or ρ ∈ R′
1, the trapdoor tdρ must be easy to

compute from ρ.
Eventually, for the security proof to go through, we will make use of the CRS

Indistinguishability: An adversary can not distinguish between R0, R1 and
R′

1, and between S0 and S1, with more than a negligible advantage.
Note that we independently consider the choices between S0 and S1 and

between R0, R1 and R′
1, but the latter choice could depend on the former

choice. So the global CRS is the pair crs = (σ, ρ).

4 Oblivious Transfer from SPHFwGZ

In this section we first present our construction of Oblivious Transfers based on
Smooth Projective Hash Functions with Grey Zone, and then provide a security
proof of our Oblivious Transfer in the Universal Composability framework

4.1 Construction of Oblivious Transfer

Our Oblivious Transfer uses a crs = (σ, ρ) ∈ S0 ×R0 as defined above, where we
assume S0 × R0 ≈ S1 × R0 ≈ S0 × R1 ≈ S0 × R′

1. We describe in Fig. 1 the OT
protocol ΦSPHFwGZ

OT .

Fig. 1. General description of the protocol ΦSPHFwGZ
OT

The protocol ΦSPHFwGZ
OT provides Correctness. Indeed, with the honest gen-

eration (x,w) ← WordGenL(param) we have c = (H ⊕ m, hp). Then, m =
H ⊕m⊕ProjHash(c1, x, w) if and only if H = ProjHash(c1, x, w) which is ensured
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due to the correctness property of the SPHFwGZ. Moreover, the Complement
property ensures the value x1 computed by the sender is always the same as the
value x1 computed by the receiver.

We now prove the privacy in the Universal Composability framework.

4.2 Security Analysis

Our Oblivious Transfer protocol will be proven in the CRS-hybrid model (as
in [20]), with the functionality FCRS, where the two players get the same random
crs from the sid. In practice, as we assumed S0 and R0 efficiently samplable,
(σ, ρ) can be derived from H(sid). As no rewind is required, the proof remains
valid in case the CRS is generated using quantum-accessible random oracles [8].
Then, we recall below the ideal functionality FOT for a secure oblivious transfer,
where there are two first messages from the sender with (m0,m1) and from the
receiver with b, to initialize the process, and the final request message by the
sender that decides when the receiver can get mb:

FOT interacts with a sender S and a receiver R:

– Upon receiving a message (sid,sender, m0, m1) from S, store (sid, m0, m1);
– Upon receiving a message (sid,receiver, b) from R, store (sid, b);
– Upon receiving a message (sid,answer) from the adversary, check if both records

(sid, m0, m1) and (sid, b) exist for sid. If yes, send (sid,mb) to R, and sid to
the adversary and halt. If not, send nothing but continue running.

Ideal Functionality FOT

Theorem 1. The protocol ΦSPHFwGZ
OT UC-realizes FOT in the FCRS-hybrid model

in the static-corruption setting, from any SPHFwGZ.

We stress that we consider static corruptions only, where the corrupted players
are known when each protocol execution starts.

Game G0. This is the real game, where FCRS samples crs in S0 × R0.
Game G1. In this game, the simulator S simulates itself the sampling of crs =

(σ, ρ) $← S0×R0, and generates correctly every flow from the honest players,
as they would do themselves, knowing the inputs (m0,m1) and b sent by the
environment to the sender and the receiver, respectively.

Game G2. In this game, we deal with corrupted receivers. Instead of sam-
pling crs = (σ, ρ) $← S0×R0, the simulator S samples crs = (σ, ρ) $← S1×R0,
and therefore with the trapdoor tdσ. This game is indistinguishable from the
previous one due to the CRS Indistinguishability.

Game G3. In this game, the simulator S uses the trapdoor tdσ to get ti =
WordTest(xi, tdσ) for i ∈ {0, 1}. If t0 = t1 = 0 (none of the words are in L′),
S aborts. This game is indistinguishable from the previous one, under the
Decomposition Intractability, as (σ, ρ) ∈ S1 × R0.
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Game G4. If t0 = t1 = 0, we still abort. If t0 = t1 = 1 we set b = 0, oth-
erwise, we set b such that tb = 0. Next, the simulator S proceeds on mb

with xb and on a random message with x1−b. Under the smoothness of the
SPHFwGZ, as x1−b ∈ L′, and the One-Time Pad Semantic Security, this
game is statistically indistinguishable from the previous one.

Game G5. In this game, we deal with corrupted senders. Instead of sampling
crs = (σ, ρ) $← S0 ×R0, the simulator S samples crs = (σ, ρ) $← S0 ×R1, and
therefore with the trapdoor tdρ = (x, x′, w, w′). This game is indistinguish-
able from the previous one due to the CRS indistinguishability.

Game G6. In this game, the simulator S respectively sets (x0, w0, x1, w1) as
(x,w, x′, w′) from tdρ. It can then retrieve both m0 and m1. This game is
indistinguishable from the previous one due to the Word Indistinguishability,
and the uniform distribution of the trapdoor.

Game G7. We now deal with honest players. Instead of sampling crs =
(σ, ρ) $← S0×R0, the simulator S samples crs = (σ, ρ) $← S0×R′

1, and there-
fore with the trapdoor tdρ = (x, x′), and simulates the flows with random
m0,m1

$← M and random b
$← {0, 1}. Under the CRS Indistinguishability

and the smoothness of the SPHFwGZ, as both x, x′ ∈ L′, coupled with the
One-Time Pad Semantic Security, this game is indistinguishable from the
previous one.

Game G8. This is the ideal game We can now make use of the functionality
FOT which leads to the following simulator:
– If no participant is corrupted, one uses crs

$← S0 × R′
1, and the simulator

S simply uses random inputs for the sender and the receiver;
– If the receiver is corrupted, one uses crs

$← S1 × R0, and the simulator S
extracts b using the trapdoor tdσ, and sends (sid, receiver, b) to FOT;

– If the sender is corrupted, one uses crs
$← S0 × R1, and the simulator S

extracts m0,m1 using the trapdoor tdρ, and sends (sid, sender,m0,m1)
to FOT;

– The adversary sends (sid, answer) when it decides to deliver the result to
the receiver.

4.3 Noisy Homomorphic Encryption Setup

We now define a general setup leading to an instantiation of our Oblivious Trans-
fer from many (possibly with decryption failure and possibly amplified, as shown
with our lattice-based instantiation) Homomorphic Encryption with group law
∗ on plaintexts and � on the ciphertexts.

We consider an encryption scheme Π = (Setup,KeyGen,Encrypt,Decrypt)
with possible decryption failures. Thus, we set X as the ciphertext space of Π,
and L = {Encrypt(pk, 0; r)} ⊂ X and L′ = {c ∈ X ,Decrypt(sk, c) �= 0} ⊂ X .

Sets S0 and S1 can both be seen as public keys pk generated from KeyGen(1κ)
except that when σ ∈ S1, the secret key sk is known and defines the trapdoor
tdσ. Hence, σ (which defines the public key pk) defines the sets L and L′ in X .
On the other hand, we can define R0 = X , the set of all the ciphertexts, or a



62 S. Bettaieb et al.

superset, with uniform distribution; R1 = {c0 � c1}, for two ciphertexts c0, c1
in L, following the distribution of the encryption algorithm, on plaintext 0, and
according the distribution of the randomness r0, r1, which allows to define the
trapdoor tdρ as (c0, c1, r0, r1); R′

1 = {c0 � c1}, for two ciphertexts c0, c1 in L′,
following the distribution of the encryption algorithm, on non-zero plaintexts,
which allows to define the trapdoor tdρ as (c0, c1). The setup defined above veri-
fies both basic assumptions required to make the Oblivious Transfer Universally
Composable:

– CRS Indistinguishability : Under the semantic security of the encryption
scheme Π, L, L′, and X are indistinguishable. The homomorphic property
implies that {x � x′|(x, x′) ∈ X 2} = X . As a consequence, we have indistin-
guishability between R0 = X = {x � x′|(x, x′) ∈ X 2}, R1 = {x � x′|(x, x′) ∈
L2}, and R′

1 = {x � x′|(x, x′) ∈ L′2}. Furthermore, as S0 = S1, they are
perfectly indistinguishable;

– Word Indistinguishability : Under the semantic security of the encryption
scheme Π, one can not distinguish between c0 ∈ L, an encryption of 0 and
c1 ∈ X , an encryption of a random value.

– Complement: for any x ∈ X , x′ ← ComplementWord(param, ρ, x) = ρ�x−1,
hence ComplementWord(param, ρ, x′) = ρ � (ρ � x−1)−1 = x;

Additional properties will depend on concrete instantiations.

5 Concrete Instantiations of SPHFwGZ

We now provide two concrete instantiations of SPHFwGZ based on the Diffie-
Hellman and Learning With Errors problems. As both constructions rely on an
Homomorphic Encryption scheme, we can already consider the basic properties
shown in Sect. 4.3.

5.1 Instantiation from the Diffie-Hellman Problem

In this section, we focus on elliptic curve based cryptography, using the Deci-
sional Diffie-Hellman assumption in a prime-order group.

Definition 2 (Decisional Diffie-Hellman (DDH)). In a group G of prime
order p, the Decisional Diffie-Hellman problem consists in, given ga and gb,
distinguishing gab from gc, for a, b, c

$← Zp.

The Decisional Diffie-Hellman assumption states that the aforementioned
Decision Diffie-Hellman problem is hard to solve, with non-negligible advantage
in polynomial time.

ElGamal Encryption. As expected above, we need an IND-CPA (a.k.a. with
semantic security) encryption scheme, with homomorphism. We use the ElGamal
encryption scheme [13] in a group G = 〈g〉 of prime order p, defined by the Setup
algorithm:
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– KeyGen(1κ): picks β
$← Zp, and sets pk = h = gβ , sk = β.

– Encrypt(pk = h = gβ , M ∈ G) encrypts the message M under the public key
pk as follows: Pick r

$← Zp; Output the ciphertext: c = (gr, hr · M);
– Decrypt(sk, c = (c0, c1)) decrypts the ciphertext c using the decryption key sk

as follows: M = c1/csk0 .

Theorem 3. The above ElGamal encryption scheme is IND-CPA under the
Decisional Diffie-Hellman assumption.

SPHFwGZ from ElGamal Encryption1. From the IND − CPA ElGamal
encryption scheme EG = (Setup, KeyGen,Encrypt,Decrypt), in a group G,
denoted multiplicatively, of prime order p, with generator g.

We set S0 = S1 = {σ = h = gtdσ ; tdσ
$← Zp}. Then, R0 is defined as

G
2 = {ρ = (ĝ, ĥ) $← G

2}, R1 as {ρ = (ĝ ← gr0 ·gr1 , ĥ ← hr0 ·hr1); (r0, r1) ←$Zp}
and R′

1 as {c0 � c1; (c0, c1) ∈ G
2×2}. The crs is set as (σ, ρ). One can note that

witnesses only exist when ρ ∈ R1 or ρ ∈ R′
1, then tdρ = (c0 = (gr0 , hr0) ,

c1 = (gr1 , hr1), r0, r1) or tdρ = (c0, c1) respectively. One can note c0 and c1 are
encryptions of M = g0, with respective randomness r0 and r1. Moreover, while
tdσ always exists, it is not necessarily known.

From the above generic construction, we have X = {(gr, hr · M),M ∈ G} =
G

2 and L = {(gr, hr)}, which are indistinguishable under the Decisional Diffie-
Hellman assumption. With param = (g, σ = h), which determines all the sets
(specified by the Setup algorithm), we can define:

– hk = HashKG(param) = (α, β) $← Z
2
p;

– hp = ProjKG(hk) = gαhβ ;
– H = Hash(hk, x = (u, v)) = uαvβ ∈ G;
– H ′ = ProjHash(hp, x, w = r) = hpr, if x = (gr, hr) ∈ L.
– x′ = (u′, v′) = ComplementWord(ρ = (ĝ, ĥ), x = (u, v)) = (ĝ · u−1, ĥ · v−1)

This is a word-independent SPHFwGZ. And we can show the expected properties:

– Correctness: When x = (u, v) = (gr, hr) ∈ L, with witness r, H = uαvβ =
(gαhβ)r = hpr = H ′;

– Smoothness: When x = (u, v) = (gr, hr′
) �∈ L, then r′ = r+ r′′ with r′′ �= 0:

H = uαvβ = (gαhβ)r × gr′′β = hpr × gr′′β = H ′ × gr′′β . But β is perfectly
hidden in hp, and gr′′β is perfectly unpredictable;

– Decomposition Intractability: In ElGamal encryption there is no decryp-
tion failure: all the ciphertexts can be covered by the encryption algorithm,
and the decryption perfectly inverts the encryption process. So we have
L′ = X\L. A random ciphertext ρ encrypts an M �= 1 with overwhelming
probability. Then, when it encrypts M �= 1, from the homomorphic property,
this is impossible to have two encryptions of 1 whose product is ρ. Hence,
the decomposition intractability is statistical: the probability of existence of
the decomposition is bounded by 1/p, on ρ, even knowing the decryption key,
and thus the trapdoor tdσ.

1 Note that this construction exactly corresponds to the one from [10].
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5.2 Instantiation from the Learning with Errors Problem

In this section, we focus on lattice-based cryptography. We are going to show
how to instantiate the various required components from LWE:

Definition 4 (Shortest Independent Vectors Problem (SIVPγ)). The
approximation version SIVPγ is the approximation version of SIVP with factor
λ. Given a basis B of an n-dimensional lattice, find a set of n linearly indepen-
dent vectors v1, . . . , vn ∈ L(B) such that ‖vi‖ ≤ γ(n) · λn(B). for all 1 ≤ i ≤ n.
The approximation factor γ is typically a polynomial in n, the non approximated
version assumes γ = 1.

Definition 5 (Learning With Errors (LWE)). Let q ≥ 2, and χ be a dis-
tribution over Z. The Learning With Errors problem LWEχ,q consists in, given
a polynomial number of samples, distinguishing the two following distributions:

– (a, 〈a, s〉 + e), where a is uniform in Z
n
q , e ← χ, and s ∈ Z

n
q is a fixed secret

chosen uniformly, and where 〈a, s〉 denotes the standard inner product.
– (a, b), where a is uniform in Z

n
q , and b is uniform in Zq.

Regev Encryption. Regev [23] showed that for χ = DZ,σ, a Gaussian centered
distribution in Z for any standard deviation σ ≥ 2

√
n, and q such that q/σ =

poly(n), LWEχ,q is at least as hard as solving worst-case SIVP for polynomial
approximation factors, which is assumed to be hard to solve, even for quantum
computers.

Trapdoor for LWE. Throughout this paper, we will use the trapdoors intro-
duced in [19] to build our public matrix A. Define gA(s, e) = As+e, the gadget
matrix G as Gt = In ⊗ gt, where gt = [1, 2, . . . , 2k] and k = �log q� − 1, and
let H ∈ Z

n×n
q be invertible. The notation [A |B] is for horizontal concatenation,

while [A ; B] is for vertical concatenation.

Lemma 6 ([19, Theorems 5.1 and 5.4]). There exist two PPT algorithms
TrapGen and g−1

(·) with the following properties assuming q ≥ 2 and m ≥
Θ(n log q):

– TrapGen(1n, 1m, q) outputs (T,A0), where the distribution of the matrix A0 is
at negligible statistical distance from uniform in Z

m×n
q , and such that TA0 =

0, where s1(T) ≤ O(
√

m) and where s1(T) is the operator norm of T, which
is defined as maxx�=0 ‖Tx‖/‖x‖.2

– Let (T,A0) ← TrapGen(1n, 1m, q). Let AH = A0 + [0 ; GH] for some invert-
ible matrix H called a tag. Then, we have TAH = GH. Furthermore, if
x ∈ Z

m
q can be written as AHs + e, with s ∈ Z

n
q and e ∈ Z

m
q where

‖e‖ ≤ B′ := q/Θ(
√

m), then g−1
AH

(T,x,H) outputs (s, e).

2 The bound on s1(T) holds except with probability at most 2−n in the original
construction, but we assume the algorithm restarts if it does not hold.



Post-quantum and UC-Secure OT from SPHF with Grey Zone 65

More precisely, to sample (T,A0) with TrapGen, we sample a uniform Ā ∈ Z
m̄×n
q

where m̄ = m − nk = Θ(n log q), and some R ← Dnk×m̄, where the distribution
Dnk×m̄ assigns probability 1/2 to 0, and 1/4 to ±1. We output T = [−R | Ink]
along with A0 = [Ā ; RĀ]. Then, given a tag H, with AH = A0 + [0 ; GH], we
have: TAH = GH.

We will only consider a fixed tag H = I, for the Micciancio-Peikert encryption
[19]. Our construction only requires CPA encryption so we don’t need several
tags, but we need to be able to reject improperly computed ciphertexts, and the
gadget matrix is here, to allow this extra control during the decryption.

LWE Encryption à la Micciancio-Peikert. For this scheme, we assume q to
be an odd prime. We set an encoding function for messages Encode(μ ∈ {0, 1}) =
μ · (0, . . . 0, �q/2�)t. Note that 2 · Encode(μ) = (0, . . . , 0, μ)t mod q, as �q/2� is
the inverse of 2 mod q, for such an odd q.

Let (T,A0) ← TrapGen(1n, 1m, q). The public encryption key is pk = A0,
and the secret decryption key is sk = T.

– Encrypt(pk = A0, μ ∈ {0, 1}) encrypts the message μ under the public key
pk as follows: Let A = A0 + [0 ; G]. Pick s ∈ Z

n
q , e ← Dm

Z,t where t = σ
√

m ·
ω(

√
log n). Restart if ‖e‖ > B, where B := 2t

√
m.3 Output the ciphertext:

c = As+ e+ Encode(μ) mod q .

– Decrypt(sk = T, c ∈ Z
m
q ) decrypts the ciphertext c using the decryption key

sk as follows: With B′′ := q/2Θ(
√

m), output
⎧
⎪⎨

⎪⎩

μ if g−1
A (T, 2c, I) = (2s, 2e+ (0, . . . , 0, μ))

where s ∈ Z
n
q , e ∈ Z

m and ‖e‖ ≤ B′′ ,

⊥ otherwise.

Noting Λ(A) = {As|s ∈ Z
n
q }, honestly generated ciphertext c are such that

d(c − Encode(μ), Λ(A)) ≤ B, while the decryption procedure is guaranteed not
to return μ as soon as d(c − Encode(μ), Λ(A)) > B′′. (Note that the inversion
algorithm g−1

(·) can succeed even if ‖e‖ > B′′/2, depending on the randomness of
the trapdoor. It is crucial to reject decryption nevertheless when ‖e‖ > B′′ to
ensure security).

From the decryption procedure, we have:

μ′ := Decrypt(T, c) �= ⊥ ⇐⇒ d(c − Encode(μ′), Λ(A)) < B′′ .

Suppose that m ≥ Θ(n log q). The scheme is correct as long as B ≤ B′′, or
equivalently 2σm3/2 · ω(

√
log n) ≤ q.

Theorem 7. Assume m ≥ Θ(n log q). The above scheme is IND-CPA assuming
the hardness of the LWEχ,q problem for χ = DZ,σ.

Furthermore, this encryption scheme is homomorphic for plaintexts in (Z2,+),
and ciphertexts in Z

m
q with component-wise addition.

3 This happens only with exponentially small probability 2−Θ(n).
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Bit-SPHFwGZ from LWE Encryption Scheme. We consider, an LWE
encryption scheme defined with a superpolynomial modulus. More precisely,
we set m = n log(q), t =

√
mn.ω(

√
log(n)), k = Θ(n), s ≥ Θ(

√
n) ∧ s/q =

negl(n), s = Ω(mk2q2/3). We also set R to be a probabilistic rounding function
from [0, 1] to {0, 1}, such that R(x) = 1 with probability 0.5 · cos( 2πx

q ) and 0
otherwise.

We set S0 = S1 = {σ = A = A0 + [0 ; G]|(T,A0) ← TrapGen(1n, 1m, q)},
tdσ being T. Then, R0 is defined as {ρ = v ∈ Z

m
q } and R1 is the set composed

of all the sums of two honest encryptions of 0, in other words {ρ = A(s +
s′) + e + e′ mod q |s, s′ ∈ Z

n
q , e, e′ ← Dm

Z,t ∧ ‖e‖ ≤ B ∧ ‖e′‖ ≤ B} with tdρ =
(As+ e,As′ + e′, (s, e), (s′, e′)).

With Xbit = {c $← Z
m
q }, Lbit = {c|∃s, e, c = Encrypt(A0, 0; s, e)} defined

following the description above, and L′
bit = {c ∈ Xbit|Decrypt(T, c) �= 0}. Hence

R′
1 = {c1+c2; (c1, c2) ∈ L′

bit
2} with tdρ = (c1, c2). Note that s could be enough

as a witness for c = As+e ∈ Lbit, as one can check e = c−As is small enough.
This defines the Setup algorithm, and we have:

Definition 8 (Bit-SPHFwGZ over Micciancio-Peikert like Ciphertexts
[4]). For k = Θ(n), and picking s ≥ Θ(

√
n), and s = Ω(mk2q2/3), we can

define:

– HashKG(param) = hk = h $← Dm
Z,s

– ProjKG(hk) = hp = Ath
– Hash(hk, c) = R(〈hk, c〉) = R(〈h, c〉) ∈ {0, 1}
– ProjHash(hp, c, w = s) = R(〈hp, s〉) = R(〈Ath, s〉)

For a word c = As+e in the language Lbit, 〈h, c〉 = htAs+hte = 〈Ath, s〉+
hte. And by construction hte is small. The choice of the rounding function R(x),
characterized by a coin flip where the outcome 1 is weighted by 0.5 · cos( 2πx

q ),
is such that it allows canceling out this small noise most of the time, while
providing smoothness for words outside the language (ensuring that R(〈hk, c〉)
is random when given only hp)

It was shown in [4], that for this choice of random function, such bit-
SPHFwGZ achieves negligible-universality, thanks to the rounding function, but
(3/4 + o(1))-correctness for the chosen set of parameters.

Full-Fledged SPHFwGZ from LWE. The previous construction has limita-
tions as it is neither perfectly correct, nor smooth, we need to apply a trans-
formation to reach those goals. This transformation is explained below, first
informally, then in more details:

– It is a bit-function meaning the final hash value lives in {0, 1}, while one
needs a larger mask. To solve this issue, one has to run it in parallel a linear
number of times, to have an output string long enough.

– The correctness is imperfect. The output bit only matches with probability
3/4 + o(1). As such, applications running Encrypt(pk,m; r) should encryp-
tion a redundant version of m, with an error-correcting code, ECC(m). Such
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transformation makes the SPHF word-dependent (i.e. the projection key is
dependent on the user/receiver input), however in our scenario, such a word-
dependent function is enough.

More formally, given a word c ∈ Xbit, for any � = Ω(n) an error-correcting code
ECC capable of correcting �/4 errors, then, we can define the SPHF as:

– SETUP(1κ): Outputs the result from Setup(1κ)
– HASHKG(param): Picks a random values K ← {0, 1}κ, and ∀i ∈ [�], gets

hki = HashKG(param), and set HK = ({hki},K);
– ProjKG(HK, c) : ∀i ∈ [�], gets hpi = ProjKG(hki),Hi = Hash(hki, c). It

then computes T = ECC(K) ⊕ S where S = (Hi)i∈[
], and outputs HP =
((hpi)i∈[
], T );

– HASH(HK, c): Returns K, from HK;
– PROJHASH(HP, c, w = s) : ∀i ∈ [�], computes H ′

i = ProjHash(hpi, c, s). Then
computes S′ = (H ′

i)i∈[
], and finally K ′ = ECC−1(T ⊕ S′).

Such transformation allows to achieve smoothness which can be proven with
an hybrid argument, handling intermediate distributions where the first Hi val-
ues are random. The correctness is simply inherited from the correcting-code
capacity, while the number of errors to be corrected can be estimated thanks to
the Hoeffding’s bound [15]. We can guarantee the expected properties:

– Correctness: When x = c ∈ Lbit, with the above conversion, we have K =
K ′ with overwhelming probability, thanks to the error-correcting code;

– Smoothness: When x = c �∈ Lbit, then the value K is random from an
adversary point of view, as the parallelization technique allows to transform
the negligible-universality to a classical smoothness (at the cost of a word-
dependent SPHF);

– Half Decomposition Intractability: A random vector ρ should not be
split into two ciphertexts that could be decrypted to 0, or at least not too
often. We first deal with half decomposition intractability, when at most half
of the random vectors can be split. To get a lower-bound on the number of
vectors like such ρ, we can remark that a vector verifies this property as soon
as d(ρ, Λ(A)) is greater than 2 times the decryption bound.
This is the reason, why we took a conservative value B′′ = B′/2 in the
encryption compared to classical Micciancio-Peikert encryption. By halving
the decryption radius, we ensured that adding two elements that still decrypt
within this bound will fall on classically decryptable ciphertexts. As such, at
least half the elements cannot be reached (those that classically decrypted to
1). Hence, Prρ∈Zm

q
[∃c,d|ρ = c+d∧Decrypt(sk, c) = Decrypt(sk,d) = 0] ≤ 1/2.

This is a statistical bound, that holds even when knowing the decryption key.

Another amplification is required to make full-fledged decomposition intractabil-
ity, by working on ciphertexts (cj)j∈[k], with k parallel executions of the SPH-
FwGZ, with a final XOR of all the outputs, so that the smoothness for one word
is enough to get the smoothness for the vector of words, but the correctness on
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all the words leads to the global correctness. With X = (Xbit)
k, the acceptable

languages, for correctness and smoothness respectively are then:

L = (Lbit)k = {(cj)j∈[k]|(∀j ∈ [k]),∃(sj , ej), cj = Encrypt(A0, 0; sj , ej)} ⊂ X
L′ = (L′

bit)
k = {(cj)j∈[k]|(∃j ∈ [k]),Decrypt(T, cj) �= 0} ⊂ X

Then, for random (ρj)j∈[k]
$← X , a decomposition would be a list of pairs

(cj ,dj)j∈[k] ∈ (X × X ) such that for all j, ρj = cj + dj and Decrypt(T, cj) =
Decrypt(T,dj) = 0, which only exists with probability less than 1/2k. We thus
have achieved all the security properties required for our applications.

6 Conclusion

In this paper, we introduced Smooth Projective Hash Functions with Grey Zone,
that generalize SPHF to language subjected to gaps, thanks to the Decomposition
Intractability property. This is enough to get Oblivious Transfer proven secure
in the Universally Composable model. As such a primitive can be obtained from
the LWE problem, we can then obtain a UC-secure post-quantum Oblivious
Transfer.
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Abstract. A verifiable delay function (VDF) is a function whose evalu-
ation involves lengthy sequential operations, yet its outcome is publicly
verifiable. As an extension, a trapdoor-VDF is a VDF with a shortcut
that speeds up the evaluation process. This paper presents a new class of
trapdoor-VDFs featuring a large ensemble of trapdoors for each instan-
tiation of the function. This way, a client can randomly choose a private
trapdoor from the ensemble, thereby using it to encapsulate a secret to
the future as a unique puzzle. To solve the puzzle, the server, which
does not know the trapdoor, requires a prescribed number of sequen-
tial steps to evaluate the function. Any client can efficiently verify the
correctness of the server’s evaluation with zero knowledge of the trap-
door being used. We present an approach for constructing the proposed
class of trapdoor-VDFs based on bilinear pairings and a long walk on
supersingular isogeny graphs. Finally, we examine the security of our
construction under trapdoor-VDF security notions.

Keywords: Delay primitives · verifiable delay functions · delay
encryption · time-lock puzzle

1 Introduction

This work examines a remedy for the vulnerability that arises from knowing or
predicting a protocol’s outcome. The vulnerability stems from malicious partici-
pants influencing the outcome or gaining an advantage by knowing the outcome
beforehand. One way to solve this problem is to impose a prescribed number of
sequential steps to obtain the desired outcome. This solution has been introduced
in the previous works such as time-lock puzzle (TLP) [29], proofs of sequential
work (PoSW) [1,15,22,26], and verifiable delay functions (VDFs) [6]. These prim-
itives are all time-sensitive in that they only release the outcome after a prescribed
delay (T ). The outcome of VDF and PoSW is publicly verifiable, while that of TLP
requires a secret. The public verification of the outcome’s uniqueness is more effi-
cient in VDF than in PoSW since the latter requires all T steps. The uniqueness
property ensures that there are no multiple valid proofs for different outcome.

This work focuses more on the properties, specifically uniqueness and public
verifiability, that make VDF stand out from others. Furthermore, we are inter-
ested in a VDF-like primitive that allows any participant (other than the trusted
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G.-V. Jourdan et al. (Eds.): FPS 2022, LNCS 13877, pp. 71–87, 2023.
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setup) to predict the outcome in advance by knowing a secret trapdoor. In the
absence of the secret trapdoor, participants obtain the desired outcome through
a prescribed number of sequential evaluations. It is, however, possible to verify
the result efficiently and publicly. We refer to primitives with such character-
istics by trapdoor-VDF. Considering its importance, trapdoor-VDF is suitable
for time-sensitive applications that require both public verification and timely
release assurances. There are many possible applications, such as sealed-voting,
delayed decapsulation [9,25], and front-running attack prevention [14].

Related Work. Since the work of Boneh et al. [6], several VDF constructions
have been proposed based on Rivest, Shamir, and Wagner’s time-lock assump-
tion [29], including [5,17,24,28,30], and [34], which use different verification tech-
niques, provide additional properties and offer enhancement. Several other con-
structions [12,18,31] are based on the difficulty of shortening the evaluation of
isogeny with a large degree, which was first introduced by [18]. The verification
proof of [18] is based on the bilinear pairing of the Boneh-Lynn-Shacham (BLS)
signature scheme [8]. Similar to time-lock functions, Shani’s [31] proof requires
releasing a secret shortcut to the puzzle to recompute the puzzle’s answer. In
[12], Chavez-Saab et al. propose an inefficient verification method based upon
succinct non-interactive arguments (SNARGs).

Later, a delay encryption scheme [9] was developed using Boneh and
Franklin’s identity based encryption (IBE) scheme [7] in conjunction with Feo
et al.’s delay function [18]. The scheme in [9] can operate in batch mode so that
the function can be evaluated once to perform many decryptions. However, the
method requires a trusted, unpredictable seed, along with a considerable amount
of storage to perform computations (e.g., 12TB for 1 h delay [9]). Furthermore,
their approach does not employ a trapdoor mechanism to predict the answer
in advance. Hence, trapdoor-VDF is more comparable to TLP even though the
former offers efficient public verification without revealing any secrets (i.e., the
secret trapdoor). We note that recent work has extended the security of TLPs
and discusses the notion of its public verifiability, some of which are [2,3,13,20].

In addition, the term “trapdoor-VDF” has been used previously in [34],
though their approach differs from that presented in this paper. In [34], each
participant constructs independent instances of trapdoor-VDF. Every instance
has a secret trapdoor that shortens the long evaluation process. Therefore, an
instance generator can answer any challenge faster as it has the secret trap-
door. Our work presents a new class of trapdoor-VDFs, where each instantiation
includes a description of a finite trapdoor ensemble. Hence, any participant can
generate a unique challenge, together with its answer, using a hidden trapdoor
sampled at random from the ensemble.

Contributions. In this paper, we first formalize the security notions of
trapdoor-VDF. We then introduce a novel approach to trapdoor-VDF; the pro-
posed trapdoor-VDF is a VDF with a large ensemble of distinct efficient short-
cuts called trapdoors. The delay function involves sequentially evaluating a large
smooth degree supersingular isogeny, which was first proposed by Feo et al. [18].
The trapdoor ensemble is a set of isogenies of a smaller degree defined over
Fp, where p is a prime. In public verification, a bilinear pairing equality serves
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as proof of the correct evaluation of a secret trapdoor (i.e., a randomly sam-
pled isogeny). Finally, we show that our proposal is secure under trapdoor-VDF
security notions.

2 Preliminaries
General Notations. If n is a positive integer, the set {1, . . . , n} is denoted by
[n]. In general, a finite set is denoted by calligraphic font (e.g., S). The cardinality
of a set S is denoted by |S|. Let e ←R S denote the process of uniformly sampling
a random element e from S. The deterministic selection of e from S is denoted
by e ← S. If Exe is an algorithm, a ←R Exe denotes running Exe on fresh random
coins and assigning the output to a. The deterministic execution of Exe, on the
other hand, is denoted by a ← Exe. The notation Pr[Evnt : P1, P2, . . . , Pn] is
used to represent the probability of an event Evnt occurring after the ordered
processes P1, P2, . . . , Pn. We denote the composition of two functions by ◦ such
that f ◦ g(x) = f(g(x)) for some input x. Let m ←R Sn be the vector (mi)i∈[n]

of size n such that mi ←R S for all i ∈ [n]. The set of all odd prime numbers
that are less than or equal to k is referred to as Primes(k). For an integer a and
an odd prime b, the Legendre symbol is denoted by ( a

b ).

Supersingular Elliptic Curve. Throughout this work, we consider a curve
E/Fp to be a supersingular elliptic curve defined over a prime field Fp with a
large prime p. A point P on E/Fp is the pair (x, y) ∈ Fp × Fp. The set of Fp-
rational points on E/Fp is denoted as E(Fp) and the set size as |E(Fp)|. Let ∞E

be the point at infinity on E/Fp and ∞E ∈ E(Fp). The field Fp is the algebraic
closure of Fp. The subgroup of points of order N is called the N -torsion points
which is defined as E[N ] = {P ∈ E(Fp) : [N ]P = ∞E}.

Definition 1 ([32]). An elliptic curve E/Fp is supersingular if the following
equivalent properties are true

– There is no P ∈ E(Fp) with order p (i.e., E[p] = {∞E}).
– |E(Fp)| = p + 1 − t and p|t (i.e., gcd(p, t) �= 1).
– The endomorphism ring of E/Fp is an order in a quaternion algebra.

Otherwise, E/Fp is said to be an ordinary curve.

Isogenous Curves. An isogeny between curves (φ : E1 → E2) is a surjective
morphism that has a finite kernel such that φ(∞E1) = ∞E2 . We say φ is defined
over Fp, if the non-constant rational map representing φ has coefficients in Fp.
Let 〈S〉 be a cyclic subgroup of E(Fq) generated by S. In this work, we compute
an isogeny φ with kernel 〈S〉 using Vélu’s formulas [33]. Also, we will focus
on separable isogenies where the isogeny degree is its kernel size (i.e., deg φ =
|ker(φ)|). An isogeny of degree l is denoted by l-isogeny. Furthermore, an isogeny
φ has a unique dual isogeny φ̂ with the same degree (deg φ = deg φ̂) such that
φ̂ : E2 → E1, and φ ◦ φ̂ = [deg φ] on E2, where [m] is multiplication-by m
mapping (see [32, Theorem 6.1]). The non-backtracking walk is a sequence of
isogenies that is not cyclic or followed by any dual isogeny(s).
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The set of all group homomorphisms (i.e., isogenies) from E to itself is
called the endomorphism ring of E (End(E)). The endomorphism ring defined
over Fp is denoted as EndFp

(E). An isogeny is called horizontal isogeny if
EndFp

(E1) ∼= EndFp
(E2) ∼= O [21] where O is an order of an imaginary

quadratic field. Furthermore, we donate the set of supersingular elliptic curves
defined over Fp with O by EFp

(O). By definition, curves in EFp
(O) are connected

by horizontal isogenies.

A Supersingular Isogeny Graph Over Fp. The structure of a supersingular
isogeny graph over Fp is studied by Delfs and Galbraith, which is described in
[16, Theorem 2.7]. Let L be a set of distinct primes such that p �∈ L, ( −p

li
) = 1

for all li ∈ L. For p > 3, the graph G(Fp, li) is a directed supersingular isogeny
graph where the vertices are a Fp-isomorphism classes of supersingular elliptic
curves represented by j-invariants with an extra information to classify them into
their Fp-isomorphism class (i.e., to differentiate between elliptic curve twists).
The graph edges are equivalence classes of Fp-rational isogenies of a degree li. In
our work, we employ a graph that represents the union of all G(Fp, li), ∀li ∈ L.

Isogeny and Pairing. Let N be a large prime such that N �= p and N ||E1(Fp)|.
Let μN be the group of Nth roots of unity in F

∗
pu , where u is the smallest integer

such that N |pu − 1. The Weil pairing is the map êE
N : E[N ] × E[N ] → μN that

satisfies several properties. In particular, the Weil pairing has the property of being
compatible with isogenies (see [32, Proposition 8.2]); and it is trivial to show that

êE1
N (P, [deg φ]Q) = êE2

N (φ(P ), φ(Q)), (1)

where P ∈ E1[N ], Q = φ̂(Q′) for Q′ ∈ E2[N ], and φ ◦ φ̂ = [deg φ] on E2.

3 Proposed Trapdoor-VDFs

By λ ∈ N, we indicate the security level of a scheme. A function difficulty is
denoted by T , which quantifies the amount of sequential work/steps necessary to
produce/compute its output against any random input and with a polynomially
large number of parallel processes. A function with a small T is identified as a
short function, whereas one with a large T is called a long sequential function.
Generally, we will denote the long sequential function by EVAL, with T being
super-polynomial in λ.

An Informal Exposition. The proposed trapdoor-VDF is a VDF with a large
ensemble of distinct shortcuts denoted by F , called trapdoors. We say two trap-
doors are equivalent if they produce the same output for the same inputs. The
set of equivalent trapdoors is called a class. The class difficulty is the shortest
trapdoor difficulty. Hence, the ensemble F is a collection of trapdoor classes.

Trapdoor-VDF Setup Agreement. Participants of a setup protocol agree on a long
function EVAL with a difficulty T , a large ensemble of trapdoors F , and possibly
additional parameters for a security level λ.
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Generation of a Challenge. In trapdoor-VDF, a Challenger can select a secret
trapdoor trsk indexed (identified) in F by a random secret (sk). Using the trap-
door, the challenger can efficiently generate a challenge (c) and its unique answer
(a). With the same parameters, distinct trapdoors produce different challenges
(and accordingly different answers).

Obtaining the Answer. In the absence of sk, a Solver can only evaluate EVAL
function in time no less than T to output the answer to c with a proof Π. Akin to
VDF, the Solver gains no advantage from parallel computation. The Challenger
can, however, get the answer a via the trapdoor trsk (i.e., in time less than T ).

The Public Verification. The answer a is publically verifiable that is also in a
zero knowledge of the secret sk. In a timeframe less than T , a perfect trapdoor-
VDF is one in which the Challenger, who owns c and knows a, cannot pass the
public verification protocol. This is because the required proof cannot be fully
computed before the specific time T .

A Formal Definition. We present our formal definition of trapdoor-VDF,
which naturally overlaps with [6] and [34]’s VDF definition.

Definition 2. Let C, S, Y be the challenge, secret, answer spaces, respectively.
Our trapdoor-VDF is a tuple of algorithms (Setup, Challenger, Solver, Verify)
defined below

– Setup: a randomized algorithm (runs in time Poly(λ)) that takes a security
parameter λ and a difficulty T and outputs public parameter pk.

– Challenger: a randomized algorithm (runs in time Poly(log T, λ)) that takes
pk and selects a secret trapdoor trsk from the trapdoor ensemble F using
a random secret sk (i.e., trsk ← F given sk ←R S); then, it generates a
challenge c ∈ C.

– Solver: an algorithm that takes pk and a challenge c ∈ C and outputs the
answer a ∈ Y and a “possibly empty” proof Π. This algorithm must at least
run in time T with Poly(λ) parallel processors.

– Verify: is a deterministic algorithm (runs in total time polynomial in log T
and λ) takes a challenge c, an answer a, a proof Π, and pk; the algorithm
outputs accept if a is indeed the corresponding answer to c under a given
Π, otherwise reject.

Trapdoor-VDF Properties. The following assumes that all statements are
true for any λ, T and pk ←R Setup(1λ, T ). A trapdoor-VDF construction is
well-defined if it is correct, unique, and efficient.

– Correctness: A trapdoor-VDF is correct only if the Verifier accepts, with
probability one, an honest Solver’s answer a for any honest challenge c ←R

Challenger(pk).
– Uniqueness: A trapdoor-VDF is unique only if there is only one valid answer
a, accepted by Verify, to every challenge c ←R Challenger(pk) with a secret sk.

– Efficiency: A trapdoor-VDF is efficient if the Verify algorithm runs in a time
Poly(log T, λ) that is significantly faster than the Solver algorithm, which has a
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total running time polynomial in T and λ. Further, trapdoor-VDF must retain
efficiency for any public parameters generated by Setup, runs in Poly(log T, λ),
and any challenge generated by Challenger, which runs in time Poly(log T, λ).

Let A be a polynomially bounded adversary who has no knowledge of the
secret sk. Let A1 be an algorithm that outputs pre-computation on pk. Let A2

be an online efficient evaluating algorithm that runs in parallel time with Poly(λ)
processors and returns an answer a′. Let A3 be an online forging algorithm that
runs in time Poly(T, λ) and returns a malicious answer and proof (a′ �= a,Π ′).
To be secure, a well-defined trapdoor-VDF should satisfy two key properties:
sequentiality and soundness.
– Sequentiality: A trapdoor-VDF is sequential only if there is no adversary

A := (A1,A2) that has an online attack (A2) running in time less than T
and has a probability of success

Pr

⎡
⎢⎢⎢⎢⎣
a′ = a :

pk ←R Setup(1λ, T ),
pc ← A1(pk),
c ←R Challenger(pk),
(a′,−) ← A2(pk, c, pc),
(a,Π) ← Solver(pk, c).

⎤
⎥⎥⎥⎥⎦

that is greater than a negligible function of λ.
– Soundness: A trapdoor-VDF is sound only if the Verifier rejects any proof

Π ′ for any answer a′ that is not an output from Solver(pk, c) on any c ←R

Challenger(pk). The probability of success for the adversary A := (A1,A3) to
output a proof Π ′ for an answer (a′,−) �= Solver(pk, c) is

Pr

⎡
⎢⎢⎢⎢⎣
accept ← Verify(pk, c,a′,Π ′)
and a′ �= a :

pk ←R Setup(1λ, T ),
pc ← A1(pk),
c ←R Challenger(pk),
(a,Π) ← Solver(pk, c),
(a′,Π ′) ← A3(pk, c, pc).

⎤
⎥⎥⎥⎥⎦

that is a negligible function of λ.

Additionally, a well-defined trapdoor-VDF may comprise further properties,
and one that is most relevant to our work is given below.

– Perfectness: The knowledge of trsk and the pair (c,a) solely does not provide
an advantage in passing the public verification protocol. Let Â be an algo-
rithm implementing Challenger, which outputs the pair (c,a) and an algorithm
Â2. The probability of success for Â2 to output an acceptable proof Π ′, in
time less than T , for any pair (c,a) is

Pr

⎡
⎢⎢⎣
accept ← Verify(pk, c,a,Π ′)
and accept ← Verify(pk, c,a,Π) :

pk ←R Setup(1λ, T ),
(c,a, Â2) ← Â(Challenger, pk),
(−,Π ′) ← Â2(pk, c,a),
(a,Π) ← Solver(pk, c).

⎤
⎥⎥⎦

that is a negligible function of λ.
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Further on Trapdoor-VDF Properties. A secure well-defined trapdoor-
VDF accounts also for the trapdoor properties and assumption(s). This is due
to the fact that a secure well-defined Challenger requires a secure well-defined
trapdoor. Formally, a trapdoor trsk ∈ F , associated with a domain D(trsk) and
range R(trsk), is defined as follows

– trsk: a short function in sk ←R S, with evaluation time Poly(log T, λ), that
takes an input pk; the function evaluation returns a challenge and answer
pair (c,a) ∈ C × Y.

For any random secret sk ←R S and trsk ← F , the trapdoors in trapdoor-
VDF feature several properties.

– Challenger correctness: Let (c,a) be a challenge and its answer pair gener-
ated by trsk. The correctness property requires that the answer (a′,−) ←
Solver(pk, c) be equal to a with probability one (i.e., we must have a′ = a
with probability one). There is, however, an extension to the previous state-
ment. For instance, we can allow a′ �= a only if there is a one-way public
function (f) such that a ← f(a′) and accept ← Verify(pk, c, f(a′),Π) is true
for all c ∈ C and all valid proofs Π. Having such an extension allows us to
construct a prefect trapdoor-VDF in which the Challenger, who owns c and
knows a, cannot pass the public verification protocol before time T .

– Challenger efficiency: All trapdoors in a trapdoor-VDF must also be efficient.
For any λ, T and pk ←R Setup(1λ, T ), the efficiency implies that (as in [4]):

• There is an algorithm that runs in time Poly(log T, λ) and implements the
process of sampling trsk from F for all sk ∈ S.

• There is an algorithm that runs in time Poly(log T, λ) and implements the
process of sampling an element from D(trsk) (and/or R(trsk)).

• There is an algorithm that evaluates trsk in time Poly(log T, λ) for any
element of D(trsk).

– Challenger security: To be secure, the following problems must be hard for
any λ, T and pk ←R Setup(1λ, T ).

• Given any challenge c ∈ C generated under the secret trsk ∈ F , find the
challenge’s answer a ∈ Y in time less than T .

• Given any challenge and answer pair (c,a) ∈ C×Y generated by trsk ∈ F ,
find sk ∈ S.

• Let (c′,a′) ∈ C ×Y be any challenge and answer pair generated by trsk′ ∈
F . Given a challenge c ∈ C under trsk ∈ F , find its answer a ∈ Y.

Similar to VDF, the difficulty T is restricted to subexponential in λ. It is
therefore cheaper to perform the T -sequential evaluation than to compromise
the trapdoor-VDF security.
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4 Design Rationale

This section discusses our approach to construct a proof-of-concept instance of
trapdoor-VDF. To construct trapdoor-VDF, we begin by defining a long sequen-
tial public function EVAL : X → X with a public challenge and answer (i.e.,
x, y ∈ X such that y ← EVAL(x)). The secret is a random string (sk ←R S) that
indexes a secret short map (trsk : X → X ) in the ensemble F . Using a random
secret map, one may craft a trapdoor. A new challenge (x′) can be obtained by
masking x with trsk (i.e., x′ ← trsk(x)). The secret map trsk, which can also
determine y′ ← trsk(y), becomes the trapdoor. This statement is true assuming
that the action trsk ◦ EVAL is equivalent to EVAL ◦ trsk. In the absence of trsk,
one can obtain y′ by evaluating y′ ← EVAL(x′), which involves a large number
of sequential steps.

Lastly, the verification procedure involves validating trsk’s correct compu-
tation statement with zero knowledge of trsk, where the Solver’s answer (y′′)
serves as the statement witness. The validation arguments should be efficient,
validating only the unique answer (i.e., a Verifier accepts only if y′′ = y′).

In the following, we present a sketch construction of the proposed trapdoor-
VDF. Essentially, the construction consists of evaluating a series of non back-
tracking horizontal isogenies with a large degree (representing EVAL), whereas
the secret trapdoor is a shorter horizontal isogeny walk in graphs over a finite
field Fp (representing trsk). Our public verification protocol uses bilinear pairings
similar to BLS signature scheme [8], which is also used in [9] and [18].

4.1 Construction Elements

First, we define the public parameters that we will use to construct our scheme.
Following that, we will briefly describe the supersingular isogeny graph, upon
which both the long evaluation function and short trapdoor operate. Lastly,
we will discuss the scheme group structure and the scheme’s public verification
method.

Selection of the Scheme Parameters. The parameters for our scheme are
generated with the help of the following algorithms.

– (p,L, N,S, t, E0) ← GGen(1λ, T ) is a public parameter generation algorithm
that takes a security parameter λ and difficulty T as an input and outputs:

• a large odd prime p such that p = 7 mod 8,
• a set L of n small distinct primes defined as follow

L := {2} ∪ {l ∈ Primes(6 log(p)2) : (
−p

l
) = 1},

• a large prime N such that N �∈ L and N | p + 1,
• the set S := {−e, . . . , e} for a positive integer e where |S| = 2e + 1,
• the vector t ← T n of n elements, where T := {−mmax

n �, . . . , mmax
n �},∑

m∈t abs(m) = T < 2o(λ), and a positive integer mmax < 2o(λ),
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• a supersingular elliptic curve E0/Fp on the surface of G(Fp, 2), where
|E0(Fp)| = p + 1 and possibly with j-invariant j(E0) ∈ {0, 1728}.

– E ←R Alg(1λ, E′,L) is a randomized algorithm that takes an initial curve
E′, the set L, and security parameter λ. The algorithm Alg outputs a random
supersingular elliptic curve E/Fp on the graph surface. Basically, this algo-
rithm involves taking a random horizontal isogeny walk (see [18]) of a length
of at least Poly(log p). It is required that the probability of finding isogeny
(path) between the output curve E and an initial curve E′ be a negligible
function in λ.

4.2 The Graph in Use and the Single Step of Computation

The graph over Fp described in [16, Theorem 2.7] is the abstraction behind our
scheme. In our scheme, the graph consists of two levels, namely a surface (i.e.,
EFp

(Z[1+
√−p
2 ])) and a floor (i.e., EFp

(Z[
√−p])). In this graph, surface and floor

have one-to-one connection by 2-isogenies, and there are no odd-degree isogenies
connecting them. On the graph surface, there are two horizontal isogenies of
degree li ∈ L from each vertex, whereas the floor is connected by isogenies of
degree li ∈ L/{2}.

In our construction, a sequential walk on the graph is represented by the
group action of the ideal class group cl(O) of an imaginary quadratic order
O ∼= Z[1+

√−p
2 ] on the set EFp

(O). Hence, both EVAL and trsk act on the set
EFp

(O). The choice of L’s elements enables us to represent the elements of cl(O)
as a product of ideals of small norm N(l) such that N(l) ∈ L. Thus, we represent
a single step in the sequential walk by the group action of an ideal of a norm in
L that acts on EFp

(O).
The elements of L are chosen to be Elkies primes. Hence, the ideal liO splits

into li = (li, π − 1) and l̂i = (li, π + 1) for every li ∈ L (i.e., liO = lîli,∀li ∈ L).
This defines the direction of a single step. From every vertex in the graph surface,
there are two actions of an ideal with norm li that can be applied, either li or l̂i.
Further, each direction can be computed via an isogeny using Vélu’s formulas
[33]. In other words, a single step in one direction, denoted by φli , is an isogeny
of a kernel of order li intersecting with ker(π − [1]). As for the step in the
opposite direction, denoted by φ−1

li
, represents an isogeny of a kernel of order li

intersecting with ker(π + [1]). Finally, for an integer mi, we denote li-sequential
walk by φmi

li
, which represents mi sequences of li-isogeny evaluation in the same

direction.

The Long Evaluation Function. As with [18] and [31], the long evaluation is
represented by an isogeny of large degree, exponential in T ,

EVAL := φt
L : E → EA

which is a composite of all φmi

li
for all li ∈ L and mi ∈ t (i.e., φt

L := φmn

ln
◦n

· · · ◦1 φm1
l1

, where mi ∈ t and |t| = n). The degree of φt
L is

∏n
i=1 l

abs(mi)
i and it

has a difficulty of
∑n

i=1 abs(mi) = T . The presumption is that to compute EVAL
efficiently, all T composites of φt

L must be evaluated sequentially.
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The Secret Trapdoor and Secret Trapdoor Set. As with [11,31], we want
to be able to efficiently sample a random trapdoor from their ensemble F . We
will therefore randomly sample sk := s ←R Sn to represent the trapdoor as

trsk := φs
L : E → EB .

The set S is chosen so that the trapdoor φs
L is much shorter than φt

L. However,
the size of S must be large enough to ensure that there exist |S|n ≥ 22λ possible
secrets.

4.3 The Scheme Group Structure and Its Public Verification

Let GE
i be a subgroup of E[N ] where E ∈ EFp

(O) and i ∈ [N ]. The trace-
zero and the base-field subgroup of E[N ] are represented by subscripts 1 and 2,
respectively1. Under the assumption that (i) N is coprime to |ker(φt

L)| and N �=
p, and (ii) E and EA are isogenous (so that |E[N ]| = |EA[N ]|), the surjective
morphism φt

L : E[N ] → EA[N ] must also be injective induced by the Lagrange’s
theorem; hence it is a bijective group homomorphism on the N -torsion subgroup
(similar argument applies for φs

L). Let σ−1 be a quadratic twist defined as follows

σ−1 : E → E(d) ∈ EFp
(O)

σ−1 : GE
i∈{1,2} → G

E(d)

2i mod 3

where E(d) is a twist of the curve E. The inverse quadratic twist (i.e., σ : E(d) →
E) is efficiently computable and it is defined as follows

σ : (x, y) → (x/w2, y/w3)

where w ∈ Fp2 , w �∈ Fp, and it has w2 ∈ Fp. In our configuration, it should be
noted that σ ◦ φmi

li
(E) and φ−mi

li
◦ σ(E) are equivalent.

Pairing Based Public Verification in a Nutshell Let êE
N : E[N ]× E[N ] →

μN be a non-degenerate Weil pairing map on E, where μN ⊂ F
∗
p2 . A non-trivial

bilinear Weil pairing can be defined as êE
N : GE

1 × GE
2 → μN . This definition

is equivalent to êE
N : σ(GE(d)

2 ) × GE
2 → μN , which is efficiently computable

with inputs of short representation. Let E, EA = φt
L(E), EB = φs

L(E), EAB =
φs

L(EA), and EBA = φt
L(EB) be a set of isogenous supersingular elliptic curves.

The public verification proceeds as follows:

– A Challenger, Verifier, and Solver all share as an input the description of
the isogeny φt

L : E → EA of difficulty T , and the point pair (xGE
1 , yG

EA
1 ) ∈

GE
1 × GEA

1 such that yG
EA
1 = φt

L(x
GE

1 ). All inputs are chosen for a security
parameter λ.

1 The subgroup GE
1 is defined as GE

1 := E[N ] ∩ ker(π + [1]), whereas, GE
2 := E[N ] ∩

ker(π − [1]).
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– A Challenger selects s ←R Sn that defines the secret short isogeny φs
L : E →

EB ; then, it
• randomly samples integers kA, kB , and kAB such that kAk−1

B k−1
AB =

deg φs
L(modN),

• computes and broadcasts the challenge ([kA]QG
EA
2 , x̂G

EB
1 , QG

EAB
2 ) ∈ GEA

2

× GEB
1 ×GEAB

2 such that x̂G
EB
1 = [kB ]φs

L(x
GE

1 ), QG
EA
2 ←R GEA

2 , and
QG

EAB
2 = [kAB ]φs

L(Q
G

EA
2 ).

– A Solver computes the answer ŷG
EBA
1 ← φt

L(x̂
G

EB
1 ), which requires T sequen-

tial isogeny evaluations, and then broadcasts ŷG
EBA
1 .

– A Verifier outputs accept if ŷG
EBA
1 satisfies the following equality

êEA

N (yG
EA
1 , [kA]QG

EA
2 ) = êEAB

N (ŷG
EBA
1 , QG

EAB
2 ), (2)

otherwise returns reject.

From Eq. (1), the above-mentioned verification is complete, as shown below.

êEA

N (yG
EA
1 , [kA]QG

EA
2 ) = êEAB

N (φt
L ◦ [kB ]φs

L(x
GE

1 ), [kAB ]φs
L(Q

G
EA
2 )),

êEA

N (yG
EA
1 , [deg φs

L]Q
G

EA
2 ) = êEAB

N (φs
L(y

G
EA
1 ), φs

L(Q
G

EA
2 )).

Moreover, it is obvious that the correctness of the scheme depends on the ter-
minal elliptic curves (i.e., EAB and EBA) being identical. To be consistent with
previous work [18], Fig. 1 shows the proof system’s structure.

Fig. 1. The diagram illustrates the structure of the proposed trapdoor-VDF’s proof
system. The map φ−t

L is the L-sequential walk φt
L in the opposite direction (and similar

for φs
L).
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4.4 An Instance of the Trapdoor-VDF

The following is a formal description of a trapdoor-VDF instance constructed
from the action of class groups on supersingular elliptic curves with bilinear
pairings being used for public verification. They are all defined by the parameters
chosen in the previous section.

Fig. 2. The proposed trapdoor-VDF instance is defined by the four algorithms
described above.

Discussion. It is imperative that a trusted process runs Setup due to an attack
that exploits an elliptic curve with known endomorphism rings (see [18]). To
generate the public parameters, the Setup must select E and then compute φt

L,
which takes O(T ) steps. A Challenger must sample a one-time secret s to compute
x̂G

EB
1 and QG

EAB
2 , with the evaluation time being a polynomial function in λ.

Essentially the challenge consists of three elliptic curve points. To obtain the
answer, the Solver must compute φt

L, which is a separable isogeny of a degree
exponential in T . Typically, the best approach for computing φt

L is to sequentially
compute each of its T compositions, of degrees li ∈ L, using Vélu’s formulas. A
single point on the target curve EBA serves as both the answer and the proof. The
verification involves two bilinear pairings. It also involves determining whether
all points are members of the appropriate group, a relatively trivial operation.
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5 Security

We will show that the trapdoor-VDF proposed in Sect. 4.4 is secure well-defined
with an honest challenge and the aforementioned setup that takes O(T ) steps.

Theorem 1. The trapdoor-VDF instance in Sect. 4.4 is a secure well-defined
trapdoor-VDF with a O(T ) steps long Setup and under the assumption of an
honest Challenger.

Correctness, and Uniqueness. The following assumes that all statements are
true for any λ, T , pk ←R Setup(1λ, T ). For all honest c ←R Challenger(pk), the
correctness argument implies that any honest evaluator should be able to obtain
the answer a ← Solver(pk, c) which is Verify’s acceptable answer.

However, the correctness argument is not complete yet. We also require that
the Challenger and Solver must land on the same terminal elliptic curve and
not only curves on the same isomorphism class. In other words, the evaluation
output (φt

L(c.x̂
G

EB
1 )) and the challenge (c.QG

EAB
2 ) have to be on the same curve

(i.e., EBA = EAB). This is required so that the Verifier can evaluate Eq. (2).
The verification in Eq. (2) is likewise unique, as we employ a similar version of
the [8]’s (and [18]) verifier.

Lemma 1. Given any λ, T , and pk ←R Setup(1λ, T ), a Solver’s honest out-
put a.ŷG

EBA
1 is indeed a point on the Challenger’s terminal curve (EAB) such

that a.ŷG
EBA
1 = ŷG

EAB
1 and accept ← Verify(pk, c,a), for all honest c ←R

Challenger(pk); further, there is no answer a′ that is a valid answer (i.e., accept
← Verify(pk, c,a′)) unless a′ = a = φt

L(c.x̂
G

EB
1 ).

Proof. The proof to the first part of the lemma follows from the result of Leonardi
[23, Theorem 3.1]. Leonardi’s result implies the equivalency between the action
of φs

L ◦ φt
L and φt

L ◦ φs
L when all computed with Vélu’s formulas. As for the

uniqueness, we have set our parameters so that (i) as mentioned in Sect. 4.3, the
surjective morphism φt

L : EB [N ] → EBA[N ] is a group isomorphism on the N -
torsion subgroup and (ii) as discussed in [18], Eq. (2)’s right-hand side is a group
isomorphism from GEBA

1 to μN for a given c.QG
EAB
2 . Hence, Verify((pk, c),a′)

outputs accept if and only if a′ = a = φt
L(c.x̂

G
EB
1 ) ∈ GEBA

1 .

Soundness. Since there is only one valid answer, the verification is unique, as
is a property of [8]’s verifier. Thus, and similar to [18], our trapdoor-VDF is
perfectly sound.

Sequentiality. In the following, we introduce the concept of sequentiality in our
trapdoor-VDF by presenting the shortcut game.

Definition 3 (The shortcut game). Let λ and T be a security and a difficulty
parameters, respectively. Let A := (A1,A2) be a party that participates in the fol-
lowing game. (i) A trusted process computes and publishes pk ←R Setup(1λ, T ),



84 A. Zawia and M. A. Hasan

(ii) A preforms a pre-computation in time Poly(T, λ) and outputs pc ← A1(pk),
(iii) a trusted process then computes and publishes c ←R Challenge(pk), (iv) A
computes and outputs ŷG

EBA
1 ← A2(pk, c, pc) in parallel time less than T , where

ŷG
EBA
1 ∈ GEBA

1 .
To win the game, A’s output, ŷG

EBA
1 , is required to be the correct evaluation

of φpk.t
pk.L on c.x̂G

EB
1 (i.e., to be equal to a ← Solver(pk, c)).

The proposed trapdoor-VDF is sequential if there is no polynomially bounded
player A with a non-negligible probability of winning the above shortcut game.
A player A can win the game by finding (i) a shorter isogeny than φt

L, (ii)
a faster method for computing φt

L, (iii) the inverse of pairing Eq. (2), or (iv)
the secret isogeny φs

L (or a short equivalent isogeny). The three former points
have already been discussed in [18, Section 6]. With regards to the last point,
the sequentiality is also determined by recovering the secret isogeny trsk := φs

L
or obtaining a short equivalent isogeny. In other words, this is equivalent to
recovering the ideal class [b] ∈ cl(O) that is computed via the secret isogeny φs

L.

Definition 4 (Key recovery [11]). Given two supersingular elliptic curves E
and EB defined over Fp with the same Fp-rational endomorphism ring O, find
an ideal b such that [b]E = EB and b is the product of ideals of small norm in
L.

There are several possible attacks for recovering the secret, some of which are
discussed in [11].

Brute-force Attack on the Secret Key. A basic attack searches over all
potential keys. For a secret s, its corresponding secret ideal class [b] is represented
as [lm1

1 lm2
2 · · · lmn

n ] ∈ cl(O) such that N(li) = li ∈ L and mi ∈ s. Thus, it can be
argued that [b] has several representations (i.e., there are an equivalent ŝ ← Sn

that yields [b] ∈ cl(O)), which is vulnerable to exhaustive search. Castryck et al.
[11] show that the expected number of equivalent representations is |S|n/ord(G),
assuming that cl(O) is almost cyclic with a very large cyclic component of order
ord(G) close to |cl(O)|. Therefore, it suffices to choose n log |S| ≈ log(

√
p), where

|cl(O)| ≈ √
p.

Pohlig-Hellman-style Attack. To our knowledge, the Pohlig-Hellman style
attacks cannot be effectively applied to the construction in Sect. 4.4 to recover
the secret degree (deg φs

L) or the answer (ŷG
EBA
1 ).

Castryck-Decru-style Attack [10]. As in [19], we mask the torsion points
in pairing-based verification. Therefore, the point pairs (yG

EA
1 , [kA]QG

EA
2 ) on

EA and (ŷG
EAB
1 , QG

EAB
2 ) on EAB are not images of the secret isogeny φs

L. In
addition, the secret isogeny φs

L has a hidden degree determined by s, which
is similar to the countermeasure suggested in [27]. Hence, to the best of our
knowledge, our proposal is naturally resistant to a Castryck-Decru-style attack
because we conceal torsion points’ preimage and the secret isogeny degree.
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Meet-in-the-middle Attack (MITM). To find the path (φs
L : EA → EAB) in

the isogeny graph
⋃

li∈L G(Fp, li), MITH starts from EA and EAB to construct
search trees. The attacker looks for the collision in the tree. The halfway point
between EA and EAB is the isogeny evaluation of the halves of the set L, Lleft :=
{l1, l2, . . . , ln/2}, and Lright := {ln

2 +1, . . . , ln} (for simplicity assume that n is
even). Let J be the set size of all elliptic curves defined over Fp that are isogenous
to EA, constrained to S, in the halfway to EAB . We observe that the set size
is |J | = |S|n/2 − 1; thus the attack average-case isogeny computation is about
≈ 2n log(|S|)/2. Setting n log(|S|) to be ≈ log (p)/2, the attack’s average-case
complexity is 2log (p)/4.

6 Conclusion

We have presented a new class of trapdoor-VDFs that have a large ensemble of
trapdoors for each VDF instantiation. In the proposed scheme, a secret trap-
door, chosen randomly from the ensemble by Challenger, is used to generate a
challenge. In a few steps, Challenger can obtain the answer to a challenge by
using the secret trapdoor. Without knowing the secret trapdoor, a Solver on
the other hand must perform the long sequential computations. We have also
presented a trapdoor-VDF construction based on [11,18,31].

Our future work will focus on proving that the proposed construction elimi-
nates computational advantage of the instance generator (i.e., not being able to
obtain the trapdoor or break the scheme sequentiality). Further, the setup of the
proposed instantiation requires evaluating the lengthy sequential computations,
so it is beneficial to examine newer approaches to make the procedure efficient.
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3 LTCI, Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France
lfreitas@telecom-paris.fr

Abstract. Fully homomorphic encryption (FHE) is a powerful cryp-
tographic technique allowing to perform computation directly over
encrypted data. Motivated by the overhead induced by the homomor-
phic ciphertexts during encryption and transmission, the transciphering
technique, consisting in switching from a symmetric encryption to FHE
encrypted data was investigated in several papers. Different stream and
block ciphers were evaluated in terms of their “FHE-friendliness”, mean-
ing practical implementations costs while maintaining sufficient secu-
rity levels. In this work, we present a first evaluation of hash functions
in the homomorphic domain, based on well-chosen block ciphers. More
precisely, we investigate the cost of transforming PRINCE, SIMON,
SPECK, and LowMC, a set of lightweight block-ciphers into secure
hash primitives using well-established hash functions constructions based
on block-ciphers, and provide evaluation under bootstrappable FHE
schemes. We also motivate the necessity of practical homomorphic eval-
uation of hash functions by providing several use cases in which the
integrity of private data is also required. In particular, our hash construc-
tions can be of significant use in a threshold-homomorphic based protocol
for the single secret leader election problem occurring in blockchains with
Proof-of-stake consensus. Our experiments showed that using a TFHE
implementation of a hash function, we are able to achieve practical run-
time, and appropriate security levels (e.g., for PRINCE it takes 1.28
minutes to obtain a 128 bits of hash).

Keywords: FHE · Hash functions

1 Introduction

Fully homomorphic encryption (FHE) allows in theory to compute any func-
tion over an encrypted input. A plethora of works [5,16,20,26] investigated the
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evaluation of symmetric cryptographic primitives over FHE encrypted keys. The
interest in this topic is mainly due to the advent of proxy-re-encryption or tran-
sciphering [12], which is a technique that partially solves transmission of massive
FHE ciphertexts through limited bandwidth networks, by having the receiver
computing an homomorphic decryption of a symmetric cryptosystem. There-
fore, many stream and block-ciphers were designed to be efficiently evaluated
using an FHE encryption of their key. All the above methods were designed
mainly to protect data confidentiality, either through symmetric encryption (for
the encryption step and the transmission), or through homomorphic encryption
for their processing by an honest-but-curious entity. We argue that there are
applications of FHE in which it is useful not only to have confidentiality guar-
antees but also an integrity check over homomorphically encrypted data. More
precisely, in this work we discuss the evaluation of hash functions over an FHE
encrypted message and provide several scenarios in which this application can
be a solution to achieve integrity along with data privacy. Let us now present
the major contributions of our paper.

1.1 Contribution and Motivation

In this paper, we present a set of FHE-friendly hash functions built on lightweight
block-ciphers using provably-secure constructions, and with reasonable homo-
morphic execution times. Our choice for a block-cipher-based construction is well
motivated and it is the result of investigating several other options, including the
homomorphic execution of lightweight hash functions as well as the building of
hash functions from FHE-friendly stream-ciphers. As discussed more in details
in Sect. 1.2, the preliminary analysis of several lightweight hash functions candi-
date to the NIST competition on lightweight cryptography showed that they are
not well suited for homomorphic execution. As for the second option, to the best
of our knowledge, there is no known practical method to design a secure hash
function directly from a stream-cipher (although universal constructions do exist
based on Luby-Rackoff theory [31]). As such, we present here some hash function
constructions from “FHE-friendly” block-ciphers such as PRINCE [11], LowMC
[1] and SIMON [3]. These block-ciphers are interesting candidates to build hash
functions, from the homomorphic evaluation point of view, since they have an
appropriate design, and have already been implemented with second-generation
homomorphic schemes in the context of transciphering.

First, we derive several constructions of hash functions from PRINCE by
means of the double block length hash construction, which enables a 128-bits
hash size taking into account that the original block size in the PRINCE design is
only of 64 bits. We then look into more details and evaluate the performances of
a TFHE [15] gate-bootstrapping implementation of these hash functions. Addi-
tionally, we leverage on SIMON and LowMC (in their 128-bits block size flavors)
to obtain hash sizes of 256 bits via the same construction.

Finally, we describe several use-cases which may require to run our hash func-
tions in the encrypted domain, including integrity checking of homomorphically
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encrypted data, oblivious authentication, homomorphic database querying, and
a FHE-based protocol for single secret leader election.

1.2 Why Block Cipher-Based Constructions?

Beside security considerations, when constructing our hash functions, another
criteria we looked at was to have a relatively fast evaluation in the homomor-
phic domain (e.g. less than one minute for a 256-size digest). A first idea for
the construction of secure hashes suitable for homomorphic evaluation was to
investigate three of the NIST lightweight competition finalists [17]: SPARKLE
[4], XOODYAK [18] and Photon-Beetle [38]. We analysed them in function of
the type of homomorphic bitwise operations one should execute: “free” opera-
tions such as permutations and concatenations, relatively easy operations such
as the XOR and the AND (recall we use mainly TFHE in this work), and more
difficult operations such as the modulo. We found out that their underlying
primitives (e.g. S-boxes, modulo) and the number of rounds they require makes
their homomorphic evaluation too expensive even with a bootstrapping-based
homomorphic scheme, like TFHE. We also analyzed SPONGENT [8], another
lightweight hash function, imposing to execute ≈30000 S-box in homomorphic
domain (which corresponds to 68 S-boxes per round, 140 required rounds and
32 absorbing and squeezing steps) for 256-bits of output. Taking into account
that the execution of the S-box used takes ≈0.6 s under TFHE, it follows that
an homomorphic implementation of the SPONGENT hash function would be
too slow to be of practical interest. Further details are available in [36].

Another appealing path was to explore hash-based constructions inspired
from “FHE-friendly” stream ciphers. This option was tempting since nowadays
there are several practical solutions implementing stream-ciphers into homomor-
phic domain (e.g. Kreyvium [12], Grain128 [5], PASTA [20]). However, even if
it seems possible to obtain hash functions with very interesting homomorphic
performances, their security seems difficult to assess and this, thus, remains an
interesting open question. In essence, although theoretical constructions do exist,
the symmetric cryptography community has, to the best of our knowledge, only
marginally followed this path for building hash functions. Still, the possibility
of achieving better FHE evaluation performances may be a new motivation for
further investigations along this line.

As a consequence, we decided to consider block-cipher algorithms which have
been already considered for homomorphic evaluations and turn them into secure
hash functions using generic methods such the ones described in Sect. 2.3.

2 Background

2.1 Transciphering

Transciphering is a technique that allows offloading massive data from client to
server with the aim to perform server-side homomorphic computations. Indeed,



Homomorphic Evaluation of Hash Functions 91

when a message m is encrypted under an FHE cryptosystem, the resulting size
of the ciphertext FHE.EncFHE.pk(m) is much larger than the size of the original
message m, by an expansion factor which depends polynomially on the security
parameter λ. In all modern FHE schemes for a λ large enough (in the 110–130
bits of security ranges) ciphertext sizes reach several kbytes or even megabytes
(depending on the chosen cryptosystem and its security level). So, instead of
encrypting m directly using an FHE scheme and sending FHE.EncFHE.pk(m),
a client will rather encrypt m using a symmetric cryptosystem and sends the
encryption SYM.EncSYM.sk(m) to the server along with FHE.EncFHE.pk(SYM.sk),
the FHE encryption of the symmetric key SYM.sk. The server then homomor-
phically runs SYM.DecFHE.Enc(SYM.sk)(SYM.Enc(m)) and recovers the message
encrypted under the homomorphic public key FHE.EncFHE.pk(m).

SYM.EncSYM.sk(m) is roughly of the same size as m while SYM.sk, which is
the only FHE encrypted and transmitted element, is of fixed size and often small
enough to be homomorphically encrypted and sent (once and offline) through the
network, whilst m can be arbitrarily large. Switching from a symmetric scheme to
an FHE one allows a form of secure compression of the homomorphic ciphertexts.
It requires however, the evaluation of SYM.Enc homomorphically, which intro-
duces a non-negligible additional computational overhead on the server-side. In
[5,12], it is argued that the use of a stream-cipher is more suitable for transcipher-
ing in the case of both 2nd generations FHE schemes (e.g., BGV, BFV) as well
as TFHE. In [20] authors discuss the semantic security of transciphering seen as
Key encapsulation/Data encapsulation mechanism (KEM-DEM) depending on
the semantic security of both the symmetric and homomorphic schemes involved,
and provide also an FHE-friendly stream-cipher named Pasta, suited for levelled
FHE schemes.

2.2 Hash Functions and Security Properties

A general definition of a hash function is a mapping of messages of arbitrary
length to a fixed size digest. Additionally, a cryptographic hash function requires
the following security properties.

Pre-image Resistance. Given h ∈ {0, 1}n the output of the hash function H :
{0, 1}∗ → {0, 1}n, it must be computationally hard to find m ∈ {0, 1}∗ such that
H(m) = h.

Collision Resistance. It must be computationally hard to find two distinct mes-
sages m1 and m2 such that H(m1) = H(m2).

Second Pre-image Resistance. Given m and h such that H(m) = h, it must be
computationally hard to find m′ such that m′ �= m and H(m) = H(m′).

Since we only consider cryptographic hash functions, for simplicity sake, in
the remaining of the paper we will refer to a “cryptographic hash function” as
“a hash function”.
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Black-Box Model. To prove the security of a block-cipher-based hash function
independently of the underlying cipher’s structure, it is used the black-box
model, in which a block-cipher is modeled as an invertible random permutation
defined by the key. An adversary is given access to encryption and decryption
oracles, such that given m (resp. c) the encryption Ek(m) (resp. the decryption
E−1

k (c)) is returned. The complexity of an attack is measured by the number
of encryption and decryption queries that an optimal adversary performs. Since
most attacks on block-cipher-based hash functions do not take advantage of the
block-cipher’s potential structural weaknesses or flaws, it is relevant to use a
black-box model for security analysis.

2.3 Block-Cipher-Based Hash Functions

Among the most widely used constructions of hash functions are the iterated
hash functions, in which a round function, also referred to as a compression
function F : {0, 1}n·{0, 1}l → {0, 1}n is iterated over every message block, taking
as input the current message block of size n and the previous hash value1. The
output of the final compression function call is the hash of the input message as
shown in Algorithm 1. Due to its simplicity, this construction has been intensively
studied in the state of the art [6,30], giving birth to many hashing standards
such as SHA-0, SHA-1, and SHA-2. A large part of the security of these hash
functions can be attributed to the underlying compression function2. In [19]
authors demonstrate that the collision resistance of F implies collision resistance
of the hash function built from F using the Merkle-Damg̊ard construction.

These results raised interests in building secure compression functions from
which it will be easy to build secure hash functions. A block-cipher is a primitive
that already provides security properties by construction. Although the security
requirements of an encryption algorithm are different by nature from those of
a hash function, the question of how to build a secure compression function
from a block-cipher quickly appeared and was intensively investigated, laying
foundation for instance for the MDC family of hash functions [34] based on
the block-cipher DES. The main motivation of this approach is to minimize
design efforts, and use existing primitives. The task is to transform the security
properties of a block-cipher into those of a cryptographic hash function, by
carefully executing it over well-chosen linear combinations of the current message
block, the chaining variable, or other conventional constants, taken as encryption
keys or message blocks. This gave birth to a plethora of constructions, some of
them were proven secure in the black-box model, others exhibited weaknesses
regardless of the underlying block-cipher’s potential weaknesses.

One important security element is the size of the digest. Due to the birthday
paradox, collision security level of a hash function is upper-bounded by O(2n/2),
where n is the size of the hash. Thus, having a size for the hash equal to the size of
the block for the cipher used to construct the compression function raised some

1 A chaining value to provide dependency between successive hash values.
2 The security under all aspects : Pre-image, second pre-image, and collision resistance.
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issues. The size of some block-cipher’s blocks can be too small to be considered
as a secure hash size, and using a block-cipher with a large block length often
results in higher execution times. Providing a secure construction that produces
a hash twice larger than the block-cipher’s block length was subject to several
research efforts.

Algorithm 1. Merkle Damg̊ard iterated hash function
input : m = (m0,m1, · · · ,ml)
h0 is set to an initialization vector
for i = 0 to l do

hi = F (hi−1,mi)
end for
return hl

Single Block Length (SBL) Hash Functions. One of the very first con-
structions of single-block-length hash functions is the Davies-Meyer construc-
tion where Hi+1 = EMi

(Hi) ⊕ Mi and the Muguiyachi-Prennel’s scheme with
Hi+1 = EMi

(Hi)⊕Mi ⊕Hi, where Hi is the previous hash value and each block
of the message (Mi) is the key to a block cipher E.

Later, in [35], Prennel, Govaerts and Vandewalle (PGV) provided an exhaus-
tive analysis of iterated hash functions defined over {0, 1}∗ → {0, 1}n and based
on a block-cipher. The compression function is in the form F (a, b) = Ea(b) ⊕ c
where a, b and c are in {mi, hi−1, IV,mi ⊕ hi−1}, and E is {0, 1}n · {0, 1}n →
{0, 1}n block-cipher. There are 43 = 64 such compression functions, among which
12 are presented as secure. Afterwards, Black, Rogaway and Shrimpton [7] pro-
vided formal security proofs in the black-box model of the 12 constructions anal-
ysed in [35]. They also demonstrated that among the remaining 52 constructions,
8 of them were actually secure with respect to collision and pre-image resistance.
In this work we chose to evaluate Davies-Meyer’s hash function under several
block-ciphers, as it provides optimal security in the black-box model, and is
equivalent in terms of computation complexity to other secure constructions
from [7].

The security analysis and explicit constructions are provided in [7].

Double Block Length (DBL) Hash Functions. As mentioned before, con-
structions by PGV provide a hash of n-bits size when using a {0, 1}n · {0, 1}n →
{0, 1}n underlying block-cipher in the compression function. Due to the birthday
paradox, these hash functions require block-ciphers with a large enough block
length in order to provide security against collision attacks.

A measure of the efficiency of a hash function is its rate, that is, the inverse
of the number of calls to the compression function per iteration.

In [33] Merkle presents three optimally collision resistant double block length
hash functions, based on the block-cipher DES. However, their rates are low
compared to the next generation of DBL constructions.
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Lai and Massey proposed TANDEM-DM [28] for a rate 1/2 hash construc-
tion, using a (n, 2n) block-cipher. It was proven optimally collision and pre-image
secure in [21]. It makes however two non-independent calls3 per iteration mak-
ing it non-parallel. Abreast-DM [29] is another construction with a rate of 1/2
making two parallel calls to the block-cipher, and was proven to have optimal
collision resistance in [22].

Lucks in [5] provides a first DBL construction of rate 1. Making a single
block-cipher call per iteration comes at the cost of computing a heavy linear
combination of the message block and the previous hash resulting in a significant
overhead. Hirose in [25] provides a rate 1/2 construction with two distinct (n,
2n) block-ciphers, then uses a tweak in order to use a single block-cipher. This
construction provides optimal bounds for both collision and pre-image resistance
in the black-box model, and is parallel. Indeed, the two calls to the compression
function (and thus, to the block-cipher) are independent, making its performance
comparable to rate 1 constructions.

Other works from [27,32] studied the possibility to build DBL hash func-
tions from an (n, n)-block-cipher. MDC-2 fails to provide optimal security, while
MDC-4 [32] is near optimal, but has a rate smaller than 1/2.

In this work, we homomorphically evaluate the constructions of Hirose and
Tandem-DM. The goal is to provide an idea of the runtime of two optimally
secure hash functions of rate 1/2 from both the parallel and non-parallel types
on top of an FHE encryption layer.

3 Applications of Homomorphic Hash Functions

3.1 Homomorphic Data Integrity Check

As described in Sect. 2.1, transciphering allows to transfer symmetrically
encrypted data instead of homomorphically encrypted and thus reduces the
required bandwidth. However, transciphering while preserving data privacy does
not ensure data integrity during transmission. In [5] authors describe how to
include data integrity check within transciphering, but their approach required
an AEAD encryption scheme (Authenticated Encryption with Associated Data).

Indeed, all stream-ciphers suffer from malleability, i.e., the possibility for an
adversary to create an encryption of m + k where k is some constant, from an
encryption of m4. A malleable encryption scheme can be subject to man-in-the-
middle attacks. Some modern stream-ciphers (e.g. [24]) come with the possibility
to compute a MAC (Message Authentication Code) along with the encryption
in an attempt to circumvent this issue. Another simple way to perform integrity
check within transciphering when the chosen stream-cipher does not embed a
MAC computation is to include a hash function. A client encrypts m concate-
nated to H(m) using a symmetric encryption scheme. She then transmits these

3 The output of the first block-cipher call is used to build the key of the second block-
cipher call.

4 m ⊕ keystream ⊕ k = SYM.Enc(m ⊕ k).
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elements to the server along with FHE.Enc(SYM.sk) (once and for all). Once the
server has finished transciphering both the message and the hash, it recovers
FHE.Enc(m′) and FHE.Enc(h′), he computes [h] = H(FHE.Enc(m′)). If m = m′

then h = h′ (with overwhelming probability, of course). The server computes
the homomorphically encrypted bit [r]FHE.pk =

∏n
i=0(1 ⊕ hi ⊕ h′

i) where n is the
size of the hash. [r]FHE.pk is the output of the integrity check, such that :

[r] =
[{

An encryption of 1 if m = m′

An encryption of 0 otherwise

]

, (1)

This FHE encrypted bit could then be used in many ways. The server can
simply transmit it to the client, in order to give him the ability to verify if his data
was altered or corrupted during the transmission. Or the server could choose to
reply with [f(m)] or a NIL value outside of the range of f , according to the value
of the bit r. In TFHE [15] for example, this can be realized using a homomorphic
CMUX gate at roughly the cost of an extra homomorphic multiplication5.

3.2 Single Secret Leader Election (SSLE)

The problem of securely electing a single leader in a distributed system was
formally defined by Boneh et al. in [9]. For a committee of peers which collabo-
ratively elect a node to complete a task, the problem consists in electing a node
in a way that only this elected peer is able to know that he was elected and the
others learn only that they were not elected. Also, the elected peer must be able
to provide a proof of his election when he decides to reveal himself once his task
is done. In [23] a solution to the SSLE problem is proposed based on Threshold
Fully Homomorphic encryption [10] for partially-synchronous systems. A very
high level description is the following. Every peer Pi wishing to register to the
election at a given height and cycle (low and high level steps in the leader election
protocol), provides an FHE encryption of pi = H(h||ti||c) called the proof, where
h is the height of the blockchain, c the current cycle of elections, and ti a locally
generated number belonging to process Pi. Every participating peer performs a
sampling circuit following a weighted distribution over the FHE encrypted list of
proofs and ids of all registered peers, using collaboratively generated randomness
from [37]. Then, each peer homomorphically selects6 a proof and the associated
id from the set of all proofs. He then homomorphically hashes (pi||i) where i is
the id of the elected peer, and pi the corresponding proof. The next step is to
broadcast a partial decryption of the voucher vh,c,r = H(pi||i). Every honest peer
samples the same pi and i, and broadcasts his partial decryptions of vh,c,r using
his secret key share. Assuming we have at least t honest peers in the system,
where t is the decryption threshold, every peer must eventually receive enough
partial decryptions and be able to perform a full decryption of vh,c,r. The elected

5 CMUX([r], [f(m)], NIL]) = [r] · [f(m)] + (1 − [r]) · NIL
6 I.e., homomorphically computes a one-hot encoding of an index in the proofs list

and performs a dot-product to extract one such proof, thus without knowing which
one.
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peer recognizes his voucher, whereas other peers gain no information from plain
vh,c,r, nor can fake the election, since H is secure against pre-image and second
pre-image attacks. Afterward, the leader is able to prove his election by submit-
ting his plaintext proof pi = H(h||ti||c). The verification is simply performed by
running the test H(pi||i) == vh,c,r.

The homomorphically evaluated hash function plays a significant role in this
protocol. It hides the sensitive elements from Byzantine peers providing the
secrecy of the election and a simple proof mechanism, making the election easily
verifiable, yet computationally hard to forge fake proofs.7

3.3 Homomorphic Database Querying

Suppose a server maintaining a database of elements DB such that query m
has the answer Am stored at index H(m), where H is a hash function (with
a small digest size w. r. t. to cryptographic standards). In this case H is not
necessarily cryptographic. For instance pre-image resistance is not necessary
since the query is already private under an FHE encryption layer. Nevertheless,
we require from H to have balanced collisions8 and, for this sake, one can use
Luby-Rackoff’s universal hash functions from [31]. In this setting, the server is
able to homomorphically answer FHE encrypted queries.

A client homomorphically encrypts a query x and sends [x]FHE.pk to the server.
The server computes [i]FHE.pk = H([x]FHE.pk), which is an FHE encryption of the
index of Ax inside his database. The server then computes a vector V which
contains FHE encryptions of 0 everywhere except at index i in which an encryp-
tion of 1 is stored. V is computed as follows : V [k] = ([i]FHE.pk == k) with
k ∈ �0, n − 1�. Lastly, to extract an FHE encryption of Ax, the server performs
a homomorphic dot product between the vector V and his database of elements∑n

i=0 DB[i]·V [i], and sends back to the client the result of this final dot product,
which will be [Ax]FHE.pk.

One remaining problem of this use-case is to homomorphically resolve colli-
sions of H. A first approach is to have the server creating lists of answers to differ-
ent queries which hash to the same index at the position H(x) in DB, and provide
a second hash function H ′, whose output is smaller than the one of H, and which
will compute the index of Ax inside the corresponding list. Thus, when an FHE
encrypted query [x]FHE.pk is received, the position (H([x]FHE.pk),H ′([x]FHE.pk))
provides an answer.

3.4 Oblivious Authenticated (Homomorphic) Calculations

It is well known that (keyed) hash functions are used in many authentication
protocols where an entity (the user) can prove its knowledge of a secret (the key

7 Secrecy is granted by the pre-image resistance of the hash function. Having a single
verifiable leader is due to the second pre-image resistance of the hash function.

8 H : {0, 1}∗ → {0, 1}n has balanced collisions if all elements in {0, 1}n have the same
number of pre-images under H.
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of the hash function) to another entity (the server). To do so, the server sends a
random challenge to the user which replies with the hash of the challenge. Since
the server can also perform the same calculation, it can check the correctness
of the client replies which proves the latter knowledge of the secret. With the
ability of running hash functions in the homomorphic domain, we can now pro-
vide the server with an FHE encryption of the secret key and have the server
performing the authentication in the encrypted domain i.e., the server generates
a challenge in the clear domain, sends it to the user and get its (non encrypted)
reply. The server can then run the (keyed) hash function homomorphically on its
challenge, and homomorphically compare the obtained (encrypted) result with
the reply received from the user. As the end of this process, the server possesses
an encrypted boolean, say β, indicating whether or not the client has success-
fully authenticated (but has by construction no knowledge of whether or not
that authentication was successful).

One way of using this consists in providing a valid calculation only to suc-
cessfully authenticated users. In essence, rather than computing f(x) in the
homomorphic domain, the server can now compute βf(x) + (1 − β)⊥ (where ⊥
denotes a constant value meaning, by convention, “not an answer”). As a conse-
quence, (encrypted) valid calculation results are duly returned only to authenti-
cated users, while other users receive only useless encryptions of ⊥. This is then
(nicely) done obliviously to the server, which cannot distinguish between cipher-
texts of valid results and ciphertexts of ⊥, and without revealing the secret hash
function key (since it is only provided with an FHE-encryption of that secret
key).

4 Adaptations of Block Ciphers for FHE-friendly Hashes

4.1 Block-Ciphers Considered

The Low-MC block-cipher [1] is part of a family of symmetric schemes designed
for practical instantiations in homomorphic domain with the objectives of mini-
mizing both the multiplicative complexity and the multiplicative depth, making
it efficient for levelled homomorphic schemes. This design principle, had to be
compensated with a large number of xor gates in order to ensure algebraic prop-
erties that provide an appropriate level of security. This latter fact makes it
rather inefficient when ran under TFHE, since the cost of all Boolean homomor-
phic gates is the same within this FHE scheme (A bootstrapping operation is
performed after every Boolean gate). It remains however a interesting candidate
for hash constructions targeting efficient homomorphic evaluation in a levelled
FHE setting. Even if the first variants of LowMC were successfully attacked,
the subsequent proposed design is more secure and highly parametrizable. In
particular, there is a closed-form formula to determine the minimal number of
rounds to reach a given security target depending on the block size (128 or 256
bits), the key size, the number of S-boxes and the allowed data complexity.
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PRINCE [11], SPECK and SIMON [3] are lightweight block-ciphers, with a
relatively small block length. They were initially designed for constrained embed-
ded execution environments. Their design approaches result in small gate counts9

which results in high performances when ran under TFHE. Due to its small block
length, PRINCE is better suited with double block length constructions, result-
ing in a hash function which provides O(264) collision resistance, and O(2128)
for pre-image resistance. SPECK and SIMON can be instantiated in both the
DBL and SBL settings since they both provide a double-key-size variants.

4.2 FHE Schemes Considered

We chose to run our experiments under the TFHE cryptosystem since it provides
the possibility to evaluate (multiplicatively) unbounded homomorphic circuits
thanks to its fast bootstrapping operation. This scheme is more suited for pro-
tocols where scalability is a requirement. For example, the secret single leader
election protocol [9] described in Sect. 3.2 requires flexibility regarding the num-
ber of peers being able to disconnect or join the committee at different times.
These variations in the number of peers linearly increase the multiplicative depth
of the sampling circuit, which would be difficult to manage if a levelled homo-
morphic scheme were to be used10.

4.3 Tool: Cingulata Homomorphic Compiler

Cingulata, formerly known as Armadillo [14], is a toolchain and run-time
environment (RTE) for implementing applications running over homomorphic
encryption. Cingulata provides high-level abstractions and tools to facilitate the
implementation and the execution of privacy-preserving applications.

Cingulata relies on instrumented C++ types to denote private variables,
e.g., CiInt for integers and CiBit for Booleans. Integer variables are dynami-
cally sized and are internally represented as arrays of CiBit objects. The Cin-
gulata environment monitors/tracks each bit independently. Integer operations
are performed using Boolean circuits, which are automatically generated by the
toolchain. For example a full-adder circuit is employed to perform an integer
addition. The Boolean circuit generation is configurable and two generators are
available: focused on minimal circuit size or on small multiplicative-depth. More
generally, it is possible to implement additional circuit generators or to combine
them.

A CiBit object can be in either plain or encrypted state. Plain-plain and
plain-encrypted bit operations are optimized out, in this way constant fold-
ing and propagation is automatically performed at the bit-level. Bit operations
9 A round of encryption of a block-cipher often includes a multiplication of the internal

state with an F
� matrix, this makes the number of operations quadratic with respect

to its block size.
10 In this category of homomorphic schemes, the multiplicative depth of the homo-

morphic circuit to be evaluated has to be known in advance in order to generate a
parameter set which allows homomorphic computations up to this depth.
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between encrypted values are performed by a “bit execution” object implement-
ing the IBitExec interface. This object can either be a HE library wrapper,
simply a bit-tracker object or even a plaint bit execution used for algorithm
debugging purposes. When a HE library wrapper is used the Cingulata environ-
ment directly executes the application using the underlying HE library.

Another option is to use the bit-tracker in order to build a circuit repre-
sentation of the application. This allows to use circuit optimization modules
in order to further optimize the Boolean circuit representation. The hardware
synthesis toolchain ABC11 is used to minimize circuit size. It is an open-source
environment providing implementations of state-of-the-art circuit optimization
algorithms. These algorithms are mainly designed for minimizing circuit area or
latency but, currently, none of them is designed for multiplicative depth mini-
mization. In order to fill this gap, several heuristics for minimizing the multi-
plicative depth are available in Cingulata, refer to [2,13] for more details.

The optimized Boolean circuit is then executed using Cingulata’s parallel
run-time environment. The RTE is generic, meaning that it uses a HE library
wrapper, i.e. a “bit execution” object as defined earlier, in order to execute the
gates of the circuit. The scheduler of the run-time allows to fully take advantage
of many-core processors. Besides, a set of utility applications are provided for
parameter generation (given a target security level), key generation, encryption
and decryption. These applications are also generic, in the same vein as the
parallel RTE.

4.4 Experimental Results and Performances

We ran multi core performance tests on an Intel(R) Xeon(R) CPU E3-1240
v5 @ 3.50 GHz and 8 GB RAM using Cingulata in TFHE mode. We provide
parallelism when possible using the OpenMP library.

For single block length construction, we implement Davies-Meyer’s compres-
sion function which requires a (n, n)-block-cipher. Therefore, we instantiate this
construction with SPECK, SIMON12, and the (128, 128) variant of LowMC.
In the double block length setting, since these constructions require an (n,
2n)-block-cipher, we instantiate Hirose’s and Tandem-DM constructions with
PRINCE, and the (128, 256) variants of LowMC, and SIMON. The results are
shown in Table 1 with the execution times in minutes when the hash functions
are instantiated, and an “-” symbol when the construction is not compatible
with the sizes of the key and the block of the cipher.

The obtained performances are as expected: lightweight ciphers provide bet-
ter runtimes compared to LowMC. PRINCE is the most efficient cipher for DBL

11 http://people.eecs.berkeley.edu/alanmi/abc/.
12 For SIMON, these are estimations based on the gate count from [3] and the gate-

bootstrapping time of TFHE.

http://people.eecs.berkeley.edu/alanmi/abc/


100 A. A. Bendoukha et al.

constructions as it has the lowest gate-count, and is also the most parallelizable
cipher. The number of rounds performed in every construction to produce the
hash of a 128-bits message is � 128

blocklength	. Thus, in the first row, DBL-PRINCE
performs two iterations and produces a 128-bits hash. All the remaining con-
structions perform a single iteration.

Table 1. Evaluation of hash functions over a 128-bits TFHE encrypted message in
minutes

Instantiation Davies-Meyer (SBL) Hirose (DBL) Tandem-DM (DBL)

(64, 128)-PRINCE – 1.28 2.98

(128, 128)-SPECK 3.78 – –

(128, 256)-SPECK – 4.91 8.16

(128, 128)-SIMON 2.14 – –

(128, 256)-SIMON – 3.64 7.05

(128, 128)-LowMC 6.12 – –

(128, 256)-LowMC – 8.58 17.32

5 Conclusion and Perspectives

In this work, we have investigated scenarios in which the ability to (efficiently)
evaluate hash functions in the homomorphic domain is an interesting building
block. To the best of our knowledge, this work is one of the first to address this
issue, at least for the TFHE cryptosystem. We also explored various provably-
secure constructions of “(T)FHE friendly” hash functions based on respected
block-ciphers in order to achieve several digest sizes. Fully homomorphic encryp-
tion on its own opens perspectives towards a new set of applications. Then,
combining it with the execution of hash functions in the homomorphic domain
provides it with additional versatility which can serve in various scenarios and
protocols.
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27. Jetchev, D., Özen, O., Stam, M.: Collisions are not incidental: a compression func-
tion exploiting discrete geometry. In: Cramer, R. (ed.) TCC 2012. LNCS, vol.
7194, pp. 303–320. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28914-9 17

28. Lai, X., Massey, J.L.: Hash functions based on block ciphers. In: Rueppel, R.A.
(ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-47555-9 5

29. Lee, J., Kwon, D.: The security of Abreast-DM in the ideal cipher model. Cryp-
tology ePrint Archive, Paper 2009/225 (2009). https://eprint.iacr.org/2009/225

30. Lei, D., Lin, D., Chao, L., Feng, K., Qu, L.: The design principle of hash function
with Merkle-Damg̊ard construction. Cryptology ePrint Archive, Paper 2006/135
(2006). https://eprint.iacr.org/2006/135

31. Luby, M.: Pseudorandomness and Cryptographic Applications (1996). https://doi.
org/10.2307/j.ctvs32rpn

32. Mennink, B.: On the collision and preimage security of MDC-4 in the ideal cipher
model. Cryptology ePrint Archive, Paper 2012/113 (2012). https://eprint.iacr.org/
2012/113

33. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, New York (1990). https://doi.org/
10.1007/0-387-34805-0 40

34. Preneel, B.: MDC-2 and MDC-4. In: van Tilborg, H.C.A., Jajodia, S. (eds.) Ency-
clopedia of Cryptography and Security, pp. 771–772. Springer, Boston, MA (2011).
https://doi.org/10.1007/978-1-4419-5906-5 596

35. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
a synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2 31

https://eprint.iacr.org/2021/731
https://doi.org/10.1007/978-3-642-03317-9_6
https://doi.org/10.1007/978-3-642-10868-6_10
https://doi.org/10.48550/ARXIV.2206.11519
https://arxiv.org/abs/2206.11519
https://arxiv.org/abs/2206.11519
https://doi.org/10.1007/978-3-030-16458-4_5
https://doi.org/10.1007/978-3-030-16458-4_5
https://doi.org/10.1007/11496618_24
https://doi.org/10.1007/978-3-030-65277-7_3
https://doi.org/10.1007/978-3-642-28914-9_17
https://doi.org/10.1007/978-3-642-28914-9_17
https://doi.org/10.1007/3-540-47555-9_5
https://eprint.iacr.org/2009/225
https://eprint.iacr.org/2006/135
https://doi.org/10.2307/j.ctvs32rpn
https://doi.org/10.2307/j.ctvs32rpn
https://eprint.iacr.org/2012/113
https://eprint.iacr.org/2012/113
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/978-1-4419-5906-5_596
https://doi.org/10.1007/3-540-48329-2_31


Homomorphic Evaluation of Hash Functions 103

36. Quero, N.: Etude des fonctions de hachage homomorphes pour un proto-
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Abstract. Crypto-agility promises agile replacement of cryptographic
building blocks and therewith supports context-aware and long-term
security. To assess and evolve the degree of crypto-agility of one’s IT
system, a commonly agreed model is helpful, but, to the best of our
knowledge, does not exist. This work proposes the Crypto-Agility Matu-
rity Model (CAMM), a maturity model for determining the state of
crypto-agility of a given software or IT landscape. CAMM consists of
five levels, for each level a set of requirements have been formulated
based on literature review. Initial feedback from field experts confirms
that CAMM has a well-designed structure and is easy to comprehend.
Based on our model, the cryptographic agility of an IT landscape can be
systematically measured and improved step by step. We expect that this
will enable companies and institutions to respond better and faster to
threats resulting from broken cryptographic schemes. This work serves
to promote CAMM and encourage others to apply it in practice and
further develop it jointly.

Keywords: cryptographic agility · maturity model · CAMM

1 Introduction

Cryptographic primitives and protocols always have and will be subject to the
threat of compromise, which implies the need to substitute endangered (or bro-
ken) cryptographic schemes with secure ones. In addition, different installation
contexts (of the same application) may require the usage of different primi-
tives and protocols, e.g. due to varying regulations within companies or coun-
tries, which implies the need to respectively adapt the choice of cryptographic
schemes. The current efforts to standardize [9], disseminate [32], and integrate [3]
post-quantum cryptography (PQC) are a contemporary example of changes in
cryptography.

Among the latest and most prominent examples of past transitions of cryp-
tographic primitives are the (not yet fully finalized) migration from SHA-2 to
SHA-3 and from DES to AES, respectively. These have (again) shown that such
migration is a time-consuming and resource-intensive process. Reasons for that
are manifold, including the need to adapt depending standards and certifica-
tions, maintain interoperability with non-upgradable legacy systems, and plain
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G.-V. Jourdan et al. (Eds.): FPS 2022, LNCS 13877, pp. 104–119, 2023.
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and simply the necessary resources [3]. All of these concerns can be diminished
by preparing systems for such changes beforehand by ensuring what is called
cryptographic agility.

The notion of cryptographic agility (crypto-agility for short) is often asso-
ciated with the ability to replace a cryptographic scheme in an agile manner
with very little effort [2]. Following the view of Ott et al. [10], in our opinion,
crypto-agility needs to be discussed and addressed in a broader sense. Ott et al.
propose the concept of modalities for an expanded notion of crypto-agility. For
example, context agility refers to a crypto-agile solution, where cryptographic
algorithms and strength policies have the flexibility to be derived automatically
from system attributes.

Amongst the first steps towards establishing crypto-agility is assessing the
respective readiness of a particular software or IT system. With this knowledge,
further development towards a crypto-agility solution can then take place. Our
research on existing best practices for measuring and/or evolving crypto-agility
shows that there is work on many aspects of crypto-agility in different contexts,
but a holistic model that provides a systematic approach to assessing and evolv-
ing one’s system in terms of crypto-agility seems to be missing.

To close this gap, in this work, we propose the Crypto-Agility Maturity Model
(CAMM) to determine the crypto-agility level of a given software or IT System.
CAMM comprises 5 maturity levels. For a system to reach a certain level, several
given requirements must be met. We formulate these requirements based on an
intensive literature review (see Sect. 3) and assign them to appropriate levels
in our model. With CAMM at hand, IT managers can systematically assess
their IT infrastructure and derive concrete measures to further develop their IT
landscape in the direction of crypto-agility.

CAMM may be used for assessing one’s crypto-agility without involving other
guidelines. When not only assessing but also evolving one’s crypto-agility, we
strongly recommend an interplay of CAMM with established best practices for
IT security management, such as defined in the ISO/IEC-27000 family.

We note that crypto-agility is associated with increased complexity compared
to non-crypto-agile systems. IT management may also deliberately decide against
this complexity and use technologies that require an update in the implementa-
tion if security problems are identified. One example is the Wireguard protocol,
which deliberately omits crypto-agility by design [13].

The further text is structured as follows. Section 2 reviews related work on
maturity models on which we build as well as crypto-agility in general and
additionally with a focus on post-quantum cryptography. Section 3 identifies
important requirements, aspects, and properties of crypto-agility derived from
literature, which we integrate into our maturity model. This is followed by the
methodology used to develop CAMM (Sect. 4). The model itself is described in
Sect. 5. A brief preliminary evaluation of CAMM is provided in Sect. 6, followed
by a short discussion and outlook in Sect. 7, where we point out issues we would
like to address in the future.
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2 Related Work

There is a whole range of maturity models, mainly from the field of informa-
tion systems and business management, see [5,29]. The most popular Capability
Maturity Model Integration (CMMI) family of maturity models focuses on pro-
cesses and is thus not applicable for assessing the current maturity of a system’s
crypto-agility. Models more specialized in cybersecurity like the Cybersecurity
Capability Maturity Model (C2M2) [12], the Cybersecurity Maturity Model Cer-
tification (CMMC) [33], the Systems Security Engineering - Capability Maturity
Model (SSE-CMM) (ISO/IEC 21827:2008) [18], and the Information Security
Management Maturity Model (O-ISM3) [1] focus mainly on improving processes
and practices for cybersecurity and consider crypto-agility only briefly, if at all.
The classification in the Post-Quantum Cryptography (PQC) Maturity Model
[11] only focuses on measures against quantum computing threats. The Crypto
Agility Risk Assessment Framework (CARAF) only provides a means to analyze
and evaluate the risk that results from the lack of crypto-agility [26]. Cryptosense
SA reduces its crypto-agility approach to technologies and practices provided by
their proprietary Cryptography Lifecycle Management (CLM) [38]. To the best
of our knowledge, none of the existing maturity models fits the purpose of being
used as a holistic crypto-agility maturity model.

An IT landscape should be as crypto-agile as needed to be prepared for
future threats, therefore a more general crypto-agility maturity model is needed.
As there is no appropriate maturity model that supports all the requirements
formulated for crypto-agility (see next section), we develop CAMM from scratch.

3 Cryptographic Agility: Definitions, Requirements,
and Aspects

To the best of our knowledge, the notion of cryptographic agility was first men-
tioned around 2009/2010 by Bryan Sullivan [43,44] as a programming style for
abstracting .NET code from hard-coded use of a concrete hash algorithm, in his
case MD5. The term was also coined in 2011 in RFC 6421 [30] as a communica-
tion protocol property.

To systematically [6] identify cryptographic agility definitions, requirements,
and aspects, we searched the online libraries IEEE Xplore, ACM Digital
Library, Springer Link, Emerald Insight, the search engines Google Scholar and
CiteSeerX using the following search strings: ("cryptographic agility" OR
"crypto-agility") AND ("definition" OR "requirements")1. All returned
articles (447 in total) were examined based on title, keywords, and abstract for
their potential relevance. We sorted out 438 articles. Based on the remaining
9 articles, we carried out a backward and forward search [25], the results were
again checked for relevance. In the end, we were able to identify the following 11
papers dealing with crypto-agility in general or certain requirements and aspects,
which provide a basic understanding of crypto-agility:
1 Please note that the actual query syntax used varies in the different online libraries.
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According to McKay [20, page 9ff] crypto-agility includes (1) the ability for
machines to select their security algorithms in real-time and based on their com-
bined security functions; (2) the ability to add new cryptographic features or
algorithms to existing hardware or software, resulting in new, stronger security
features; and (3) the ability to gracefully retire cryptographic systems that have
become either vulnerable or obsolete. Mehrez and el Omri [28] and Schneider [20,
page 2] stress how easy the migration from one crypto scheme to another can
take place with the help of crypto-agility. Schneider adds the aspect of remain-
ing interoperability after a certain hard- or software has evolved. More recently,
cryptographic agility has been mentioned in the context of PQC migration tasks
[3,15,36].

In addition to the above understandings, at least the following requirements
and aspects for cryptographic agility were requested: IDs (for algorithms or sets
of algorithms), transitioning, key management, interoperability (mandatory algo-
rithms), balancing security strengths, opportunistic security, (effective) migration
mechanism [17]. Measurability, interpretability, enforceability, security, perfor-
mance [10]. Switch between crypto schemes in real-time, support for heterogenous
environments, policy-aware access to crypto primitives, automatability (central-
ized), scalability [27]. Extensibility, removability, interoperability, flexibility, fun-
gibility, reversibility, updateability, transition mechanism, backward compatibility
[28]. Testable [41], usage of SDKs, crypto APIs [31,45], and preparing for failure
[20].

These requirements and aspects vary in granularity and are sometimes vague
in their meaning, description, and implementation. Still, we managed to orga-
nize these requirements and address them at the different levels of CAMM. An
accompanying website to this work lists the requirements and their source in a
compact and tabular format (see Sect. 4.2).

4 Model Development

We now describe the development of CAMM. In general, there are two types
of maturity models. First focus area maturity models [48] such as the Dynamic
Architecture Maturity Matrix (DyAMM), the Test Process Improvement (TPI)
model, and the Software Product Management (SPM) maturity matrix [21,46,
49]. Second, fixed-level/staged maturity models [4,5] such as CMM resp. CMMI
[8,34]. We decided to aim for a fixed-level model because this type of models is
far more widely used, easier to comprehend, and allows for more concrete and
comparable statements [42,48]. In addition, focus area maturity models need
more data and more experience in the crypto-agility domain in order to evaluate
properly [48], and thus seemed inappropriate to us, as crypto-agility research is
still in its infancy.

Lasrado et al. [24] identified three meta models [4,7,40], all describing a
step by step iterative sequential approach for developing a maturity model. For
CAMM, we followed Becker et al. [4] with 8 discrete phases (instead of 5 respec-
tively 6) as we judge this approach as the most comprehensive and detailed
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methodology for the development of fixed-level models. We, therefore, used it as
a starting point and adapted it for this work. As a result, our methodology uses
the following top-down approach which consists of five phases/steps. We briefly
describe each step on the basis of Fig. 1.

Fig. 1. Applied procedure model for developing CAMM, adapted from [4]

4.1 Methodology

Step 1: Problem Definition. The first step is to clarify whether and why the
lack of a maturity model is currently a problem for crypto-agility and therefore
whether it is worthwhile to develop a crypto-agility maturity model.

Step 2: Comparison of Existing Models. To solve the previously defined
problem, it is researched whether existing models can be used, improved, or
adapted in the given context or if an entirely new model has to be developed.

Step 3: Iterative Maturity Model Development. The main phase of the
process is used to condense the existing crypto-agility literature requirements
into specific dimensions. First, we determine the objectives and development
areas of the iteration. These are the basis for the next iteration of a model. With
an iterative process, the model is evaluated and evolves until all requirements fit
into the various maturity levels and no inconsistencies exist. In the current state
of CAMM, we have undergone 5 iterations. In the process of these iterations,
we established a rough draft, removed duplication, improved comprehensibility,
specified requirements, and later incorporated feedback from industry contacts.
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Step 4: Evaluation. After the development of a maturity model, measures for
evaluation, publication, and maintenance of the model need to be planned. Devi-
ating from Becker et al. [4], we decided to conduct a first evaluation preceding
the publication of the model to be able to implement potential improvements
identified therein before gaining first publicity.

Step 5: Conception of Transfer and Implementation. Becker et al. [4]
suggest publishing a maturity model and, in addition, establishing a website
where the maturity level can be determined. Furthermore, the website should
provide a survey of model acceptance, which may indicate the need for further
development.

4.2 Outcome

Following the steps above, five maturity levels and corresponding requirements
have been identified as the core of CAMM. More details are given in Sect. 5. A
preliminary evaluation using expert interviews confirms a good structure and
comprehensibility for CAMM (see Sect. 6). Following Becker et al. [4] we set up
https://camm.h-da.io. This website is intended to serve as a central reference
source for CAMM. In addition to a brief description of the model, it contains a
list of all requirements, literature references, and publications.

5 The Crypto-Agility Maturity Model

The Crypto-Agility Maturity Model (CAMM) represents our understanding of
the current state of research on crypto-agility. CAMM makes it possible to eval-
uate a given system according to its ability to implement crypto-agility require-
ments. At the same time, it forms a reference that encompasses the findings from
both academia and practice and combines them into an understanding of the
requirements of crypto-agile systems. CAMM’s key components are the maturity
levels and the requirements they contain at each level, along with their respective
properties.

Since it is desirable to have the simplest possible classification while maintain-
ing a high degree of precision, five maturity levels have emerged as an appro-
priate classification size for this model. This number also became a frequent
standard value for maturity models due to the widespread adoption of CMM
and CMMI [4,23] in other contexts. We introduce the CAMM maturity levels in
the following. The dependencies between the requirements can be found on the
accompanying website.

5.1 Maturity Levels

CAMM defines five maturity levels: 0 (Initial/Not possible), 1 (Possible),
2 (Prepared), 3 (Practiced), and 4 (Sophisticated), each representing a

https://camm.h-da.io
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certain level of system maturity in terms of crypto-agility. Each level contains a
certain number of requirements, all of which must be met in order to reach that
level. In other words, as soon as a requirement of a given level X is violated, one
falls back to level X − 1 with level 0 as the lowest possible level.

To make the individual maturity levels more tangible the respective motiva-
tion behind them is presented now. The requirements defined for a certain level
are subsequently specified in Sect. 5.2.

0 Initial/Not Possible. This maturity level expresses the lowest maturity
and is reached by default. The numbering explicitly begins at zero to illustrate
the lack of evaluation or exclusion of crypto-agility. This maturity level implies
that there is or might be at least one system or component that violates the
requirements defined at level 1. Possible reasons for this may include hardware
or software limitations that do not allow subsequent changes to the original
design. Examples include devices in the IoT domain that are no longer sup-
ported by their manufacturer and platforms where cryptography is hard-coded
to hardware features [10]. Another well-known scenario are embedded systems
that are inaccessible to the end user, are built with extremely limited resources
or ROM, or where the vendor is not interested in enabling updates.

1 Possible. This maturity level is reached by all systems that can be adapted
so that their cryptography can respond dynamically to future cryptographic
challenges. However, this does not require any specific activities to be carried
out yet, but only the necessary primary conditions to be met. Many of the
requirements of this level are typical for high-quality software or hardware design.

2 Prepared. Systems that already implement certain measures for crypto-
agility, but are not yet fully ready to actively realize it, are assigned to this
level. The actual change of cryptographic functions still requires some prepara-
tory work and a particular effort, but crypto-agility is already seen as an imple-
mentable goal.

3 Practiced. Crypto-agility is practiced, i.e., migration between different cryp-
tographic methods is demonstrably, effectively, and securely feasible. In this
case, systems can be assigned to this maturity level. Therefore, several condi-
tions must be met to ensure the necessary hardware and software requirements
and migration mechanisms.

4 Sophisticated. The highest maturity level is attained by systems that imple-
ment advanced capabilities in terms of crypto-agility. They are particularly char-
acterized by the fact that compatibility is not limited to a specific system but
can be scaled across a broader infrastructure. Higher sophistication of the mea-
sures allows for a fast and automated migration between different cryptography
schemes. This level of maturity should be strived for particularly by libraries
and frameworks that are intended to be used in the context of crypto-agility.
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5.2 Requirements

In the following, the requirements that are addressed at a certain level are pre-
sented. Please note, that there are no requirements associated with level 0 of
CAMM. Each requirement is labeled with an ‘R’ followed by two numbers sep-
arated by a dot. The first number defines the corresponding maturity level, the
second number defines a sequential ID. This ID does not necessarily imply any
order of priority or dependency within a maturity level. Example: R3.4 labels
requirement 4 of level 3. Within parentheses, each requirement is assigned to
a certain category followed by a list of the requirements it directly depends
on. These represent a brief description of all the attributes2 we assigned to
each requirement in the complete online version of CAMM, as is customary in
requirements engineering, and are intended to improve the management and
understandability of the model [35,37,47]. We have defined three different cate-
gories: Knowledge (K), Process (P), and System property (S). Either new knowl-
edge must be generated, processes must be adapted, or special system properties
must be achieved through targeted adjustments to the system. We have assigned
each requirement to the category that is most evident to us, although we do not
want to rule out the possibility that a requirement may also be meaningful in
the other two remaining categories.

The categorization allows the implementation of measures necessary to be
grouped and addressed by a similar approach. For example, requirements from
the category Knowledge often need the construction of a knowledge database.

In general, requirements should always be specified as SMART terms (Spe-
cific, Measurable, Achievable, Reasonable, Time-bound). However, our identi-
fied requirements – derived from literature – are on a rather abstract level and
generic. Thus, we suggest looking at SMART as an assistance for the specific
implementation in the respective concrete context. For example, requirement
R3.3 Testing highly depends on the hard- or software specification and therefore
needs to be specified in detail in a SMART manner for a given system context.

Level 1 – Possible: Requirements

R1.0: System Knowledge (K). An adequate evaluation of the requirements
of crypto-agility demands detailed information about the corresponding system.
System knowledge thus represents a requirement that must be met for a system
to reach the first maturity level of crypto-agility. Without detailed knowledge of
the system and its domain, a classification is not possible, and the crypto-agility
goal of measurability identified by [10] cannot be met. Additionally, the ability
to analyze the system is inevitable to assess the impact on a product or system
of an intended change to one or more of its parts, to diagnose a product for
deficiencies or causes of failures, or to identify parts to be modified [19].

R1.1: Updateability (P; R1.0). This property describes whether the system
can be modified by those responsible and can be supplied with new software

2 see https://camm.h-da.io/requirements/, last accessed 09.01.2023.

https://camm.h-da.io/requirements/
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versions without the need to restrict its functionality [19]. The underlying moti-
vation is the discovery of vulnerabilities in the system and its cryptography,
which need to be fixed after detection. As initially described in [28], a system
must therefore provide the ability to perform updates. A prerequisite for the
development of such updates is system knowledge.

R1.2: Extensibility (S; R1.1). Extensibility can be understood as the process
of introducing new cryptographic algorithms and parameters. In the case of a new
attack vector affecting previous algorithms, new, more secure alternatives can
thus be retrofitted. The ability to add further cryptography methods, variants,
and protocols to a system can be understood as an acceptance criterion. This
requirement originates from the crypto-agility properties of [28] and requires
updateability of the software.

R1.3: Reversibility (P; R1.0). In addition to updates, the reversibility of
systems is also an important factor for crypto-agility. The goal of this require-
ment is to allow a system to be reset to a previous state. However, unlike the
therefore required updateability, this is not a property of the system but requires
an organizational process, which keeps the previous version states for recovery.
As described by [28] a system needs to be able to return to the previous version
if the update does not operate as expected.

R1.4: Cryptography Inventory (K; R1.0). A cryptography inventory is the
documentation of the cryptography used in a system. In addition to simply doc-
umenting the algorithms and parameters used, it is also important to understand
their level of security. Thus, this requirement is an aspect that presupposes a cer-
tain knowledge about the system and the current state of cryptographic security.
The rationale for this requirement is the need to assess a system’s security. The
authors of [22,41] demand a cryptography inventory to enable a fast evaluation
of whether a system is affected by certain vulnerabilities, so countermeasures
can be initiated if necessary.

Level 2 – Prepared: Requirements

R2.0: Cryptographic Modularity (S; R1.0, R1.1). In the context of
crypto-agility, cryptographic modularity is understood as a system design that
enables changes to the cryptographic components without affecting the func-
tionality of the other system components. In the event of a vulnerability, the
implementation of cryptographic functions, their parameters and primitives can
be replaced without affecting the system logic. System knowledge is required to
evaluate this property. The necessity of this property is already confirmed by a
large number of experts in this regard [17,22,27,28,36].

R2.1: Algorithm IDs (K; R1.4). Cryptographic procedures cannot be nego-
tiated between two subsystems without a convention denoting algorithms and
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parameters. Thus, common knowledge is essential to uniquely associate algo-
rithms with their specific parameters for building agile encrypted communica-
tion channels. For IETF protocols, a mechanism for identification is already
mandatory and [17] also lists it as a requirement for crypto-agility.

R2.2: Algorithm Intersection (S; R2.1). This requirement implies that
all subsystems support a common set of cryptographic algorithms. Without
this intersection of algorithms, secure communication cannot be established and
therefore, at least one algorithm must be defined that all subsystems mandato-
rily support. This principle is also prescribed for IETF protocols and highlighted
in RFC 7696 [17] for cryptographic algorithms agility.

R2.3: Algorithm Exclusion (S; R1.1, R2.1). As a counterpart to manda-
tory algorithms, this property requires a way to exclude supported algorithms
from use. The reason for this is that algorithms known to be vulnerable should
not be used to maintain the security of the system. However, as originally stated
in [17,28], the exclusion of algorithms simultaneously affects the interoperability
of subsystems.

R2.4: Opportunistic Security (S; R1.1, R2.1, R2.2, R2.3). This require-
ment pursues the goal of always using the strongest algorithm supported by the
respective communication partners, and that is appropriate in the respective
application context, e.g., resource requirements or performance issues. If a par-
ticular algorithm cannot be used for some reason, it is better to use a less secure
one than to communicate without cryptography altogether [14]. Even with weak
cryptography, resilience to attacks is increased, albeit minimally in the worst
case. This property requires an intersection of multiple algorithms, assignable
by their ID, which are ranked by their security in the crypto inventory. How-
ever, this property may be constrained by policies that, for example, mandate a
certain level of security. This concept is described in [14] and proposed by [17]
for the crypto-agility of IETF protocols.

R2.5: Usability (S; R1.0, R1.2, R1.3, R2.1). Insofar as cryptographic
aspects and properties make their way through to the user interface, care must
be taken to ensure that a changeover does not lead to a deterioration in usability.
For example, if keys are printed out onto QR codes, newer algorithms may require
longer keys and thus a greater information density on the QR codes, which in
turn can make the QR codes more error-prone and thus less usable [10,20].

Level 3 – Practiced: Requirements

R3.0: Policies (P; R2.2, R2.3, R2.4, R3.5). Policies serve to constrain the
algorithms that are allowed and their parameters [27]. Without them, insecure
algorithms or algorithms inappropriate for the context could be used. As an
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essential factor for the security of systems, they are an essential step in the system
design process and ongoing management. Their specification can constrain the
algorithm intersection, result in algorithm exclusion, and hinder opportunistic
security.

R3.1: Performance Awareness (K; R1.0). Performance awareness describes
that the additional overhead for crypto-agility is known and accepted [10,17].
If the additional effort of adaptations and deployment for crypto-agility is not
known and accounted for, it may result in unexpected performance degradation
and cost, which could cause the system to fail to meet specific requirements.
To understand the impact of crypto-agility on the specific circumstances of the
system, a deep knowledge of the system is essential.

R3.2: Hardware Modularity (S; R1.1). In addition to the cryptographic
modularity, a loose binding between hardware and software is another critical
property to support crypto-agility [10,28,36]. It represents the possibility of
further additions or replacements to both hardware and software independently
and their compatibility with each other.

R3.3: Testing (P; R1.0). If requirements are not tested, no conclusions can
be drawn about their compliance and the quality of the system. A crucial part
of the process towards crypto-agility is regularly testing the system for com-
pliance with crypto-agile requirements [10,39,41]. Therefore, test criteria must
exist to determine which properties the system must meet. The crypto-agility
requirements defined here should be part of the testing.

R3.4: Enforceability (P; R1.0, R3.0). Appropriate measures to achieve
crypto-agility must be taken for all system areas. When the required techniques
are carefully specified, a crypto-agile design can be effectively mandated and
enforced [10]. The work at hand contributes to increasing the enforceability of
crypto-agility by providing the requirements from which actions for systems can
be derived and subsequently implemented.

R3.5: Security (K; R2.3, R3.0, R3.3). Maintaining security is another inte-
gral factor when implementing crypto-agility [10]. This requires ensuring that
the system is not vulnerable to the threats of various attacks. If this and the
maintenance of the overall security objectives cannot be ensured by the par-
ticular implementation of the cryptographic techniques, they do not fulfill the
expected benefits. To obtain knowledge about the security state of a given sys-
tem at this level, regular checks must confirm a healthy security state of the
used cryptography and transition mechanisms.

R3.6: Backwards Compatibility (S; R1.1, R2.2, R3.7). This property
refers to the time-limited phase during which new versions are compatible with
older states of the system [28]. This transition period is necessary because the
overall system will not be functional if different concurrently used version states
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of the subsystems cannot interact. To ensure that the system does not remain
permanently endangered due to security vulnerabilities in old versions, backward
compatibility must only exist respectively be applied within a limited period.

R3.7: Transition Mechanism (P; R1.1, R2.1, R2.2, R2.3, R3.6). The
process with which it is possible to migrate between cryptographic methods is
mainly responsible for the dynamics of crypto-agility. Here, the transition mech-
anism constitutes the strategy that ensures the operability of the overall system
for the transition period of performing an update [17,22,28,41]. Without a regu-
lated and secure process, the compatible transition to the compatible transition
to the new version is highly error-prone. Therefore, in crypto-agile systems, a
methodology must exist that regulates compatibility and secure communication
between subsystems in different version states for the time-limited duration of
the transition and results in all subsystems being in the new version state after-
wards.

R3.8: Effectiveness (P; R1.4, R3.3, R3.7). The effectiveness of crypto-
agility expresses that the process of migrating between cryptographic algorithms
must be feasible in a reasonable amount of time [10]. The rationale behind this
requirement is to ensure security. If the migration takes longer than the security
of the algorithms can be guaranteed, the whole system is vulnerable.

Level 4 – Sophisticated: Requirements

R4.0: Automation (P; R3.7, R3.8). This is a more advanced measure
of crypto-agility, used primarily when a wide range of platforms should be
made crypto-agile. Through automation, customizations to crypto-agile mod-
ules require no, or very little user interaction and must be able to be performed
automatically based on predefined attributes such as time and context, without
human interaction with the system [27]. Thus, the effort for processes within
crypto-agility is minimized by reducing the manual interactions required for it
to a minimum.

R4.1: Context Independence (S; R2.0, R3.2). This property requires that
requirements and techniques are portable such that they can be used for other
cryptographic scenarios. Also known as interpretability and flexibility [10,28].
This property circumvents the problem that the approaches used for crypto-
agility are each applicable only in their specific context, and thus a separate
solution must be found for each domain.

R4.2: Scalability (P; R2.0, R3.2, R4.1, R4.4). To avoid repeating the pro-
cess of developing a system module for crypto-agility for all systems, the crypto
module must be deployable on other systems without substantial adjustments.
Otherwise, the implementation would always be tied to specific platforms, and
each additional system to be made crypto-agile would again require a consider-
able development effort [27].
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R4.3: Real-Time (P; R3.7, R4.0, R4.2). Another challenge for crypto
agility processes is the time required to run them. In this context, real-time
systems assure that adaptations to crypto functions become active in the pro-
duction system within a defined period. The goal here is to ensure that adap-
tations to the cryptography do not require re-coding and/or re-booting of the
system [27].

R4.4: Cross-System Interoperability (S; R2.2, R2.3). A necessary con-
sideration for crypto-agility is communication beyond the context of a single
system. Here the property of cross-system interoperability expresses that differ-
ent crypto-agile systems are compatible with each other [17,28]. The challenge is
that connected systems might not always be in one’s own administrative domain
and therefore cannot be influenced directly. Nevertheless, the global IT infras-
tructure should be compatible with all approaches to crypto-agility. To achieve
this, crypto-agile systems must enable information exchange with all foreseen
communication partners based on their respective specifications.

6 Evaluation

To the best of our knowledge, there is no (other) existing maturity model tai-
lored to crypto-agility to which we could compare CAMM. As argued in Sect. 2,
existing maturity models in the broader field do not address all major require-
ments for crypto-agility that we extracted from literature (cf. Sect. 3). CAMM is
the first of breed and needs to undergo expert reviews and field tests. While the
latter is pending, we have taken a first step towards the former by conducting
an initial expert review of CAMM together with a partner company as part of a
master’s thesis [16]. There, semi-structured interviews were conducted with two
inhouse-experts (one Security Officer and one Software Architect) with regard
to the comprehensibility of CAMM. In addition, the relevance of crypto-agility
in the context of post-quantum cryptography (PQC) within the company was
assessed. While PQC is not yet seen as relevant, they acknowledge the benefit
of the more general crypto-agility concept. Both experts confirmed the compre-
hensibility of CAMM and appreciated the sound structure. On the other hand,
both assume that CAMM must be brought into use so that more experience can
be gained with the model. They assume that especially level 4 Sophisticated
may be extended or modified.

7 Conclusion and Outlook

Starting from our observation that there is no maturity model available that
addresses all aspects of cryptographic agility, we collected all requirements and
aspects found in literature on crypto-agility and used them as a foundation for
CAMM. We were able to arrange all requirements into five maturity levels in
a consistent and sound manner, as confirmed to us by initial interviews with
domain experts.
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We have shown that it is feasible to unite the various, only partly overlap-
ping, crypto-agility requirements from different literature sources into a consoli-
dated maturity model. The major challenges thereby were, apart from identify-
ing relevant literature, dealing with the different terminology and levels of detail
throughout literature and sorting the requirements into a hierarchical structure.

Now, a broad application of CAMM has to take place to verify the validity
and usefulness of our model and, if necessary, an adjustment of the requirements
of respective levels. Based on feedback from the industry, a first, minor revision
of CAMM has already been made with the addition of requirement R2.5.

Accompanying, we want to develop a toolbox that helps to verify individual
requirements at a certain level with as little effort as possible. CAMM is currently
labeled with Version 1.1. Further developments can then be tagged with higher
version numbers. Additionally, the description of case studies that use CAMM
in practice is planned.

Acknowledgment. Funded by the German Federal Ministry of Education and
Research and the Hessian Ministry of Higher Education, Research, Science and the
Arts within the National Research Center for Applied Cybersecurity ATHENE.
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Abstract. In a differential cryptanalysis attack, the attacker tries to
observe a block cipher’s behavior under an input difference: if the sys-
tem’s resulting output differences show any non-random behavior, a dif-
ferential distinguisher is obtained. While differential cryptanlysis has been
known for several decades, Gohr was the first to propose in 2019 the use
of machine learning (ML) to build a distinguisher.

In this paper, we present the first Partial Differential (PD) ML distin-
guisher, and demonstrate its effectiveness on cipher SPECK32/64. As a
PD-ML-distinguisher is based on a selection of bits rather than all bits in
a block, we also study if different selections of bits have different impact
in the accuracy of the distinguisher, and we find that to be the case. More
importantly, we also establish that certain bits have reliably higher effec-
tiveness than others, through a series of independent experiments on dif-
ferent datasets, and we propose an algorithm for assigning an effective-
ness score to each bit in the block. By selecting the highest scoring bits,
we are able to train a partial ML-distinguisher over 8-bits that is almost as
accurate as an equivalent ML-distinguisher over the entire 32 bits (68.8%
against 72%), for six rounds of SPECK32/64. Furthermore, we demon-
strate that our obtained machine can reduce the time complexity of the
key-averaging algorithm for training a 7-round distinguisher by a factor of
25 at a cost of only 3% in the resulting machine’s accuracy. These results
may therefore open the way to the application of (partial) ML-based dis-
tinguishers to ciphers whose block size has so far been considered too large.

Keywords: Differential cryptanalysis · Machine Learning based
cryptanalysis · Partial ML-distinguisher

1 Introduction

Block ciphers are cryptographic algorithms that provide confidentiality by
encrypting data using a symmetric key. Block ciphers operate on fixed-length
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groups of bits, called blocks; rather than encrypting one bit at a time as in stream
ciphers. Block ciphers are fundamental components in the design of many cryp-
tographic protocols and are widely used to encrypt large amounts of data, either
locally or over network communication. Recently, the cryptographic community
has focused on the design of lightweight cryptographic (LWC) schemes, which
are suitable for resource-constrained devices that are commonplace in settings
such as the Internet of Things, healthcare, and sensor networks. The need for
dedicated ciphers rises from the fact that the majority of current cryptographic
algorithms were designed having desktop and server environments in mind, and
due to this many of these algorithms are too computationally heavy to operate
onto constrained devices. The US National Institute of Standards and Technol-
ogy, who has a prominent role in the standardization of cryptogrphic algorithms
recognized worldwide, has recently launched an initiative to solicit, evaluate,
and standardize lightweight cryptographic algorithms [1], with the objective to
achieve a set of standards for lightweight cryptographic algorithms by 2022.

Given their pervasive use, it is vital to evaluate the security of block ciphers,
and especially those in the LWC domain, who have appeared more recently
and have therefore been less studied than standard block ciphers such as the
Advanced Encryption Standard (AES) [2]. In the research domain of cryptanal-
ysis, which studies ciphers to find weaknesses and potential attacks, there are
many generic and robust statistical techniques that can be used to attack algo-
rithms and therefore help assess their security. The two most famous examples
are differential [3] and linear [4] cryptanalysis. The main idea behind these
attacks is to find a statistical pattern introduced by the cipher: this is achieved
by looking at the ciphertexts produced by the algorithm, and by trying to distin-
guish between a random permutation and a block cipher. In a simple differential
attack, which is usually a chosen plaintext attack, pairs of plaintext related
by a constant difference (e.g. a logical XOR operation) are used. The attacker
encrypts the plaintexts and computes the differences of the corresponding cipher-
texts, in order to detect statistical patterns in their distribution. This pattern,
whose statistical properties depend upon the nature of the S-boxes1 used for
encryption, is called a differential. On the basis of the differential, the cipher can
be distinguished from random, obtaining what is called a distinguisher.

Traditionally however, the implementation of differential cryptanalysis tech-
niques requires a massive amount of data and memory, and the time complexity
of finding a good distinguisher could be infeasible in most cases. Consequently,
there is an active line of research aimed at automating these cryptanalysis meth-
ods. Until recently, the main focus was to transform the problem of finding a
good distinguisher into an optimization problem [5,6], which can then be solved
more efficiently with optimization solvers like Gurobi [7]. While this approach is
more practical, the process is still time-consuming, and the attacker still needs
a good knowledge about the block cipher under attack.

1 In symmetric key algorithms, the S-box (substitution-box) is a fundamental building
block that is responsible for carrying out the substitution of bits.
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For many years, it was believed that Machine Learning (ML) and cryptog-
raphy could not work well together due to the random behavior of block ciphers
and other cryptosystems [8,9]. However, in a seminal paper in 2019 Gohr pre-
sented an ML-based cryptanalysis of the SPECK32/64 cipher that was better
than previous attacks [10]. In that paper, it was illustrated that by using deep
learning, a differential distinguisher could be achieved in an automated way and
with less time complexity than other attacks, to the point where the cryptanal-
ysis process can be implemented on a personal computer.

Using artificial intelligence (AI) techniques such as machine learning for
the cryptanalysis of block ciphers can open many exciting opportunities. For
instance, with the help of AI, it is possible to extend the known differential
distinguishers for block ciphers [11]. In this paper, we focus on reducing the
memory and computation costs of differential ML attacks by proposing the first
partial differential ML-based distinguisher. In doing so, we also establish the
first experimental differential evaluation of the role of each bit of the input and
output of a cipher in its security.

1.1 Related Work

In 2019, Aron Gohr introduced an 8-round differential distinguisher for the
SPECK32/64 cipher with the help of machine learning [10], and based on that,
an 11-round attack was established, which was better than previous classic
attacks. Gohr’s central idea was using distinguishing attacks with the help of
AI. He trained a neural classifier that can classify between a block cipher and
a random permutation by looking at the output differences of the ciphertexts
for a specific plaintext difference in SPECK32/64. He then compared this neu-
ral distinguisher with the traditional all-in-one differential distribution table
of SPECK32/64, which was commutable due to cipher’s small block size, and
noticed ML-distinguishers could be a good model of it. Furthermore, he pre-
sented a method to find a good input difference for distinguishing attacks with
the help of ML without any prior knowledge.

Following Gohr’s intuition, a subsequent study was published by Baksi et
al. [12] which used deep learning differential to train distinguishers for non-
Markov ciphers, and on that basis could simulate non-Markov cipher’s all-in-one
differential distribution table. This was modeled successfully for ciphers with
big state sizes such as Gimli. Moreover, the paper studied other architectures
of deep learning networks, including Long Short-Term Memory (LSTM) and
Multilayer Perceptron (MLP). Their results indicate that an MLP network with
three hidden layers can be efficient enough to train a distinguisher.

Linear cryptanalysis has also been recently attempted using machine learn-
ing. Hou et al. applied machine learning on DES cipher to achieve a linear attack
[13], using known plaintext and their corresponding ciphertexts. The results show
that a neural network can recognize the XOR distribution of a linear expression
in DES cipher. Other attacks such as integral have also been investigated in
conjunction with machine learning [14].
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Recent research in this direction is not limited to block ciphers: Liu et al.
in [15] analyze the security of variants of Xoodyak hash mode against preimage
attack utilizing deep learning. They trained a model for one round of permutation
to predict the message of a hash function and discover that the accuracy is high.
However, as the number of rounds is increased, the deep learning preimage attack
diminishes in effectiveness.

Benamira et al. contributed a more in-depth analysis of the functioning of
ML-based distinguishers, and focused in particular on what information they
use [16]. Their results indicate that these machines not only use the differential
distribution on ciphertext pairs, but the distinguisher depends on the penulti-
mate or antepenultimate rounds. Based on these findings, they propose a new
pure cryptanalysis distinguisher with the same accuracy as Gohr’s neural dis-
tinguisher.

Due to the fact that the majority of the literature review on differential
machine learning analysis focuses on the Speck cipher, such as the aforemen-
tioned [10,16], and [17], our primary emphasis in this paper is also on this cipher.

An important limitation of current attacks relates to their complexity. To
attack n + 1 rounds of a block cipher using n-round of Gohr’s neural distin-
guisher, we need to guess all the possible last-round subkeys. Although this
approach works well on SPECK32/64, whose length of subkeys is 16 bits, it may
not work efficiently for many other ciphers. For example, in AES-128 [2] the size
of subkeys (round keys) and the main secret key is equal to 128 bits, so the
complexity of trying all last-round subkeys is equivalent to a brute force attack.

Furthermore, the block size of ciphers can affect the training phase of ML-
distinguishers because each bit in the training stage acts as a feature for the
machine. SPECK32/64 has a 32 bits block size, but usually, ciphers have a
block size higher than that. As a result, training ML-distinguishers could be
harder for other block ciphers, especially ones with a Substitution-Permutation
Network (SPN)2 structure.

1.2 Contribution

In this paper, we present novel results that advance the efficiency, and reduce
the cost of ML-based distinguishers. In particular, we show experimentally that
not all the bits in a block are necessary as features to have an adequate neural
distinguisher. We also find that different selections of bits (features) in the ML-
distinguisher lead to vastly different accuracy results, and that certain bits are
consistently better than others for this purpose. On this basis, we propose a
new feature selection method for partial differential ML-based distinguishers.
We use the selection method to obtain a much more compact partial differential
ML-based distinguisher.

2 Given a plaintext block and a key, the substitution-permutation network (SPN)
generates the ciphertext block through a series of rounds or layers of substitution
boxes (S-boxes) and permutation boxes (P-boxes).
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In particular, we first present a novel method aimed at training a neural
distinguisher more efficiently than in current literature. We do so by introduc-
ing the first partial differential machine learning based distinguisher (PD-ML-
distinguisher). The idea behind a partial differential ML distinguisher is that it is
not necessary to train the ML model on all the bit differences of ciphertext pairs
in order to achieve a distinguisher. Consequently, if we have an ML-distinguisher
that can tell, without knowing all bits, whether some difference in ciphertext
pairs δ = C0 ⊕ C1 is generated as random or as the result of the encryption
of the plaintext pairs, then we do not need to guess all the subkeys in the last
round to recover the secret key.

Secondly, we implement the PD-ML-distinguisher for SPECK32/64 (the ref-
erence cipher in related works in the literature [10,16,17]) and we measure the
effectiveness of each bit of δ in the training of ML-distinguishers. Through an
extensive series of experiments we find that different bits have a different impact
in the training of the distinguisher. This characteristic can be reliably observed
in separate, independent experiments. Based on our measurements, we assign a
score to each bit with the help of the PD-ML-distinguishers. The bits with higher
scores are more important for the training of the models, as they lead to machines
that are significantly more effective (68.8% for 8 bits) than those trained on the
lowest scoring bits (52% for 8 bits). On this basis, we can therefore select only
the most effective bits when training PD-ML-distinguishers, achieving better
time efficiency in training the distinguisher. This is evidenced by the training of
a 6-round distinguisher for SPECK32/64 with just 8 bits achieving an accuracy
of 68.8%, against an accuracy of 72% for an equivalent ML distinguisher trained
on the full 32 bits.

In order to demonstrate how our proposed model can be put to use in prac-
tice, we also train a distinguisher for 7-round SPECK32/64 using a 6-round
distinguisher utilizing the key-averaging algorithm proposed by [10]. The exper-
iment shows that our proposed model can reduce the time complexity of this
algorithm from 216 to 211, with the cost of just 3% in accuracy of resultant
distinguisher (from 61% to 58%).

1.3 Outline

The structure of this paper is as follows. Section 2 gives an overview of the
SPECK32/64 block cipher, and a brief description of Gohr’s neural distinguisher
is explained. In Sect. 3, PD-ML-distinguishers are introduced, and they are exam-
ined on the SPECK32/64 cipher. In Sect. 4, an experiment is presented to mea-
sure effectiveness of each bit for training ML-distinguishers, and extensive exper-
imental evidence is discussed.



128 A. Ebrahimi et al.

2 Preliminaries

2.1 The SPECK Cipher

SPECK is a family of lightweight block ciphers designed by the NSA in 2013
[18]. These ciphers have many different block sizes and key sizes, but in this
paper, SPECK with 32 bits block size and 64 bits key size is evaluated, and it
is specified by SPECK32/64. Like many other block ciphers, it is an iterative
cipher, which means it has a function that iterates for many rounds until the
ciphertext is generated. The number of rounds for SPECK32/64 is 22.

SPECK is a Feistel cipher. Accordingly, the plaintext is divided into two
equal parts (R,L), and in the case of 32 bits block size R,L ∈ {0, 1}16, then the
below function applies to inputs at each round:

SPECK32/64 :
Lr+1 = ((Lr >> 7) � Rr) ⊕ kr

Rr+1 = (Rr << 2) ⊕ Lr+1

(1)

In Eq. (1) << and >> are cyclic left and right shift, respectively, � is
modular addition, and ⊕ is an exclusive OR (XOR).

2.2 ML-Based Differential Distinguishers

To analyze the security of a block cipher with block size of n against differential
attack, cryptographers study the statistical behavior of a difference through a
block cipher. For this, they choose an input difference and encrypt it for a spe-
cific number of rounds and, lastly, try to find non-randomness in corresponding
output differences. Throughout this paper, the input difference is represented by
Δ, and it is defined as a XOR of two plaintexts; additionally, Pi and Ci stand for
the plaintexts and ciphertexts, respectively. The output difference is specified by
δ = E(P0) ⊕ E(P1 = P0 ⊕ Δ) and (Δ → δ) is called a differential. The occur-
rence probability of a differential can be shown by Pr(Δ → δ). In a random
permutation with block size of n, the average probability of a differential is:

∀Δ, δ : Pr(Δ → δ) = 2−n

If an attacker can find a differential such that Pr(Δ → δ) > 2−n for a block
cipher, a differential distinguisher is achieved.

In Gohr’s attack [10], an ML-based distinguisher is trained with the aid
of ciphertext pairs. These pairs are generated in two ways: in the first group,
they are real ciphertexts (C0, C1) of a block cipher for a specific plaintext pairs
(P0, P1), where P0 ⊕ P1 = Δ; in the second group they are selected randomly
(noted by ∈r) where C0, C1 ∈r {0, 1}n × {0, 1}n. Then, the accuracy of this
distinguisher is evaluated, and if this accuracy is more than 50%, a distinguisher
is obtained. selection It is important to note that the power and efficacy of
this ML-based differential attack compares positively with the All-in-One attack
[19] for SPECK32/64. The All-in-One attack is a powerful differential analysis
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that considers a set of all output differences for a fixed given input difference Δ
instead of one specific differential trail Δ → δ.

All − in − one = {δ|δ = E(P0) ⊕ E(P0 ⊕ Δ)}
The steps of finding an ML-based differential distinguisher for r round

of SPECK32/64 cipher are as follows. Considering the feistel structure of
SPECK32/64, every plaintext can be represented like P = (L,R) that L ∈
{0, 1}16 and R ∈ {0, 1}16 are left and right part of plaintext, respectively. Fur-
thermore, the 32-bit values for plaintexts, ciphertexts, and differences are repre-
sented in hexadecimal form, for e.g., 6659 = 0x1a03.

1. First, 107 plaintext pairs (P0, P1) are randomly generated in a way that Δ =
(L0 ⊕ L1, R0 ⊕ R1) = (0x0040, 0x0000). Meanwhile, 107 labels Y ∈r {0, 1}1

are randomly generated and allocated to the pairs.
2. if Y = 0 the P1 is randomly changed to P1 ∈r {0, 1}32 then all these pairs

are encrypted with r rounds of SPECK32/64, and all the ciphertext pairs
(C0, C1) are stored with their corresponding labels in a dataset.

3. An AI machine is trained with the help of these ciphertext pairs. In this
training phase, zero label Y = 0 means it is a datum from a random per-
mutation, while Y = 1 demonstrates a ciphertext for a fixed input difference
Δ = (0x0040, 0x0000).

4. In testing stage, steps (1) and (2) are repeated for another 106 pairs, and the
accuracy of the machine is measured. If accuracy is more than 50%, then the
machine is a differential distinguisher.

As discussed in Sect. 1.1, following Gohr’s seminal work several papers have
investigated the use of ML in cryptanalysis [11,12,20]. Some of these works
changed certain steps of the original attack as mentioned above. For instance,
in [12] there are two major changes. Firstly, it is shown that using a multilayer
perceptron (MLP) for training the ML-distinguisher can achieve better results
than CNN network as used in [10]; and secondly, the training dataset containing
C0 ⊕ C1 instead of (C0, C1) is more useful for increasing the accuracy of ML-
distinguisher.

The final goal of having a distinguisher is to attack the cipher. By having a r-
round ML-based distinguisher, a trivial attack on r + 1 rounds of SPECK32/64
cipher can be implemented as follows.

1. For a fixed input difference Δ = (0x0040, 0000), n pairs of (P0, P1) is formed
and their corresponding ciphertext (C0, C1)r+1 after r+1 rounds is obtained
by asking from an oracle.

2. For all possible subkeys in round r + 1, (kr+1), ciphertexts are partially
decrypted for one round and (C0, C1)r saved in a dataset.

3. given each (C0, C1)r to r round ML-based distinguisher in the test phase, a
score is attained for every ciphertext pair.

4. Average all the scores to have a final score for each subkey kr+1.
5. Rank the subkeys based on their score. The subkey with the highest score

has the most probability to be the correct subkey.
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3 Partial Differential ML-Distinguisher

In this section, we show that it is possible to train an adequate neural distin-
guisher based on a subset of bits in a block, rather than the entire block as in
previous literature. As a result, we introduce the first Partial Differential ML-
distinguisher.

To analyze the security of a cipher, the complexity of the attack algorithm
should be less than brute force. The brute force attack complexity for a block
cipher is 2min(|k|,|n|), where |k| and |n| are key and block size, respectively. As
shown in Sect. 2.2, in order to find the key of a cipher with the help of a ML-
distinguisher, all the subkeys in the last round need to be guessed. Therefore,
to attack r rounds of SPECK32/64 cipher, the attacker has to guess all bits of
subkey kr, which has 16 bits length. As a result, the complexity of the attack is
216 which is less than brute force attack 232, and it is a successful cryptanalysis
for SPECK32/64.

On the other hand, in many ciphers, especially those with SPN structures
like AES, the complexity of guessing the last round subkey is equal to brute
force attack. In this paper, we train partial differential distinguishers (PD-ML-
distinguishers) and compare their accuracy to a full state differential distin-
guisher for 6-round SPECK32/64. We show that PD-ML-distinguishers can still
distinguish output differences that are generated by SPECK32/64 from a random
output. The proposed classifiers also reduce the complexity of further cryptanal-
ysis, as there is no need to guess all the subkeys in the last round.

3.1 Methodology

In order to show the feasibility of training a ML-based distinguisher by using
partial differences of (P0, P1) and (C0, C1), we set up an experiment where many
PD-ML-distinguishers are trained for six rounds of SPECK32/64, and their accu-
racy is recorded. We chose Speck as this has emerged as the reference cipher in
related works on ML distinguishers (such as [10,16] and [17]) and therefore allows
for better and more significant comparison of our results.

The number of rounds for encrypting plaintext pairs is set to six rounds:
this is consistent with current literature, as in [10], which shows that reasonably
strong distinguishers against up to six rounds of Speck can be trained by using
ten-layer residual networks. On the other hand, extending distinguishers to 7 and
8 rounds requires the use of more sophisticated algorithms like Key Averaging
[10] for the additional rounds. As our objective is to demonstrate the feasibility
and greater efficiency of a partial differential ML-distinguisher attack compared
to a simple ML-distinguisher, in this work we focus on the first 6 rounds, as
it is done in the previous ML-distinguishers in the literature we are comparing
too. However, for completeness, we discuss extending the proposed distinguisher
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using Key Averaging in Sect. 4.2, and we find that our technique results in a
significant reduction in complexity of key averaging as well.

Each bit of the output difference acts as a feature for the machine learn-
ing based distinguishers. Consequently, to achieve a partial ML-distinguisher for
SPECK32/64, the machine is trained by subset bits of the ciphertext difference,
δ, rather than all 32 bits. To experimentally verify to what extent we can trim the
output difference, δ, without significantly reducing the effectiveness and robust-
ness of the PD-ML-distinguisher, we conduct an experiment as follows. We first
train our distinguisher with just one feature, the least significant bit (LSB) of
δ, and record its accuracy. Next, we again train another partial distinguisher,
but this time we increase the number of features by one, where the feature is
the second least significant bit of δ. This process is repeated until we have 32
different distinguishers. Algorithm 1 gives details on the experiment. The plain-
text difference Δ to generate ciphertexts difference is Δ = (0x0040, 0x0000), and
the dataset is 32 bits differences δ = [δ0, . . . , δ31]. In order to demonstrate the
repeatability of the results, we repeat the above process 3 times, each time using
a different pairs of (P0, C0) and (P1, C1) to create new δs, while maintaining
P0 ⊕ P1 = Δ = (0x0040, 0x0000).

Baski et al. showed in [3] that the Multilayer Perceptron (MLP) architectures
are more efficient than Convolutional neural networks (CNN), including Residual
networks, or Long Short-Term Memory (LSTM) for training an ML-based dif-
ferential distinguisher. As a result, in this paper, a Multilayer Perceptron (MLP)
machine with three dense layers and a sigmoid activation function is used for
training. The number of neurons for dense layers is 32, 64 and 32, respectively.
These have been selected though a standard fine-tuning process. For each num-
ber of input bits, a new machine was trained for ten epochs on 107 different
C0 ⊕ C1 = δ. Also, another 106 sample was generated for validation. The loss
function for optimization was binary cross-entropy plus L2 weights regulariza-
tion with parameter c = 10−5 using Adam algorithm [21]. The learning schedule
applied in these ML-distinguishers is the cyclic learning rate used in [10]. All
other parameters are the default parameters in Keras [22].

In each iteration of Algorithm 1, we concatenate difference bits based on their
position. If we assume that the accuracy of the machines entirely depends on
the number of bits, rather than which bits are selected, then a different selection
method should produce comparable results, accounting for statistical differences.
In order to verify this hypothesis, we repeat the above process using Algorithm
1; however, this time, instead of starting from the least significant bit δ31, we
start from the most significant bit (MSB) δ0, and then we concatenate the next
MSB to our feature space for the next iteration of the while loop and trained
our machine.

The results of the experiment for SPECK32/64 are shown in Figs. 1
(LSB→MSB) and 2 (MSB→LSB), and are discussed in the following. The results
clearly indicate that a partial differential ML-distinguisher is effective, as a dis-
tinguisher can be obtained for a reduced number of bits. However, by looking at
the figures, it is also immediately evident that the accuracy changes if we change



132 A. Ebrahimi et al.

Algorithm 1: Training PD-ML differential distinguishers
1 10 Input: Data set for training the machines: δ = [δ0, . . . , δ31]

Output: Accuracy of machines: A
2 i = 31, j = 0 ;
3 Initialize an empty array Xtemp ;
4 Initialize array A with size 32;
5 while i ≥ 0 do
6 Xtemp = δ[i]||Xtemp;
7 D ←− TrainMachine(Xtemp) ;
8 A[j] = AccuracyTest(D);
9 j = j + 1 , i = i − 1

the selection of bits. These initial experimental results indicate that different bits
have a different impact on the machine accuracy. We build on these findings in
Sect. 4, where we analyse in detail the impact each bit has in the effectiveness
of the partial differential ML-distinguisher.

3.2 Results and Discussion

By looking at Figs. 1 and 2, it can be seen that we can achieve a distinguisher
without giving all bits of output difference to the machine. For instance, in Fig. 1,
we can have a suitable machine with just the first 20 bits of output difference.
However, in Fig. 2, we train the machines by concatenating the output differences
from the opposite MSB to LSB direction. In that case, the number of bits that
we need to achieve almost the same accuracy is 28, as shown in Fig. 2. From
this, we can conclude that the bits position chosen for the PD-ML-distinguisher
training can be effective in its accuracy.

We repeat this experiment three times for each direction (LSB to MSB and
MSB to LSB) to see how the machines’ behavior changes for different datasets.
Each color in Figs. 1 and 2 represents one run of Algorithm 1. By looking at the
figures, it is clear that the results achieved in the experiment can be reliably
repeated in different experimental instances. We also note that increasing the
number of features (bits) makes the accuracy of PD-ML-distinguishers fluctuate
slightly between experiments (for a number of bits >28). The reason for this
is that the number of epochs is set to 10 due to reducing training time, so
it is harder for machines to converge when the number of features is higher.
Nevertheless, this is not true when the number of bits is lesser than 22 for
both directions. Therefore, we can conclude that using PD-ML-distinguishers
can reduce feature size, resulting in faster convergence of the machines.
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Fig. 1. Accuracy of ML-distinguishers according to number of bits in LSB→MSB direc-
tion for 6 round of SPECK32/64

Fig. 2. Accuracy of ML-distinguishers according to number of bits in MSB→LSB direc-
tion for 6 round of SPECK32/64

4 Measuring Bit Effectiveness for ML-distinguishers

The results presented in Sect. 3 show that we do not need all bits of the δ to
obtain a ML-based distinguisher. In fact, we were able to train a partial differ-
ential ML distinguisher with fewer training bits and achieve results comparable
to distinguishers learned on full data. In this section, we aim to identify the
best strategy for finding the best machine, trained with the least number of bits.
Since the desire of block cipher designers is that the output bits of the encrypted
message have the most negligible correlation to each other, there is no trivial
or pre-defined way to determine which bits are the best for training the partial
distinguisher. Hence, we introduce a new experimental method to find the bits
of output difference δ for 6-round of SPECK32/64, which have the most impact
on the effectiveness of a partial differential ML-distinguisher. The main goal of
this experiment is to assign a score to each bit of δ, so that with the help of these
scores we can find the most effective bits for training a PD-ML-distinguisher.

4.1 Methodology

The experiment setup is as follows. Given the set of bit positions in a block B =
{b0, . . . , b31}, where 0 indicates the position of the most significant bit, we select
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a subset C16
B = {C0, . . . , C99} of the all the possible 16-combinations of B (that is,

the subsets of 16 distinct elements of B), in a way that the distribution of each
bi ∈ B, in Cis be uniform, where 0 ≤ i ≤ 99. Each of these 100 16-combinations
represents a selection of 16 bits out of the 32 total bits in a SPECK32/64 block
to be used in the training of a PD-ML-distinguisher.

We use the following procedure in the experiment (Algorithm 2). For each
combination, Ci ∈ C16

B we train a PD-ML-distinguisher, and we record its accu-
racy in an array A = [a0, . . . , a99]. In the next step, we construct a matrix
M32×100 in which every row and column correspond to bis and Cjs, respectively.
Equation 2 represents the M matrix, and how to construct it.

M32×100 =

⎡
⎢⎣

m0,0 . . . m0,99

...
. . .

...
m31,0 . . . m31,99

⎤
⎥⎦ and mij =

{
0 bj /∈ Ci

1 bj ∈ Ci

(2)

This matrix tells us which bits are chosen for every Cis. For example, if MSB bit
is in combination set C0 then m00 = 0 otherwise, m00 = 1. Then, considering the
matrix M , we can compute a score for each bit, S = {s0, . . . , s31}, as follows:

si =

99∑
j=0

mij ∗ aj

99∑
j=0

mij

. (3)

This score si is calculated as the average accuracy of all the PD-ML distin-
guishers built on combinations where the ith bit is included. A bit with a higher
score means that the combinations with that bit in their set lead to a PD-ML-
distinguisher with a higher accuracy on average. As a result, with the help of this
score, we can select the most effective bits for training a PD-ML-distinguisher.

4.2 Results and Discussion

By having all the scores from each combination set, we can select the most
effective bits for training a PD-ML-distinguisher with the minimum number of
features. If the scores shown in each set, Ci ∈ C16

B , were almost similar for all the
bits, then we could conclude that all the bits of δs have equal effect on training
a PD-ML-distinguisher. However, in our experiment we observed that there are
bits, like 12th, 14th and 29th, with higher scores. As a result, we can confirm
this hypothesis that the position of δ bits used for training PD-ML distinguisher
affects its accuracy.
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Algorithm 2: Scores of effectiveness
1 10 Input: Sequence set of combinations: C16

B = [C0, . . . , C99]
Output: Sequence set of scores: S = [s0, . . . , s31]
Training Data: differences of ciphertext pairs of 6-round SPECK32/64 : δ = [δ0, . . . , δ31]

2 Initialize Sequence set A with size 100
3 Initialize M32×100 Matrix
4 Initialize Sequence set S with size 32

5 for Ci ∈ C16
B do

/* Training PD-ML distinguishers */
6 D ←− TrainMachine(Ci)
7 A[i] = AccuracyTest(D)

/* Making M matrix */

8 for δj in δ do
9 if δj ∈ Ci then M [j][i] = 1 else M [j][i] = 0

/* Computing the score */

10 for 0 <= i <= 31 do S[i] =

99∑

j=0

mij ∗ aj

99∑

j=0

mij

In order to demonstrate the repeatability of these results, and since C16
B is

chosen randomly, we repeat the Algorithm 2 three more times and obtain 4
different scores for each bit. Then, we normalize all the scores based on the
average for each experiment. Figure 3 shows the result. Also, Table 1 indicates
the average score and standard deviation for each bit of δ, considering all scores
in the four experiments.

As can be seen, the scores for some bits are always above average. By look-
ing at Fig. 3 and Table 1, we choose 8 bits with the best score. We propose
two selection of bits for 6-round PD-ML distinguisher of SPECK32/64: δT =
[δ29, δ28, δ22, δ15, δ14, δ13, δ12, δ5] and δT ′

= [δ29, δ28, δ21, δ15, δ14, δ13, δ12, δ5]. The
rationale for choosing these bits is that except bit δ22 ∈ δT and δ21 ∈ δT ′

other

Fig. 3. Normalized Scores for 4 different combination sets. The bits with vertical
lines are the ones that are chosen as the most effective bits for training a PD-ML-
distinguisher for six rounds of SPECK32/64.
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Table 1. The average score (si) and standard deviation (SDi) of each bit of δ in the
experiments.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

si -0.62 -0.48 -0.19 -0.51 -0.83 0.75 -0.12 -0.20 0.01 -0.47 -0.53 -0.40 1.99 1.25 2.45 0.94

SDi 0.38 0.16 0.66 0.41 0.36 0.11 0.66 0.35 0.68 0.46 0.53 0.30 0.38 0.69 0.18 0.43

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

si -0.82 -0.75 -0.62 -0.22 -0.47 0.15 -0.10 -0.34 -0.71 -0.36 -0.59 -0.52 2.29 0.87 -0.18 -0.59

SDi 0.22 0.29 0.19 0.36 0.37 0.39 0.16 0.50 0.55 0.38 0.20 0.39 0.39 0.96 0.78 0.41

bits always have a score above average, zero. In the case of δ22, it has a very low
standard deviation while its average score is near the total average (zero), while
δ21 has the next-highest average score across experiments, despite scoring lower
than δ22 in some instances.

Finally, we train a new distinguisher with just these eight bits to verify if
they are sufficient for training a neural distinguisher, and we obtain a PD-ML-
distinguisher with an accuracy of 68.7% for δT and 68.8% for δT ′

. For compar-
ison, we train a comparable non-partial differential ML-distinguisher, using all
32 bits, and we obtain an accuracy of 72%. For further comparison and verifi-
cation, we also train a PD-ML-distinguisher on the lowest scoring 8 bits. This
time, we obtain an accuracy of 52%, only slightly above the 50% threshold,
at which the ML model is not able to distinguish from random, and therefore
a distinguisher is not obtained. Figure 4 illustrates the process of the training
PD-ML-distinguishers.

The above results clearly indicate the validity and effectiveness of the novel
partial differential ML-based distinguisher approach we propose in this paper.
The proposed bit selection mechanism further improves the results, and makes it
possible to train a PD-ML-distinguisher using a fraction (25%) of the bits, and
therefore leading to a reduction in the time and space complexity of training
the model, as well as a reduced size for the neural network. This reduced size
means we will have a lesser number of neurons in the input layer. Therefore, it
decreases the time complexity of the training phase because we can train the
machine with a lower number of input features compared to when we increase
the feature space of the dataset.

Although in Sects. 3 and 4 we use the same input difference as Gohr’s paper,
this bit selection can be used in a black-box method. In [12], a procedure was
introduced to find the best input difference Δ for the All-in-One differential
attack without any prior knowledge by ML-based distinguishers. So, for having
a black-box bit selection, we can use the ML-distinguisher for finding the best
possible Δ and then use the bit selection of this section.

In the following, when discussing the differences between our machine and
Gohr’s results, it is important to consider an important distinction. According
to [16], the Gohr machine understands information better than the pure differen-
tial distribution of outputs. In fact, if we give the ML-distinguisher (C0||C1) as
input instead of C0 ⊕ C1, the machine understands the differential distribution
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Fig. 4. The Training Process of PD-ML-distinguishers. Rank values are as per Table 1.
Plotted bars are approximation of the values (due to graphical constraints).

in the penultimate and antepenultimate rounds as well. To prove this assump-
tion, Bnamira et al. [16] used the Gohr ML-distinguisher in one experiment, but
instead of ciphertext pairs, they used C0⊕C1 = δ as an input of the distinguisher
and observed that the machine’s accuracy decreased from 78.8% to 75.4%. So,
they conclude that Gohr’s machine can extract more information than just the
differential distribution of outputs. Hence, throughout this paper, we aim to
assess how each bit of the output difference, δ, affects the training of the distin-
guisher. When comparing our results to the accuracy of other machines, we do
so referring to pure differential inputs, which in the case of Speck32/64 is 75.4%
[16].

The details of the ML models used are summarised in Table 2, showing that
our Partial ML-distinguisher machine is significantly smaller in terms of depth,
number of epochs and number of features than the comparable Gohr’s machine
[10].

4.3 Reducing the Time Complexity of key Averaging

While the this work focuses on the ML-distinguisher, and therefore on the first six
rounds of the SPECK32/64, as per the relevant literature, the proposed partial
differential ML-distinguisher can also reduce the complexity of algorithms tar-
geting subsequent rounds, and in particular the key averaging algorithm, which
is described in [10]. By employing an r-round differential ML-distinguisher, the
key averaging method is utilized to raise the number of rounds for a differential
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Table 2. Comparison of different machine learning based differential distinguishers.
The training time refers to the networks running on the Google Colab platform [23]

Reference Network Number of
input features

Depth Epochs Input of the
Machine

Training time
per epoch

Accuracy

[10] CNN 32 (bits) 10 200 C0||C1 ≈ 7 min %78.8

[16] CNN 32 (bits) 10 200 C0 ⊕ C1 ≈ 7 min %75.4

[17] MLP 32 (bits) 6 10 C0 ⊕ C1 ≈ 2.5 min %7.5a

This work MLP 32 (bits) 3 10 C0 ⊕ C1 ≈ 1 min %72

This work MLP 8 (bits) 3 10 C0 ⊕ C1 ≈ 30 sec %68.8
aThis machine is not a binary classifier; rather, the training set includes 32 distinct
classes. More information can be found at [17].

ML-distinguisher to r+1 rounds. [10] employed a six-round neural distinguisher
to assess the one round partial decryption of each ciphertext pair in the test
set, and the aggregated results were used to compute a score for each pair by
average across them. The complexity of this approach for Gohr’s distinguisher
is 216, and he was able to create a 7-round distinguisher with a 61% accuracy.
Using the proposed PD-ML-distinguisher, however, we can execute this method
with a complexity of 211 and obtain a 7-round distinguisher with a 58% accu-
racy. The complexity is therefore significantly reduced, as we do not need to
know all of the bit differences in the ciphertext pairings, at a small cost in the
accuracy. While extending to further rounds is outside of the scope of this work,
the application and improvement of key averaging and other techniques to the
PD-ML-distinguisher represent an interesting future research direction, as dis-
cussed in the Conclusion. The time complexity and accuracy of the 7-round
ML-distinguisher produced by our proposed model, based on the key averaging
algorithm, are compared to those of Gohr’s model in the Table 3.

Table 3. Evaluation of the performance of ML-distinguishers in executing the key
averaging algorithm.

Reference Time Accuracy of

Complexity resultant distinguisher

[10] 216 %61

This work 211 %58

The same is true if an attacker wishes to apply the key ranking to the final
round of the cipher. In this type of attack, the attacker employs a r-round ML-
distinguisher to attack the r + 1-round of the block cipher by guessing all of
the required subkeys from the previous round. Again, if we use the Gohr’s ML-
distinguisher to perform the key ranking attack, we must guess 216 subkeys;
however, with the help of our proposed model, this time complexity can be



Partial Differential ML-Distinguisher and Bit Selection Mechanism 139

reduced to 211, because we only need to partially decrypt 8-bits of the previous
round, which we can do by guessing 11 bit keys.

Furthermore, our model allows attackers to find a trade-off between time
complexity and distinguisher accuracy. To accomplish this, the attacker simply
needs to increase the number of inputs for the machine based on their score and
then have a higher accuracy. This flexibility is useful in SPN-like ciphers, where
the length of the subkey is typically the same as the length of the block, and
guessing all of the keys from the last round makes the attack infeasible due to
time complexity.

5 Conclusion

In this paper, we investigated the applicability of partial differences in train-
ing neural distinguishers, and we proposed the first partial differential Machine
Learning (ML) distinguisher. As a partial differential ML-distinguisher is trained
on a selection of bits rather than all bits in a block, we also studied the impact
of the selection of bits in the accuracy of the distinguisher, and we established
that certain bits have reliably higher effectiveness than others, through a series
of independent experiments on different inputs. On this basis, we proposed an
algorithm for assigning an effectiveness score to each bit in the block.

In applying a differential attack, our goal was to find non-random behav-
ior in a block cipher when we do not have all bits of difference in ciphertext
pairs, δ. To achieve this purpose, we trained a ML-based differential distin-
guisher for 6-rounds of SPECK32/64 by using just some parts of δ, and we
studied the effectiveness of such a partial ML-based differential distinguisher,
which we call PD-ML-distinguisher. Our experiments indicate that it is possible
to achieve PD-ML-distinguishers with high accuracy, that is comparable to that
of a ML-distinguisher trained on the full 32-bits of the block. We also observe
that increasing the number of bits does not necessarily lead to an increase in the
machine accuracy; but it can reduce the converging speed.

Based on these results, we then experimentally examined if all bits have an
equal impact on the training stage by creating new PD-ML-distinguishers. We
detect that the accuracy changes when we alter the bits. We conclude that some
bits are more critical for ML-distinguishers.

To find the most effective bits in the training phase, we proposed an algorithm
to allocate a score to each bit of δ for 6-round SPECK32/64. With the help of
this score, we could select the eight most effective bits and construct a 6-round
PD-ML-distinguisher for SPECK32/64 achieving an accuracy of 68.8%. This is
comparable, and only slightly lower than the 72% accuracy of a ML-distinguisher
trained on the full 32-bits, which implies a significantly higher cost in terms of
computational and space complexity.

The reduced input also leads to a significant reduction in the complexity of a
potential subsequent key recovery attack, as we would not need to guess all the
possible subkeys, but rather just 8 bits of them. As an example, we compared
our model’s performance to that of Gohr’s when both were used to execute the
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key-averaging algorithm on SPECK32/64 and found that our model improved
runtime (reducing complexity from 216 to 211), while sacrificing just a small
amount of the resulting ML-distinguisher’s accuracy (∼3%).

While our experiments are obtained on lightweight cipher SPECK32/64 (the
most widely used cipher in the ML-distinguishers literature), the proposed tech-
niques are generic and can be applied on other ciphers. These results are in fact
likely to open the way to efficient ML-based differential cryptanalysis of ciphers
with larger block sizes, placing standard block ciphers potentially within reach.

As a future research direction, further analysis of the PD-ML-distinguishers
may determine the factors that influence the effectiveness of particular bits and,
based on that, establish precise criteria concerning the round functions of a
cipher. Also, additional insight into the connection between the features (bits)
and the prediction may be gleaned from comparing our proposed algorithm with
machine learning model interpretations like SHAP or LIME. Another direction
may be to use r round distinguishers to create new distinguishers for r + 1
or higher number of rounds. For instance, as briefly discussed in Sect. 4.2, the
key averaging algorithm can produce a 7-round distinguisher by using 6-round
distinguisher without training a new machine. In this scenario, utilizing PD-ML
distinguishers may reduce the complexity of the algorithms used to do this.
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Abstract. Intrusion detection systems are an important domain in
cybersecurity research. Countless solutions have been proposed, contin-
uously improving upon one another. Yet, and despite the introduction of
distinct approaches, including machine-learning methods, the evaluation
methodology has barely evolved.

In this paper, we design a comprehensive evaluation framework for
Machine Learning (ML)-based intrusion detection systems (IDS) and
take into account the unique aspects of ML algorithms, their strengths
and weaknesses. The framework design is inspired by both i) traditional
IDS evaluation methods and ii) recommendations for evaluating ML algo-
rithms in diverse application areas. Data quality being the key to machine
learning, we focus on data-driven evaluation by exploring data-related
issues. Our approach goes beyond evaluating intrusion detection per-
formance (also known as effectiveness) and aims at proposing standard
data manipulation methods to tackle robustness and stability. Finally,
we evaluate our framework through a qualitative comparison with other
IDS evaluation approaches from the state of the art.

Keywords: Intrusion Detection System · Machine learning ·
Data-driven Evaluation · Evaluation Framework

1 Introduction

It has been almost twenty years since the publication of the NIST internal report
on testing intrusion detection systems [29]. The NIST report identified 10 mea-
surable characteristics, and 4 challenges (incl. how to use background traffic to
test IDS), and presented recommendations to improve both datasets and met-
rics. While some of these characteristics and challenges remain relevant, they
also highlight the need to update and improve our IDS evaluation approaches.

Although new techniques like artificial intelligence were introduced to intru-
sion detection systems, researchers still use outdated evaluation methodologies
and datasets. Since 2006, the article by Bermúdez-Edo et al. [8] revealed that
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the databases used for IDS evaluation are obsolete, however, they are still used
today. According to Tavallaee et al. [37], in 2010, almost 28% (resp. 24%) of
research papers used the obsolete KDD99 (resp. DARPA) datasets.

Milenkoski et al. [30] proposed an evaluation technique based on a design
space comprised of a workload (dataset property), customized metrics, and a
measurement methodology. In their publications, Milenkoski et al. suggest a
number of measurement methodologies that correlate to the potential property
(Attack detection accuracy, Resistance to evasion techniques...) for evaluation.

In the literature related to ML-based IDS, which generally focuses on the
property Attack detection accuracy, which is essentially a measurement method-
ology as described by Milenkoski et al.and is defined as the accuracy of an
IDS in the presence of mixed workloads (benign and malicious traffic), Resis-
tance to evasion methods or Resource consumption are rarely covered. However,
additional ML-related issues, such as the bias from the data, also affect the
generalization or stability of the ML-based IDS.

Furthermore, despite the datasets’ obvious quality problems, they are
nonetheless used without any oversight. Therefore, in order to enhance the overall
quality of the evaluation, we propose a generic and general approach to evaluate
machine learning-based IDS from multiple perspectives: we go beyond the classi-
cal quantitative evaluation methods, that solely focus on measuring effectiveness
using fundamental metrics, and considers data-driven evaluations by focusing
on the data used for the assessment. In the IDS context, we analyze machine-
learning concerns like explainability and robustness to adversarial examples. To
do so, we examine (i) IDS-specific assessment methods, (ii) AI-specific evalua-
tion methods that can be applied to IDS, and (iii) relevant recommendations
from the state of the art [5] and the standards [29].

This article is structured as follows: Sect. 2 presents some related works,
Sect. 3 analyses a number of IDS solutions with a focus on evaluation meth-
ods. Then, we present our proposal in Sect. 4 as well as a generic evaluation
framework. Finally, we conclude in Sect. 5.

2 Related Work

Throughout the years, researchers have presented numerous IDS evaluation
approaches. In this part, we introduce some of them. All of the methodologies
make an effort to give researchers resources to assess IDS.

Milenkoski et al. [30] identify the most common practices to evaluate dif-
ferent types of intrusion detection systems. To do so, they define a three-part
design space including (i) workloads, which are testing sets of data, and their
means of production; (ii) metrics, which quantify performance-related properties
(non-functional with respect to IDS), or security-related ones; (iii) measurement
methodology, which specifies the evaluation properties along with its associated
workloads and metrics.

Indeed, they include methods and tools to generate workloads and focus on
metrics that quantify the accuracy of the detection. Our proposed framework
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is inspired by the measurement methodology proposed by Milenkoski et al. but
shifts its initial paradigm towards machine-learning-based IDS, i.e., it relies on
the evaluation of best practices from the field of machine learning, in particular
with respect to data-related issues.

Magán-Carrión et al. [26] examine Network IDS (NIDS) solutions and point
out the lack of a standardized method for evaluating machine learning-based
NIDS. According to the authors, it is challenging to compare various NIDS
because the state of the art does not provide enough information on the eval-
uation methods. Hence, their methodology specifies the best practices for pre-
processing the dataset, training, and assessing the model. In the end, their app-
roach focuses on standardizing model preparation rather than introducing any
new evaluation techniques, they clearly present the different training stages of
a model: Feature Engineering, Feature Selection, Data Pre-processing, Hyper-
parameters Selection, and Performance Metrics.

Bermúdez-Edo et al. [8] suggest requirements for implementing standardized
IDS evaluation framework. The authors present a new method for evaluating
anomaly-based IDS with a focus on data-partitioning approaches. The authors
then offer a technique to get the databases ready for model training, testing, and
evaluation. They outline 3 steps: 1. they separate the attacks in one set and the
normal in another set, 2. they split the two datasets between a training set, a
test set, and a validation set, and 3. they combine some parts to produce three
final datasets (train, test, validation). In this method, the authors concentrate
on dataset partitioning.

Cardenas et al. [10] presents an IDS evaluation framework that allows for a
consistent comparison of the most used metrics in the literature. The authors
present a graphical method for comparing the different metrics for a wide range
of parameters. They provide a new metric that plots all variables influencing an
IDS performance. According to the authors, it is more interesting to determine
the IDS that performs best against the most severe attacks than on average.
The proposed metric is beneficial for our approach since it enables the results of
other domain-specific metrics to be summarized.

3 Analysis of Evaluation Approaches in ML-Based IDS

In this section, we review evaluation methods employed in recent ML-based IDS
publications in order to identify common practices that help create a generic eval-
uation approach. We selected the publications from recent surveys [2,11] which
respectively presented articles from 2019–2021 and 2015–2018 and updated the
list with new papers. Following many searches using terms such as “intrusion
detection” or “ML-based intrusion detection”, we retained the most recent pub-
lications (2020–2022) that fell under the scope.

Table 1 highlights a few components of the evaluation method employed in
these publications, namely the dataset and the metrics used, as well as some
specific evaluation measures beyond what could be described as a common eval-
uation approach. The remainder of this section details the various evaluation
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measures that we have noticed in this corpus of publications, both common
(classical measures) and specific to each publication.

Classical Measures. From our survey of the state of the art in machine-learning-
based (network) IDS, the evaluation measures employed by the researchers rarely
differ. Although we did find more peculiar measures (as detailed in the last
columns of Table 1), a common, allegedly conventional, methodology stood out.
This classical evaluation can be defined using the methods introduced by Magán-
Carrión et al. [26].

Some examined publications [13,22,35,38] that fall into this category solely
advocate for obtaining and contrasting the outcomes of basic metrics (accuracy,
precision, and recall) on various model architectures. For instance, in order to
enhance the performance of their deep neural networks, the writers of these
publications compared several architectures by varying some parameters such as
the size of the hidden layers for Gao et al. [13], the neural network activation
functions for Thing [38], the number of memory blocks and cells in LSTM for
Staudemeyer [35], and finally, the learning rate and the size of the hidden layers
for Kim et al. [22].

Data-Related Measures. Data-related measures encompass any evaluation tech-
niques dealing with data-related manipulation, e.g., augmenting the dataset,
reducing its dimensionality, generating data with a specific environment, and
random resampling. We are primarily interested in these methods given that we
wish to evaluate ML-based IDS.

Zhang et al. [44] leverage SMOTE to create the missing data in the unbal-
anced NSL-KDD dataset. This results in increasing the detection performance
of their CNN-based IDS on previously under-represented classes. Tang et al. [36]
heavily reduced the data representation of the NSL-KDD dataset from 41 fea-
tures to 6. This makes their DNN-based flow anomaly detector more efficient.
Zolotukhin et al. [46] used the Realistic Global Cyber Environment (RGCE)
to run their simulation, RGCE is a closed environment that replicates the user
traffic and organizational structures of the real Internet. This article is included
in our survey’s environment category since it makes use of a simulated environ-
ment. Al-Qatf et al. [3] suggest combining SVM and Sparse Autoencoder. The
following two methods are used to assess the effectiveness of their method using
the NSL-KDD dataset, for this purpose a ten-fold cross-validation is carried out
for both training and testing. Random resampling can be done using the k-fold
cross-validation method.

Multi-label Measures. ML-based IDS are often termed behavioral IDS or
anomaly-based IDS1, that is, binary classifiers attempting to distinguish mali-
cious traffic from a normal one. But some datasets offer more depth in exhibiting
several classes of attacks, which could be interesting for IDS to discriminate with
respect to producing a specific intrusion response. To that end, multi-label classi-

1 We believe however that the term “anomaly-based IDS” should solely apply to IDS
trained on normal traffic only.
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Table 1. Comparison of the surveyed publications. Most IDS evaluations employ a
subset of the above datasets and metrics with little to no variation. Additional measures
deal with varying model architectures (§), multi-label classification (�) or data-related
manipulations (�)
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Dataset Metrics Approaches

fication is employed. We have found some works measuring its advantage, either
in comparison with binary classification or in evaluating per-class performance.

For example, Yu et al. [43] propose a novel network intrusion model by stack-
ing dilated convolutional autoencoders and they evaluate their method on two
new intrusion detection datasets. Several experiments were carried out to check
the effectiveness of their approach. They used two different datasets: CTU-UNB
& Contagio-CTU-UNB and six classical evaluation metrics. To evaluate they
perform 3 types of classification tasks: 6-class classification using the Contagio-
CTU-UNB dataset and 2-class and 8-class classification using the CTU-UNB
dataset.

Moreover, Abbas et al. [1] proposed an ensemble model combining Naive
Bayes, Logistic Regression, and a Decision Tree. In order to assess the perfor-
mance of their suggestion they determine the accuracy of their model for each
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label. They end up with a total of 15 different accuracies, each of which repre-
sents the detection performance for this label.

Table 1 compares ML-based IDS proposals with respect to their evalua-
tion methodology. What can be observed is that they often share the same
evaluation approach. Many evaluations were replicating approaches previously
seen in the state of the art, and the trend has been shifting over the years,
for example from computing accuracy only to computing both precision and
recall instead. It is still the case today although intrusion detection-specific met-
rics were proposed [10,17,18,39]. Another worrying aspect is the choice of the
dataset. Although NSL-KDD has been perused for many years, many datasets
were created and shared in the last 10 years. It affects evaluation in its time-
liness as the attacks it contains are outdated and far from the sophistication
of modern attacks. Often, other simple data-related issues, e.g., unbalance, are
addressed using evaluation measures such as augmenting the dataset or reducing
its dimensionality.

Finally, additional measures that we have observed with respect to multi-
label classification, dataset construction, or model architectures are seldom used
in combination, reducing the quality of the models trained and tested. This
advocates for the definition and formalization of a holistic framework enabling
researchers of the domain in mastering the ML pipeline and adapting it to the
task of evaluating ML-based IDS with respect to a wide range of properties
including detection performance and resource consumption, of course, but also
generalization, robustness, and so on.

4 Proposal of an Evaluation Framework

One of the objectives of this framework is to bring together the different evalua-
tion methods found in the literature, in particular those that propose to evaluate
aspects specific to the use of machine learning such as robustness and general-
ization, and to suggest a method for researchers to properly assess their models.
Our research is inspired by Milenkoski et al. [30], who define the measurement
methodology of an evaluation property as the selection of appropriate workload
(dataset) and metrics.

Our proposal adapts this approach to ML-based IDS and embeds it into a
framework that generalizes the evaluation of several properties beyond detection
performance (also known as effectiveness). In particular, it focuses on a dataset
construction component as a generalization of the workload concept and extends
it to accommodate feedback from the evaluation analysis, ultimately providing
continuous improvement to both the ML models used by the IDS and the data
representation they use. Not only does the property have an impact on the
metrics that evaluate it, but the dataset may embed some challenges that the
metrics should account for (e.g., when using unbalanced datasets).

We also want to add some aspects not yet studied enough in the application of
machine learning to IDS such as explainability. The complete framework can be
found in Fig. 1. The framework is divided into several modules that contribute
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to the complete evaluation process. The first module focuses on the property
that we want to examine. From the selected properties, the metrics module will
output a set of relevant metrics, and the dataset module will construct the appro-
priate dataset to assess them. Both outputs form the experiment setting that will
configure the evaluation module which will perform the training and testing of
one or several models to be assessed by the evaluator. We further detail each
module in the ensuing subsections.

Fig. 1. Data-driven Evaluation framework for ML-based IDS

4.1 Properties

This module allows an evaluator to select a set of properties that the target IDS
(system under test) is assessed against.

Effectiveness is the usual property for assessing the detection performance of
an IDS. However, relying solely on performance evaluation is one of the major
issues in the evaluation of ML-based IDS since other crucial characteristics, such
as the ML algorithm’s robustness or generalizability must be considered.

Besides effectiveness, the properties we propose in our framework are influ-
enced by both works in the domain of intrusion detection, such as Axelsson’s [5],
and data-related problems in ML:

i) efficiency measures how many computing resources the IDS requires; ii)
usability measures how easy it is for a non-security expert to use the IDS; iii)
actionability measures how useful are the alerts for a security operator; iv) robust-
ness measures how well the IDS resists incidents or attacks directed against it
(e.g., adversarial examples, concept drift); v) intrusiveness measures the privacy
risks on the data manipulated by the IDS; vi) collaborativeness measures how
well the system collaborates with other security mechanisms.
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4.2 Datasets

As the main focus of our approach, the dataset module is central in our frame-
work, deriving the datasets appropriate to evaluate a property and feeding them
to the evaluation module. Indeed, the kind of dataset to be utilized is deter-
mined by the requirement to evaluate a specific property. This module has 3
main processes: construction, evaluation, and refinement.

Dataset Construction. This process produces one or several datasets (each of
them later split into a training set and a test set) that may be represented accord-
ing to various subsets of features. Similar to Milenkoski et al. [30], we consider
various sources of the data, ranging from raw traffic captures to extracted flows
to packet traces to feature vectors that have been generated from a broad set of
environments including production environments (rare!), emulation/simulation
testbeds, or legitimate and attack traffic generation tools. Generation tools also
encompass generative methods that output synthetic feature vectors. These
sources also come as readily exploitable datasets, some of them have been shared
among the IDS research community. A comprehensive list of the publicly avail-
able datasets that are commonly used is presented by Ring et al.in their sur-
vey [32].

Dataset construction outputs datasets that fit the measurement methodology
as expressed by Milenkoski et al. [30], that is it enables the evaluation of a
given property. A dataset may actually enable the evaluation of more than one
property.

For example, Bermúdez-Edo et al. [8] propose steps to acquire and partition
a network traffic dataset for evaluating the effectiveness of anomaly-based IDS,
among others. Some generation criteria are as follows: i) both normal and attack
traffic should be present, and the dataset should be partitioned between training
(only normal), validation, and test (both types of traffic) sets with realistic pro-
portions; ii) the dataset should be sufficiently voluminous as to be representative
of most traffic behaviors. They also described approaches to tackle a number of
issues: i) generating anomalous traffic (i.e., new attacks in a hybrid setting) by
using two filters (one obsolete and one up-to-date), ii) improving the robustness
of the dataset (increase the effective size of the data available for training and
testing) when its size is modest by resampling training and test sets, and aver-
aging the performance results, and iii) updating models by shifting the datasets:
the up-to-date rules become the out-of-date rules and the new rules become the
up-to-date rules.

Combining datasets can help to fill in any gaps that may exist in the chosen
or generated datasets, eventually creating more representative datasets. To be
representative the dataset needs samples large enough to adequately reflect the
general community’s norms, including both permitted and prohibited behaviors.

Regardless of the sources of data, a dataset Dp
Fj

is an instance of a dataset
Dp constructed so as to contain diverse samples allowing the evaluation of a
property p, and in which each sample is represented by the set of features Fj . Its
split between the training set Tr(Di

Fj
) and the test set Tt(Di

Fj
) is conditioned
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by both the property to be evaluated and the type of IDS (binary classifier,
multi-classifier, anomaly detector).

Dataset Evaluation. We suggest evaluating the dataset upstream so that it might
potentially be improved through a refinement stage in order to get the best
evaluation possible.

For example, Gharib et al. [15] have proposed a weighted score on 11 cri-
teria to evaluate the quality of an intrusion detection dataset. The 11 criteria
are attack diversity, anonymity, available protocols, complete capture, complete
interaction, complete network configuration, complete traffic, feature set, het-
erogeneity, labeled dataset, and metadata. Practitioners are invited to define
weights themselves, that best suit their requirements.

Viegas et al. [40] tackled the issue of realistic network conditions for the
evaluation of intrusion detectors by generating datasets using a honeypot with
a client-server approach. The generated datasets should satisfy a number of
expected properties [40]: i) realism: the produced network traffic can be observed
in production environments; ii) validity: packets are well-formed and follow the
client-server communication paradigm; iii) prior labeling: samples are correctly
labeled to enable correct classification; iv) high variability (diversity): the dataset
should present a diverse set of services, client behaviors, and attacks; v) correct
implementation: attacks follow a well-known or de facto standard; vi) ease of
updating: the dataset should incorporate new services and attacks; vii) repro-
ducibility: experts should be able to compare datasets; viii) without sensitive
data: the dataset should not contain or reveal sensitive information, so as to be
shared among researchers.

Additionally, one might desire more focused techniques, such as evaluating
datasets produced by a Generative Adversarial Network. Early works in other
fields have emerged, such as the one from Gonçalves et al. [16] that proposed
a method for the generation and evaluation of synthetic patient data. Using a
set of complementary metrics, they evaluated the quality of the synthetic data
generators. These metrics can be divided into 2 groups, the data utility and the
information disclosure. The data utility metrics measure how well the synthetic
dataset incorporates the statistical characteristics of the original data, and the
information disclosure metrics quantify to which extent the synthetic data may
reveal the real data. They proposed 5 data utility metrics (Kullback- Leibler (KL)
divergence, pairwise correlation difference, log-cluster, support coverage, and
cross-classification) and 2 information disclosure metrics (membership disclosure,
attribute disclosure).

Although the work is not in the field of intrusion detection, it shows promises
for evaluating synthetic discrete tabular data that appears frequently in network
traffic datasets.

Finally, Wasielewska et al. [41] propose to experimentally investigate the
limits of detection by using their dataset quality assessment method (PerQoDA).
This method makes it simple to determine whether the dataset’s information
is comprehensive enough to reliably classify observations. In multidimensional
datasets, it can spot irregularities in the connections between observations and
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labels. An efficient method for evaluating dataset quality aids in understanding
how performance outcomes are affected by dataset quality and can be useful in
resolving issues relating to the deterioration of model performance. Prior to any
ML application, they recommend, assessing the dataset quality.

Dataset Refinement. The dataset refinement process describes the step where
we use all the observations made to improve the dataset. The goal is to use the
various reports from the model evaluation as well as the dataset evaluation to
raise the dataset’s quality.

Initially, we can easily address the many issues brought up by the assessment
using Gharib’s method: for instance, if we discover a deficit in the proportion of
attacks, we can try to add the missing traffic.

However, after receiving feedback from a first training session, particularly
from the data representation report, one could wish to make adjustments. In
this scenario, a variety of strategies can be used to change the dataset’s feature
set. For example, Bronzino et al. [9] propose a complete method named Traffic
Refinery. This approach aims to transform the traffic in real-time to produce a
variety of feature representations for machine learning models. With this tool,
we can explore and evaluate which representations work best for the property
to be evaluated.

Indeed, there is no standard set of features for Network Intrusion Detection
Datasets. Different representations may actually yield different performances
for the same model. To prove this, Sarhan et al. [33] proposes to evaluate
and compare two different sets of features, the Netflow-based features, and the
CICFlowMeter features. The evaluation has been conducted on three datasets
and using two machine learning classifiers. The results show a constant supe-
riority of the NetFlow features. In addition to this, the authors used SHAP to
explain the prediction results of the ML models to identify the key features for
each dataset. With this approach, we can choose the best data representation
methods.

4.3 Metrics

In this section, we detail the families of metrics that are needed to produce an
accurate and customized evaluation, it’s essential to pick the appropriate metrics
in order to properly analyze a property. Although the metrics described in this
part are primarily concerned with detection performance, choosing a dataset
and metric based on the evaluation of a property allows for the study of more
properties with the same metrics than only effectiveness.

Bekkar et al. [7] expressly identify three groups: fundamental evaluation
measures, combined evaluation measures, and graphical performance evaluation.
The authors apply these metrics to compute the effectiveness of an IDS in the
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presence of unbalanced datasets. They remark that accuracy places more weight
on the most common classes than on the rare ones so using metrics like accu-
racy completely skews the results. It appears therefore that one should carefully
choose metrics that compensate for a dataset’s shortcomings. Even though the
authors, in this case, are interested in unbalanced datasets, we recommend using
at least the categories of metrics established by Bekkar et al.in order to account
for the various defaults of the datasets. The metrics categories that we advise
are the following.

Fundamental Evaluation Measures. This class of metrics relates to the metrics
that can be calculated using the confusion matrix’s results. Identified fundamen-
tal measures include accuracy, precision, and recall.

Combined Evaluation Measures. The metrics derived from fundamental measures
are included in this category. The following metrics can be found: G-means, the
likelihood ratios, Discriminant power, F-Measure, Balanced Accuracy, Youden
index, and finally the Matthews correlation coefficient (MCC). These metrics
combine the fundamental measures in a way that they are less susceptible to
potential class imbalance.

Graphical Performance Evaluation. In this category the metrics are based on
the ROC curve: the true positive rate (TPR) and false positive rate (FPR) are
plotted against one another at different threshold values.

The AUC, which is defined as a summary indication of the ROC curve perfor-
mance, is used to indicate the performance of a classifier into a single measure.
But there are also several other metrics such as Weighted AUC, Cumulative
Gains Curve and lift chart and Area Under Lift. These metrics provide a concise
summary of the fundamental evaluation measures and enable the selection of
potentially optimal models while disqualifying subpar ones regardless of the cost
context or class distribution.

Domain Specific. As early as 2006, Gu et al. [17] employed information theory
to model the capability of an IDS to correctly classify normal and intrusive
traffic. Their objective was to incorporate existing metrics while not relying on
subjective measures and reduce the uncertainty about the input given the IDS
output. The proposed metric called the Intrusion Detection Capability, or CID,
is the ratio of the mutual information between the IDS input and output to
the entropy of the input. Mutual information measures the amount of uncer-
tainty of the input resolved by knowing the IDS output. Later, Imoize et al. [18]
extended CID to select an optimal operating point, calculate the expected cost
and compare intrusion detectors. To that end, they incorporated a decision-tree-
based analysis to determine the optimal operating point, as done by Ulvila and
Gaffney [39].

These metrics are some examples of what we can find in the literature to
specifically evaluate IDS.
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4.4 Evaluation

This module performs the evaluation of a system under test (an IDS) for a given
set of properties, and their appropriately derived datasets and metrics. Aside
from model training and testing, the subsequent results are analyzed to refine
both the model fueling the ML-based IDS and the dataset.

Training and Testing. These processes in the evaluation module are the most
simple and common ones, yet mandatory.

The result of the training process is the trained model and validated model.
This model is then used in the testing process (also known as inference) to
output the metrics results, which include the outcomes of the selected metrics
computed using the test set. These reports are often found in other publications
evaluating IDS proposals using the classical methodology and contain different
values of the fundamental metrics for a set of model architectures.

Analysis. The incorporation of an analysis process is the real improvement we
advocate for model evaluation. Through this process, we are able to acquire a
number of reports that are highly helpful for both the IDS’s improvement and
its comprehensive evaluation.

The data representation report helps determine whether or not our dataset is
suitable for the model. Although the initial assessment of the dataset during the
construction phase gives us a general quality measure, the evaluation following
the test phase enables us to evaluate, using performance metrics, its suitability
for our purposes. We obviously want to determine whether a set of features is
appropriate for our models. The findings in this report can then be applied to
the refinement process in a subsequent iteration of the evaluation.

Since some ML (rather Deep Learning) models are regarded as black boxes
that do not allow for a straightforward explanation of their decisions, it impairs
the user’s ability to interpret the findings. A growing number of techniques
known as XAI that enable an explanation of the outcomes have been developed in
response to this issue, Charmet et al. [12] conduct a thorough literature review on
the connection between cybersecurity and XAI. The explainability report details
the application of such methods to the evaluation of IDS models.

The model report clarifies whether the chosen model is suitable for the desired
task. In fact, we may want to assess a number of models for which we derive
the various performance measures. From these outcomes, we produce this report
with the aim of demonstrating the effectiveness of the employed algorithms. This
report allows us to modify the model library’s list of models so that we only keep
the most effective ones in an evolutionary approach.

In conclusion, the framework provides instructions for developing the assess-
ment environment and procedure. Some of the activities are loops that enable the
improvement of various evaluation components, such as the dataset and model
selection, at each iteration.
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4.5 Qualitative Assessment of the Proposed Framework

Table 2. Comparison of our framework with other evaluation methods

Reference Properties Dataset Construction Dataset Evaluation Refinement Domain Specific Metrics Analysis

Our proposal � � � � � �
[30] � � �
[26] Partially Partially
[8] Partially Partially
[10] Partially �

We outlined current issues with IDS assessment in Sect. 1 in addition to the
fact that many relatively recent works still use outdated evaluation environ-
ments. The approaches are obsolete and not designed for the assessment of ML
models. In Sect. 3, we looked for some unique assessment techniques in various
intrusion detection proposals. In this section, we offer a qualitative assessment
of our suggested framework by contrasting our procedures with those used by
other researchers in the literature.

Here, we contrast our suggestion with the articles listed in the Sect. 2. The
discrepancies between our proposal and the current methodologies are clearly
shown in Table 2, where many of the elements in our framework are either par-
tially or missing. Indeed, the various evaluation techniques do only consider
one aspect at a time. For instance, Cardenas et al. [10], and Milenkoski [30]
recommend using domain-specific metrics, yet do not recommend studying the
model explicability, or evaluating the dataset itself, two features we include in
our framework.

5 Conclusion

We observed that relatively few evaluation techniques in the literature include
all required elements for a thorough evaluation of ML-based intrusion detection
systems, including in particular: dataset evaluation, explainability, etc. As a
result, we propose a methodological framework to assess ML-based IDS in a
systematic manner. Our framework is constructed as follows: The framework’s
first module outlines the various properties that we wish to assess, and it links to
the metrics and datasets modules. In our framework, we take into account that
the metrics and dataset are defined depending on the property to be evaluated.
Given that both components are crucial to the assessment process, the metrics
module and the dataset module are connected to the last module, the evaluation
module. Some of our modules include loops that can be used for fine-tuning
specific assessment processes in future iterations of the evaluation.

Our framework paves the way for future research developments, including
1. actually implementing the framework, 2. formalizing the evaluation part of
the framework, and 3. construct a benchmark to evaluate and compare various
ML-based intrusion detection systems.
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Abstract. This paper presents a novel Machine Learning (ML)-based
DeepFake detection technology named CHIEFS (Corneal-Specular High-
lights Imaging for Enhancing Fake-Face Spotter). We focus on the most
reflective area of a human face, the eyes, upon the hypothesis that
the existing DeepFake creation methods fail to coordinate their coun-
terfeits with the reflective components. In addition to the traditional
checking of the reflection shape similarity (RSS), we detect various
corneal-specular highlights features, such as color components and tex-
tures, to find corneal-specular highlights consistency (CHC). Further-
more, we inspect the ensemble of the highlights with the surrounding
environmental factors (SEF), including the light settings, directions, and
strength. We designed and built them as modular features and have con-
ducted extensive experiments with different combinations of the compo-
nents using various input parameters and Deep Neural Network (DNN)
architectures on Generative Adversarial Network (GAN)-based Deep-
Fake datasets. The empirical results show that CHIEFS with three mod-
ules improves the accuracy from 86.05% (with the RSS alone) to 99.00%
with the ResNet-50-V2 architecture.

Keywords: DeepFake · DeepFake Detection · Media Manipulation ·
Digital Media Forensics · Corneal-Specular Highlights

1 Introduction

The AI-fueled production and manipulation techniques of fictitious human facial
images, DeepFake, have accomplished notable advancement. Due to the sophis-
ticated DeepFake generation technologies [15,16,26], it is getting harder to dis-
tinguish the forged images by eye. Despite many benign applications such as
fun memes, visual effects, and realistic avatars, the generated fake media can be
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G.-V. Jourdan et al. (Eds.): FPS 2022, LNCS 13877, pp. 158–172, 2023.
https://doi.org/10.1007/978-3-031-30122-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30122-3_10&domain=pdf
https://doi.org/10.1007/978-3-031-30122-3_10


CHIEFS 159

malignantly used by spreading misinformation on social media, creating decep-
tion for identity theft, and causing manipulation on election security. Hence,
DeepFake has become a pandemic risk to authenticity, privacy, and security for
our society. DeepFake detection technologies have become essential vaccines to
mitigate the possible malignant risks.

There has been a large number of research works to detect DeepFakes. For
example, [33] proposed an attention-based DeepFake detection distiller by apply-
ing frequency domain learning and optimal transport theory in knowledge dis-
tillation to improve the detection of low-quality DeepFake images. Le et al. [17]
explored the asynchronous frequency spectra of color channels to train unsu-
pervised and supervised learning models to identify GAN-based synthetic facial
images. [31] extracted deep features from facial images using a Convolutional
Neural Network (CNN). Another technique [19] checked eye blinking motions,
which tended to be missing in DeepFake videos using the Long-Term Recur-
rent Convolutional Network (LRCN). Sun et al. [30] also detected DeepFake
using facial geometric characteristics. However, previous methods lacked detec-
tion generalization on unseen data because they were trained on datasets con-
taining few low-quality video frames generated with a single model and fewer
subjects. In addition, eye-based DeepFake detection techniques in [7,9,19], and
[22] only focused on a single artifact of eyes, either iris color, blinks, or similar-
ity of corneal reflections on both eyes. Hence, they failed to detect sophisticated
DeepFake media.

This paper presents a novel ML-based DeepFake detection technology named
CHIEFS (Corneal-Specular Highlights Imaging for Enhancing Fake-Face
Spotter). As shown in Fig. 1, we focus on the most reflective area of a human
face, eyes, upon the hypothesis that DeepFake technologies, such as replacement
and synthesis, are hard to coordinate their counterfeits with the reflective compo-
nents. We seek similarity and consistency of corneal-specular highlights (CSH)
with multiple surrounding semantics, such as illumination and environmental
conditions that are hard to forge. Thus, instead of checking a single aspect
of the eyes, we extract multiple features, including CSH s’ color components,
shapes, and textures. In addition, we extract facial images surrounding envi-
ronmental factors (SEF) to check the ensemble of the reflectance with the SEF
such as indoor/outdoor, bright/dark, backgrounds, and light strength. CHIEFS
embeds the SEF into the feature extraction and classification process to detect
the symmetricity and consistency in both eyes’ color components and reflection
patterns.

As illustrated in Fig. 2, CHIEFS consists of a couple of ML components,
including Training Data Collection and Annotation (TDCA), Highlights and
Environmental Factors Detection (HEFD), and Feature Extraction, Embedding,
and Classification (FEEC). The TDCA involves creating and annotating a new
dataset named CHIEFS DeepFake Detection (CHIEFS-DFD). The CHIEFS-
DFD dataset includes real and GAN-generated DeepFake facial images anno-
tated with various CSH and environmental information. The HEFD detects right
and left CSH, as well as identifies the SEF features. The FEEC extracts features
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Fig. 1. Samples of Real and DeepFake Facial Images with their Reflective Elements.
(a) and (b) are both Real, (c) is a DeepFake Face Generated Using the Face Swapper
Online Tool [11], and Facial Images in (d) are GAN-based Synthetic Faces From [2,15].

from the CSH images, measures the right and left corneal highlights consistency
(CHC), embeds additional SEF features, and classifies the input facial images as
fake or real. We use Siamese Convolutional Neural Networks (SCNN) with vari-
ous configurable neural network backbones, including ResNet-50-V2 [8], VGG-16
[29], Xception [3], and DenseNet-201 [10], for the feature extraction. We have
conducted experiments with various GAN-generated DeepFake datasets to vali-
date the accuracy of CHIEFS. The results show that CHIEFS achieves 99.00%
accuracy in detecting highly realistic DeepFake facial images. Further, the mod-
ular design of CHIEFS renders itself as a complementary DeepFake detection
module for any existing tools to limit the potential harm from DeepFake.
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The main contributions of this work include:

– A new facial images dataset is collected and annotated for corneal reflection
segmentation and DeepFake detection applications.

– A ML method is proposed to build an ensemble with various facial reflection
features instead of a single feature.

– We study the impact of environmental factors on reflectance by collecting
various parameters such as color and illumination conditions.

– We made modular designs for feature extraction and embedding to make it
portable to other existing tools as a complementary solution module.

The remainder of this paper is organized as follows. Section 2 describes the
existing DeepFake detection methods. Section 3 explains the design of CHIEFS.
Section 4 discusses the experiment setups and results. Section 5 concludes the
paper.

2 Related Work

This section discusses the current GAN-generated DeepFake detection methods
and their limitations. Recently, several works have been proposed for DeepFake
images detection. For instance, [21] presented a shallow learning method that
fused spatial and spectrum features from an image to capture the up-sampling
artifacts of DeepFake faces. [21] achieved 87% average accuracy on the Face-
Forensics++ dataset and AUC rates of 76.88% and 66.16% on the Celeb-DF
and DFDC datasets, respectively. Mo et al. [23] proposed a CNN-based Deep-
Fake images detection method that transformed the input image into residuals
and fed the resulting residuals into three-layer groups where each group was
composed of a convolutional layer with rectified linear activation function and a
max-pooling layer. Next, the last group’s output feature maps were aggregated
and fed into two fully connected layers. Finally, the softmax layer was used to
produce the output probability. The proposed method achieved 99.4% accuracy
in detecting real facial images from CELEBA- HQ dataset [12], and DeepFake
images from the fake face images database generated by [12]. Nguyen et al. [24]
also developed a multi-task DeepFake images detection approach which per-
formed classification and segmentation using an autoencoder model containing
an encoder and a Y-shaped decoder. The activation of the encoded features was
used for classification. The output of one branch of the decoder was used for
segmentation, and the output of the second branch was used to reconstruct the
input data. Their model achieved 92.60% average accuracy on the FaceForensics
dataset and 68% average accuracy on the FaceForensics++ dataset.

Furthermore, several methods have exploited the eyes’ visual features for
DeepFake image detection. For example, [22] identified GAN-synthesised faces
through the eyes’ inconsistent iris colors or missing corneal specular reflections.
However, such artifacts have been improved in the recent DeepFake generation
models. Similarly, Hu et al. [9] also proposed a GAN-synthesized faces detection
method that used the inconsistency of the corneal specular highlights between
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the two synthesized eyes, assuming that two eyes looking at the same scene,
their corneal specular highlights should show high similarities. This method can
distinguish between the real and GAN-synthesized faces when light sources are
visible to both eyes, and the eyes are distant from the light source. However, when
these two conditions are defied, [9] will raise many false positives. [7] presented
a DeepFake detection method based on irregular pupil shapes. This method can
be effective on a specific dataset, but it will result in wrong predictions when
the pupil shapes are non-elliptical in the real faces or there are occlusions on the
pupil.

CHIEFS is designed to efficiently detect sophisticated DeepFakes using sim-
ilarity and consistency of corneal-specular reflections with multiple surrounding
semantics, such as illumination and environmental conditions, that are hard
to counterfeit. It also coordinates various features (e.g., colors, edge, textures,
etc.) of CSH images. It embeds surrounding environmental factors, such as
indoor/outdoor, bright/dark, and light strength, and checks the ensemble with
the reflectance.

3 CHIEFS Architecture

CHIEFS is an ML-based DeepFake detection technology that analyzes facial
images’ corneal-specular highlights consistency (CHC) and checks the ensem-
ble of the highlights with multiple surrounding environmental factors (SEF).
CHIEFS is designed in a hierarchical structure, and its components are sepa-
rated into three modules. Training Data Collection and Annotation (TDCA),
Highlights and Environmental Factors Detection (HEFD), and Feature Extrac-
tion, Embedding, and Classification (FEEC) modules in Fig. 2. The modular
structure of CHIEFS allows agile updates of every module, like adding new
features and enhancements according to specific use cases, as well as making
CHIEFS available as a complementary DeepFake detection module for other
existing tools.

3.1 Training Data Collection and Annotation (TDCA)

Current DeepFake detection datasets, such as UADFV [34], FaceForensics++
[27], Celeb-DF [20], and DFDC [5] do not contain the CSH annotation or facial
image environmental factors information. Therefore, the main responsibility of
the TDCA module in Fig. 2(a) is to create CHIEFS-DFD dataset [1] by
collecting and annotating real and GAN-generated DeepFake facial images. We
manually label the right and left CSH and provide the facial image-specific
SEF information using the VGG Image Annotator (VIA) software [6]. The
CHIEFS-DFD dataset contains 1,285 facial images in high resolution. 716 real
facial images were collected from different datasets, including Flickr Faces HQ
(FFHQ) dataset [14], Celeb-DF dataset, FaceForensics++ dataset, and DFDC
dataset. Additionally, 569 GAN-generated DeepFake facial images were acquired
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Fig. 2. The CHIEFS Architecture Block-diagram.

from various DeepFake detection datasets and human visual DeepFake genera-
tion tools, such as StyleGAN2 [15], StyleGAN3 [13], FSGAN [25], DeepFaceLab
[26], and FaceShifter [18].

As illustrated in Fig. 3 (a), the CHIEFS-DFD dataset contains DeepFake and
real facial images in high resolutions with different environmental parameters,
including illumination conditions, background colors, indoor or outdoor settings,
face pose orientations, age, ethnicity, and appearances (e.g., wearing makeup
and accessories). As demonstrated in Fig. 3 (b) and Fig. 3 (c), the CHIEFS-
DFD-dataset contains two types of annotations. The CSH region annotation
in Fig. 3 (b) defines the shapes and locations of CSH and classifies them into
right-reflection and left-reflection classes. The Image Annotation in Fig. 3 (c)
identifies the image label (either Real or DeepFake), along with SEF, including
indoor or outdoor (IO), light level (LL), and light strength (LS). The CHIEFS-
DFD dataset contains the 2,570 annotated CSH segmentation masks for 1,285
facial images (two eyes per facial image). In addition, 959 images (74.63%) are
labeled as indoor, and 362 images (28.17%) are labeled as outdoor. Furthermore,
collecting and analyzing the distribution of CHIEFS-DFD dataset facial images’
LS values (explained in Subsect. 3.2) results in different LL classes (806 mid
images (62.72%), 258 low images (20.07%), and 221 high images (17.19%)).
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Fig. 3. Environmental Parameter Samples and Annotations in CHIEFS-DFD Dataset.

3.2 Highlights and Environmental Factors Detection (HEFD)

The HEFD module in Fig. 2(b) performs two major tasks, including SEF
feature extraction and CSH detection. The SEF parameters include IO, LS, and
LL. We train a MobileNet-V2 model on the Dense Indoor and Outdoor Depth
(DIODE) dataset [32] and labeled facial images from the CHIEFS-DFD dataset
(total 20,420 images) to classify the IO of an input image. To calculate the LS,
we convert the input image’s color space into a LAB format. The L channel
is independent of color information in the LAB color space and only encodes
intensity. The other two channels A and B encode color. Then, we extract the
L channel and normalize it by dividing all pixel values by the maximum pixel
value to have an LS value of the input image. Using the LS value, we identify
an LL into the low, mid, and high classes (e.g., according to the LS distribution,
the LL is a low if LS is less than 0.419, high if LS is greater than 0.637, and a
mid if it is in between). To detect the right and left reflections, we train the CSH
detection model using the MobileNetV2-SSDLite [28] to detect the bounding
boxes of right and left CSH regions and class labels.

3.3 Feature Extraction, Embedding, and Classification (FEEC)

Using the right and left CSH images and the SEF extracted from the HEFD
module Sect. (3.2), the FEEC module in Fig. 2(c) performs four primary
functions, including deep hierarchical feature extraction using Siamese Convo-
lutional Neural Network (SCNN) model with configurable neural network back-
bones, reflection shape similarity (RSS) measure, similarity measures (RSS ),
environmental factors (SEF ), and CSH features embedding, and classification.
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Feature Extraction: As shown in Fig. 2 (c), two SCNN models with the same
weights and network architecture receive the right and left CSH images in par-
allel. Various configurable neural network backbones can be used for feature
extraction, including VGG-16, Xception, ResNet-50-V2, and DenseNet-201. The
two SCNN models use feedforwards to extract features using a global max-
pooling layer by removing the fully-connected layer at the top of every network
(includetop = False). We do not need activation and classes because we only
use the backbone models for feature extraction. Then, we use the right and left
CSH features to measure RSS using euclidean and cosine distance scores.

Reflection Shape Similarity (RSS) Measure: CSH can be detected in
various shapes, which can be deformed in different colors according to illumi-
nation conditions and blended into the background. Furthermore, CSH can be
occluded by glasses, eyelids, or eyelashes, and only a tiny portion of the reflec-
tion can be visible. Hence, the similarity measures of a single factor, such as the
shape or color of the CSH alone, cannot be a strong indicator for classifying
DeepFake or real images. We measure the similarity scores using the extracted
feature vectors, which contain multiple features, including color, edge, and the
texture of the CSH images. We measure both Euclidean distance scores (EDS)
and cosine distance scores (CDS) to statistically compare the similarity between
two extracted feature vectors and find the geometric differences between right
and left CSH images. The EDS is defined as:

d (A,B) =

√
√
√
√

n∑

i=1

(Ai −Bi)
2 (1)

where n is the number of elements of the feature vectors, A and B are the corre-
sponding CSH image vectors. d is a numerical value representing the Euclidean
distance between A and B. The more similar CSH images, the EDS converges
to 0. We also compute CDS, which is defined as:

cos(A,B) =
∑n

i=1 AiBi
√∑n

i=1 (Ai)2
√∑n

i=1 (Bi)2
(2)

If A and B are identical, the cos(A,B) = 1. Otherwise, if they are completely
different cos(A,B) = −1. Thus, numbers between 0 and 1 indicate a similarity
score, and numbers between −1 and 0 indicate a dissimilarity score. We applied
the ReLU activation function to the EDS and CDS to avoid vanishing gradient
problems while training our classifiers. The output [CDS, EDS] represents the
semantic similarity between the projected representations of the two input CSH
images.

Embedding Similarity Measures and Environmental Factors: In addi-
tion to the reflection shape similarity (RSS) measure, we have designed similarity
measures and environmental factors embedding function, which takes similarity
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measures [CDS, EDS], SEF features, and extracted (right and left) CSH fea-
tures. Taking [IO, LL, LS] values from the input and annotated SEF values
from the TDCA during training or from HEFD during testing, the similarity
measures and environmental factors embedding function creates adjusted SEF
values such as [IO’, LL’, LS’]. Merging them with the similarity measures [CDS’,
EDS’] creates a row of mixed values [CDS’, EDS’, IO’, LL’, LS’] as an output.
Finally, it takes vectors of (right and left) CSH images features and combines
them in a vector for classification.

Classification: As illustrated in Fig. 2, the classification module classifies the
input image, either real or DeepFake, by taking features from the embedding
facility. We defined the classification network with a sequence of five blocks.
The first block consists of a single BatchNormalization layer that normalizes its
inputs ([CDS’, EDS’, IO’, LL’, LS’]) by applying a transformation that maintains
the mean output close to 0 and the output standard deviation close to 1. The
following three blocks are similar. Every block consists of a sequence of a fully
connected (fc) layer with 128 nodes, a single BatchNormalization layer followed
by a ReLU activation function. The BatchNormalization layer centers the learned
features from the fully connected layer on 0, while the ReLU activation uses 0 as
a pivot to keep or drop the activated channels [4]. The fifth block consists of a
concatenate layer and a fully connected layer. The concatenate layer merges the
fourth block’s output tensor with the CSH features vector. The fully connected
layer (predication layer) returns a probability distribution with two nodes and
a softmax activation function for binary classification. A binary cross-entropy
probabilistic loss function was used to compute the cross-entropy loss between
actual and predicted labels and to measure the model’s accuracy during training
and testing. Eventually, it creates a binary classification result (either real or
DeepFake).

4 Evaluations

We conducted extensive experiments using CHIEFS-DFD datasets to evaluate
the performance under real-world scenarios and compare the accuracy with cur-
rent state-of-the-art (SOTA) DeepFake detection methods. We demonstrate one
of the environmental parameter classification results (indoor or outdoor (IO))
and evaluate CSH regions detection. Finally, we present the classification per-
formances with the CHIEFS-DFD datasets using different feature extraction
backbone models and various similarity measures and environmental factors.
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4.1 Evaluation of Indoor/Outdoor Classification

The primary purpose of this experiment is to assess the CHIEFS accuracy in
classifying input facial images to either indoor or outdoor environments. We
combined the CHIEFS and DIODE datasets with training the indoor/outdoor
classifier. Among the 20,420 images, we labeled indoor (50%) and outdoor (50%)
images equally and divided 16,336 images (80%) for the training set and 4,084
images (20%) for validation and testing sets. We used MobileNetV2 inverted
residuals and linear bottlenecks neural network with binary cross-entropy loss
function, dense layer of two nodes, and softmax activation at the top of the
network to train the indoor/outdoor classifier. All images were pre-processed
and scaled between −1 and 1. We used the Glorot normal initializer from the
Keras library for the default weight initialization. We trained the model on the
GPU environment for 18 h using the Google Colab Compute Engine (GCE)
VM backend with (NVIDIA Tesla-P100-PCIE-16 GB) model for 512 iterations
with an RMSprop optimizer, batch size of 32, and learning rate of 0.001. The
early stopping criterion was used with patience set to 32 to stop training when
a monitored metric (validation loss) stopped improving. The indoor/outdoor
classifier achieves a 94.00% success rate in predicting indoor and outdoor images.
The result indicates that CHIEFS can efficiently classify input facial images into
indoor or outdoor categories.

4.2 Evaluation of CSH Regions Detection

We evaluated the CHIEFS accuracy in detecting CSH regions from the facial
images. We split the CHIEFS dataset (1,285 facial images containing 2,570 anno-
tated CSH segmentation masks) into 1,028 images (80%) for the training set and
257 images (20%) for validation and testing sets. We used the MobileNet-V2 fea-
ture extractor model and the Single Shot Detector (SSD) to detect and return
the bounding boxes of right and left CSH regions and class labels. We trained the
CSH detection model on the GPU environment for 6 h using the Google Colab
Compute Engine (GCE) VM backend with (NVIDIA Tesla-P100-PCIE-16GB)
model for 1,028 iterations. We use the standard RMSprop optimizer by config-
uring decay and momentum to 0.9, the standard weight decay to 0.00004, an
initial learning rate of 0.045, a learning rate of 0.98 per epoch, and a batch size
of 32. The result demonstrates that the overall mean average precision (mAP)
of detecting right and left CSH regions is 90.53%, the right-reflection average
precision (AP) is (90.81%), and the left-reflection AP is (90.26%), both are high
enough for the CSH detection task.
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Fig. 4. Sample of the CHIEFS-DFD Testing Dataset Classification Result.

Table 1. Classification Performance Comparison on CHIEFS-DFD Dataset with Dif-
ferent Backbone Models for Feature Extraction.

Backbone Accuracy Loss

CHIEFS (DenseNet-201) 96.00% 0.592

CHIEFS (Xception) 98.00% 0.242

CHIEFS (VGG-16) 98.75% 0.203

CHIEFS (ResNet-50-V2) 99.00% 0.160
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4.3 Classification Using Different Backbone Models for Feature
Extraction

We evaluated the CHIEFS method with four different neural network back-
bones for feature extraction, including ResNet-50-V2, VGG-16, Xception, and
DenseNet-201, using the CHIEFS-DFD dataset. After splitting the dataset with
an 80:20 (training vs. validation) ratio. We trained the models on the GPU
environment using the Google Colab Compute Engine (GCE) VM backend with
(NVIDIA Tesla-P100-PCIE-16GB) model for 1,024 iterations with RMSprop
optimizer, batch size of 8, and a learning rate of 1e−5. The early stopping crite-
rion was used with patience set to 64 epochs to stop training when a monitored
metric (validation loss) stopped improving. The results in Table 1 show the classi-
fication accuracy and loss of the CHIEFS method with different backbone models
for feature extraction on the CHIEFS-DFD testing datasets. Overall, CHIEFS
performs well with different feature extractors. For example, CHIEFS (ResNet-
50-V2) is the best in both accuracy (99.00%) and loss (0.160). CHIEFS (VGG-
16) is the second-best in both accuracy (98.75%) and loss (0.203). CHIEFS
(Xception) is the third-best with accuracy (98.00%) and loss (0.242). Finally,
CHIEFS (DenseNet-201)’s accuracy is the least (96.00%), and its loss is the
highest (0.592). Figure 4 presents samples of the CHIEFS-DFD testing dataset
classification results. CHIEFS detects DeepFake images with various face pose
orientations, age, ethnicity, and appearances, such as makeup and accessories.
Results indicate that CHIEFS performs well on realistic human visual DeepFake
images.

4.4 Classification Using Different Feature Classifiers

Using the CHIEFS-DFD dataset, we assess different feature classifiers for
CHIEFS (ResNet-50-V2). Table 2 shows that using all features, including right
and left CSH, RSS ([CDS’, EDS’]), and SEF ([IO’, LL’, LS’]) for classification
achieves the best performance for CHIEFS (ResNet-50-V2) (99.00%) in accuracy.
However, using a single RSS feature alone, such as [CDS’] or [EDS’], results in
low accuracy (around 89.92%) with [CDS’] and (86.05%) with [EDS’]. It also
demonstrates that using right and left CSH features achieves high accuracy
(93.00%) compared with other single components such as [CDS’] and [EDS’].
When SEF features are used with the CSH features, the accuracy improves
to (97.00%). Similarly, when SEF features are used with [CDS’] and [EDS’],
the accuracy also improves to (94.00%) and (96.00%), respectively. The results
indicate that using a single feature alone is not a good idea, and combining var-
ious features can improve performance greatly. In addition, the SEF features
significantly impact accuracy improvement.
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Table 2. Classification Performance Comparison with CHIEFS-DFD Dataset Using
Different Feature Classifiers (i.e., CSH, CDS’, EDS’, IO’, LL’, LS’) for CHIEFS
(ResNet-50-V2).

Feature Classifiers Accuracy

[CDS’] 89.92%

[CDS’, IO’, LL’, LS’] 94.00%

[EDS’] 86.05%

[EDS’, IO’, LL’, LS’] 96.00%

[CDS’, EDS’] 91.47%

[CSH] 93.00%

[CSH, IO’, LL’, LS’] 97.00%

[CSH, CDS’, EDS’, IO’, LL’, LS’] 99.00%

5 Conclusions

We proposed a novel ML-based DeepFake detection technology named CHIEFS
(Corneal-Specular Highlights Imaging for Enhancing Fake-Face Spotter). We
focus on the most reflective area of a human face, eyes, using CSH images. We
verified the hypothesis that DeepFake technologies struggle to fake reflective
components in their counterfeits by using various classifiers with environmental
factors embedding. We designed and implemented feature extractors, classifiers,
and embedding functions using advanced DNN architectures and tested them
with different GAN-generated DeepFake datasets. The experimental results show
that CHIEFS achieved high accuracy 99.00% in detecting sophisticated GAN-
generated DeepFake images. Note that the modular design of CHIEFS renders
itself as a complementary DeepFake detection module for any existing tools.
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Abstract. It is known that code interpreters (also known as Virtual
Machine (VM)) may be used for binary code obfuscation. For instance,
this is the underlying technique on which the packer VMProtect is based.
Our long-term objective is to attack such obfuscations. Here, we concen-
trate on the identification of the implementation of the VM. It is quite
standard to consider that a VM is implemented through a single fetch
and a single dispatch mechanism, see for instance [SBP18]. But in prac-
tice, such a hypothesis is very restrictive. For instance, the standard
implementation of python does not fulfill it. We give a generic model of
virtual machine implementation with an experimental validation.

1 Introduction

This work finds its origin in a paper by Salwan, Bardin and Potet [SBP18]
dealing with virtual machine based code obfuscations. We recall that a virtual
machine, also known as an interpreter, is a program that runs a program written
for a guest processor on a host processor. In the sequel, as Jones does [Jon97],
we use the words “processor” and “machine” as synonyms.

When a program is run through a virtual machine, what we may see is actu-
ally an interpreter running. Without further analysis, that means we observe a
big non informative loop. That is the key idea behind obfuscation by virtualiza-
tion, a method used by several packers among which we mention VMProtect
addressed in [SBP18].

What happens for a program such as cpython1? Roughly speaking, when
running a program written in python, say hello.py, cpython will compile
it into a bytecode program (potentially as a hello.pyc file) and then run
an interpreter on the produced bytecode. In other words, cpython involves an
interpreter. Accordingly, we tried to apply naively the method mentioned above,
but could not manage to extract correctly the behavior of the code. Why does
a basic, non obfuscated program resists to the analysis? The answer lies in the
shape of the interpreter that is far more complex than supposed. Our main
contribution is a more generic model of interpreters together with its associated
tool.
1 the standard application to run python programs. Those can be run via other

programs such as pypy, but that latter one is not based on an interpreter.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G.-V. Jourdan et al. (Eds.): FPS 2022, LNCS 13877, pp. 175–191, 2023.
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So, the general question can be reformulated as follows. Given a program,
does it contain a virtual machine? Actually, we will ask for some evidences in
case of a positive answer. More precisely, interpreters involve the presence of
a fetch mechanism (the operation that reads the bytecode) and a dispatch one
(the one that switches to the correct handler). Our method provides both.

We made the largest part of our experiments on cpython. We chose it for two
main reasons. First, given that its source code is available, it is possible to extract
a clean ground truth compared to obfuscated binaries/malwares for which that
is not easy. We think it is an important feature for the evaluation. Second, as
we will show in Sect. 6, cpython exists in very different forms running different
bytecodes. There are several implementations such as python2.7, python3.8,
etc. and each implementation can be compiled with different options. To con-
clude, cpython offers an interesting variety of interpreters.

Nevertheless, we do not use2 any python’s specific features. Our aim is to
have a generic model of an interpreter. Actually, we made successful preliminary
tests of our tool on “JerryScript” that is a lightweight javascript interpreter
intended to run on constrained devices. However, we consider our verifications
are not mature enough to be fully reported. Thus we stick here on python.

Finally, our ultimate goal being a fast virtual machine identification analyzer
that would allow its usage in a Security Operation Center (SOC), we restricted
ourselves to efficient algorithms. We only “allow” lightweight methods with linear
time complexity as horizon.

Searching for a virtual machine has already been addressed in the past as
we have mentioned at the beginning of our introduction [SBP18]. The main
differences with previous works is that we are not on the same playing field.
For instance, the closest to our approach are Sharif, Lanzi, Giffin and Lee in
[SLGL09]. Their analysis is based on a purely dynamic tool. Their target is
clearly the identification of the instruction pointer. For that, their idea is to
identify the variables in the program containing the interpreter and extract the
variables having a behaviour characteristic of the instruction pointer of an inter-
preter.

Let us also mention the work by Liang, Li, Zeng and Fang in [LLZF18].
They use a method targeting the dispatch instruction as we do. However, their
approach is restricted to the one-dispatch model that is clearly insufficient3.

Finally, in [KGM17], Kalysch, Götzfriedand, Müller present an other inter-
esting tool: Vmattack that is however limited to stack-based virtual machines.
Vmattack relies on different modules to filter out instructions belonging solely
to the interpreter. Among these modules, clustering analysis, via a dynamic anal-
ysis, allows to build groups of repeating instructions and to infer their roles in
the program. Again, the approach, though interesting, is not as general as the
one we propose.

2 at least intentionally.
3 For threaded interpreters, such as cpython when compiled with
--with-computed-gotos flag.
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After the introductory Sect. 2, we present our general model in Sect. 3. Then,
in Sect. 4, we give an explicit model for the x86 host processor. Section 5 presents
our implementation and Sect. 6 describes result we got for cpython.

2 Machines, Programs and Control Flow Graphs

We present briefly the general notions that are used all along the contribution.
We choose on purpose a lightweight description, in other words, at some points,
we skip some technical details. We refer the reader to the book by Jones [Jon97]
for a deeper presentation of the notion of machines and to reverse-engineering
books (such as [DGBJ14]) for control flow graphs.

A machine is characterized by a set of instructions together with their seman-
tics. Next to that, we suppose that the machine works as follows: at each step,
the machine reads the current instruction via an instruction pointer, then mod-
ify data according to the semantics of the instruction, and ends updating the
instruction pointer. The state of the machine is the datum composed of the data
and the instruction pointer.

In what follows, we are mainly concerned by two machines, the x86’s one
and the machine that lies behind cpython. The x86 family of processors enter
the above mentioned model. The instruction pointer is rip and the data is the
virtual memory.

One of the implementations for the evaluation of python based programs
is the cpython interpreter (which itself can be compiled on different processor
architectures and in particular on the x86’s one). The interpreter cpython
defines a notion of bytecode that is a concrete4 set of instructions. At each step,
the current instruction is executed as presented above. The structure of the data
is too complex to be presented here. Just keep in mind that it lies in the host
processsor’s memory.

One should take care that the bytecode is specific to cpython and that
it changes along the different versions of python (See the online documenta-
tion https://docs.python.org/3/library/dis.html, “No guarantees are made that
bytecode will not be added, removed, or changed between versions of Python.”).
For that reason, we worked with quite different versions of python, namely 2.7,
3.8 and 3.11.

Instructions may have an internal structure. We suppose that they are decom-
posed in opcodes (the action to be performed: “mov”, “push”, “load”, etc.) and
arguments (the part of the data to be read/written: “rax”, “1234”, “[0x12]”).
Both x86 and cpython instruction sets follow that schema.

A program is two fold. The source program is a human readable object that
is compiled into its binary counterpart that relies on the instruction set of some
given machine M . The (binary) program is launched on the machine, meaning
the state of the machine is initialized according to some specific5 rules. Then,

4 Here meaning that there is a syntax.
5 Actually given by the Operating System.

https://docs.python.org/3/library/dis.html
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the machine is run according to its own semantics. Globally speaking a program
will read inputs �x and output a result denoted �P �M (�x) depending on �x.

Running a program leads to the notion of trace. It is the sequence of instruc-
tions that have been executed after the initialization of the program. More pre-
cisely, it is the sequence of values of the instruction pointer met during execution.

From a trace, one defines a dynamic control flow graph as follows: nodes are
addresses (or identifiers for a bytecode) identifying the instructions and we set
an edge between node a and node b if b has been executed just after a in the
trace.

One should be aware that a trace depends on the input. More generally
speaking, the control flow graph unifies all the graphs obtained via traces.

Actually, we will group together any node a and b such that b is the unique
son of a and a is the unique father of b. This will group instructions into what
is known as basic block.

3 The Heart of a Virtual Machine

Definition 1. Given two machines M1 and M2, a virtual machine of M2 is a
program I running on the host M1 that outputs the same result as one would
get running directly on M2: in other words, for any program P for M2 and any
input �x, we have �I�M1

(P, �x) = �P �M2
(�x).

In other words, the program P meant for M2 can be run on M1 via I, also
called an interpreter in the literature.

Let us see in more details how and interpreter can be implemented. Natu-
rally, there is not one solution, but let us look at the way it can be done in
practice. Roughly speaking, the following shows a general pattern (that is the
one within [SLGL09]).

while (!interrupt) {
inst = code[vip]; (1)
opcode = extract_opcode(inst); (2)
switch (opcode){ (3)

case OP1: function1(inst); (4...)
case OP2: function2(inst);
...

}
}

In other words, at each step, (1) the instruction is fetched within data, then,
(2) is decomposed (opcode on one side, arguments on the other one) and then,
depending on the instruction (3), the data is modified (4) via some specific
functions, next called handlers. Figure 1 presents the control flow graph that one
may get after compilation of the preceding interpreter.

A fetch is the (not unique in the following) instruction block corresponding
to (1), that is where the virtual instruction is read. The dispatch is the one cor-
responding to (3), that is the instruction in charge of running the right handler.



Where is the Virtual Machine Within Cpython? 179

Fig. 1. 1-fetch/1-dispatch VM example.

Actually, in the following, we will be even more precise. Fetches and dis-
patches are identified to some specific instructions within their block.

Definition 2 (1-fetch/1-dispatch). We say that a virtual machine follows
the 1-fetch/1-dispatch pattern whenever it contains exactly one fetch block and
one dispatch block.

This is typically the case of the interpreter of Fig. 1. However, such a model
is clearly insufficient in practice. Indeed, this model does not allow to describe
threaded interpreters which are omnipresent in most modern virtual machines
(CPython, Google V8...). Indeed, threaded interpreters, as opposed to switch-
based interpreters, allow a performance gain by eliminating the jump to the
switch instruction and by taking better advantage of the branch prediction at
the processor level. So, we propose a more general pattern, next called N fetch/M
dispatch whose source code may follow the following pattern:

void interpreter(){
inst = code[vip]; // vip: virtual intruction pointer
opcode = extract_opcode(inst);
void* routine = dispatch[opcode]; //dispatch is the Direct

Threading Table that maps an opcode to &&handler1, &&
handler2, ...

goto *routine;

handler1:
...
... // VM state update
if (interrupt) goto exit;
inst = code[vip];
opcode = extract_opcode(inst);
routine = dispatch[opcode];
goto *routine;

handler2:
...
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... // VM state update
if (interrupt) goto exit;
inst = code[vip];
opcode = extract_opcode(inst);
routine = dispatch[opcode];
goto *routine;
}

The entry point of the interpreter is the interpreter function. As above,
it reads the current instruction and depending on its opcode compute its corre-
sponding handler (routine = ...). Then, it gives the hand to the handler.
However, compared to the previous interpreter, the handler will itself read the
next instruction and compute the next handler. Thus, fetches and dispatches are
duplicated. Actually, we will be a little bit more general. Handlers may contain
more than one fetch and more than one dispatch.

Definition 3. The N-fetch/M-dispatch is any interpreter whose control flow
graph has the shape presented in Fig. 2.

Fig. 2. N-fetches/M-dispatches VM example. Decodes are not represented. The dotted
lines represent the possible jumps from each dispatch.

Concerning CPython, the compilation option --without-computed
-gotos allows to compile the CPython interpreter as a switch-based interpreter
(1-fech/1-dispatch model). The --with-computed-gotos compiler option
allows to compile CPython as a threaded interpreter (N fetch/M dispatch)6.

6 In practice, the source code of CPython, implements both forms of interpreters:
https://github.com/python/cpython/blob/main/Python/ceval.c.

https://github.com/python/cpython/blob/main/Python/ceval.c
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Remark 1. Not all implementations enter this shape of course. For instance,
one may think of duplicating dispatches for each handler. We let it for further
extensions of this work.

3.1 Obfuscation via Virtualization

As mentioned in introduction, virtualization is a well known technique for pro-
gram obfuscation. Indeed, a priori, the analyst will see only the interpreter run-
ning without direct access to the internal logics of the virtualized program.

To sum up, given a program P , obfuscation via virtualization consists in
writing it (or to compile it) for a machine M1. And then, to encompass P ’s
binary form within an interpreter I for some target machine M2, in other words,
the operation consists in specializing I on P resulting in a program IP that will
essentially start the interpreter on P (see for instance [Bla] for a definition of
specialization).

4 The VM Model

Targeting N fetch/M dispatch interpreters, we provide in this section a more con-
crete description of our model. That will cover some hypotheses on the machine,
on the shape of dispatches and on the shape of fetches.

4.1 General Assumptions

First, we make the hypothesis that the size of the encoding of virtual instructions
is bounded by some constant Δ. In other words, virtual instructions cannot have
an arbitrary length. This seems to be a very light limitation. In the experiments,
we took Δ = 8 or Δ = 16 bytes, knowing that 15 bytes is the maximal size of
an x86 instruction.

Second, we suppose that the virtualized instructions are stored in a small
number of chunks within memory. In other words, the virtual program is not
split façon puzzle.

Third, we make the hypothesis that the control flow graph follow the shape of
Fig. 2. More concretely, we suppose that dispatches and fetches are interleaved.

Fourth, to render the fact that the interpreter introduce a global loop—at
each step, . . . —, we suppose that it is implemented within a function. As a
consequence, dispatches and fetches occur in a common function frame. This
assumption will allow us to reduce the complexity of the problem. Indeed, let
us suppose that we have a set of candidate dispatches. Therefore, a subset of
this set is the largest group of dispatches. However, it is not realistic to study
all these groups, since the number of groups evolves exponentially with the size
of the set of candidate dispatches.
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About Dispatches. According to what precedes, a dispatch is an instruction
that performs the switch between handlers given the opcode of the instruction.
We suppose that such a switch is dynamically computed. Such a switch is in
general implemented with a dynamic jump (or a dynamic call). For instance,
on the x86 processor, that corresponds to an instruction of the shape jmp
[rax+4*rcx] where rax corresponds to the begining of a table and rcx to
the index of the handler.

Moreover, since the dynamic jump is supposed to perform a switch, we sup-
pose that it is followed by at least two different instructions. As a matter of facts,
that prevents calls to dynamic libraries, sometimes implemented via dynamic
jumps (for instance on windows), to be considered as dispatchers.

About Fetches. The fetch is supposed to extract the virtual instruction. Since,
the virtual program lies in memory, that means the fetch must evaluate the
value of some pointer. Technically, we suppose that the virtual instruction is
stored in memory at some address E where E is an expression depending on
register values and immediates. Thus, a typical fetch has the shape mov rax,
[rbx+4*rcx+0x1234].

This value will be used by a dispatch instruction. Let us enumerate some
consequences.

First, dispatch and fetches are closely related. Actually, they form a bipartite
graph: each fetch correspond to some dispatch and vice versa.

Second, fetches and dispatches are interleaved. Dispatch necessarily follows
a fetch. And a fetch only occurs after the handler that itself necessarily follows
dispatch. Thus,

– third, there must be a path within the control flow graph between a fetch and
its corresponding dispatch(es) and vice versa and

– fourth, a path between the fetch and the dispatch cannot cross an other fetch.

Fifth, we mentioned that dispatches are in charge of the switch depending
on the opcode of the virtual instruction that is read by the fetch. Thus, the
semantics of a dispatch must depend on the value of its corresponding fetch(es).

Finally, we will make the hypothesis that a fetch is closely related to its
corresponding dispatch. Thus, we suppose that the size of the path from a fetch
to its dispatch is limited to dF→D instruction blocks, where dF→D is a parameter
left to the algorithm.

4.2 The Machine Spectrum

We suppose we are given a program P containing a virtual machine and an
associated trace T = t1, . . . , tk. Let ID be the set of indexes in T corresponding
to dispatches and IF be the corresponding set for fetches. Then, let D = {ti | i ∈
ID} and F = {ti | i ∈ IF } respectively the set of dispatches and the set of fetches.
Given i ∈ IF , let E(ti) be the value of the virtual instruction pointer used by the
associated fetch. From T , we extract the sub-sequence U = ui1 , . . . , uin

made
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only of fetches and dispatches. This sub-sequence is an alternation of fetches and
dispatches (and the first element is a fetch!).

Now, given (f, f ′) ∈ F ×F , let us consider Θ(f, f ′) = {i ∈ N : ui = f, ui+2 =
f ′}, that is the set of successive transitions from f to f ’. Let σ(f, f ′) = (E(ui)−
E(ui+2) | i ∈ Θ(f, f ′)) the sequence of variations of the virtual pointer. Now,
we introduce the spectrum S : F × F → F(Z,N) as follows:

(f, f ′) �→ (δ ∈ Z �→ #{i | σ(f, f ′)(i) = δ})

where # is the cardinal function. The spectrum is an abstract device describing
the way the virtual pointer jumps within memory. We expect these jumps to be
small. For instance, let the following trace (only showing fetches and dispatches)

U = f1 d1 f2 d1 f1 d2 f1 d1 f2 d2 f1 d3 f2 d1
E = 22 24 22 28 24 26 28

Then, σ(f1, f2) = (22−24, 28−24, 26−28) and thus S(f1, f2) = {−2 → 2,+4 →
1}.

Given a maximal instruction size Δ, we define the spectral matrix ΣΔ :
F × F → R with

ΣΔ[f, f ′] =

{∑
δ∈[[−Δ,Δ]]\[0] S(f,f ′)(δ)

∑
δ∈Z

S(f,f ′)(δ) , if defined

0, otherwise
(1)

Thus, with the previous trace, if we consider that Δ = 2, we get the following
spectral matrix:

ΣΔ=2 =

f1 f2( )
f1 0 2

3
f2 1 0

Given two fetches f and f ′, the term ΣΔ[f, f ′] of the spectral matrix com-
pares the number of “differences between the addresses successively read by f
and f ′ that are lower than Δ” to the “total number of executions of f followed
by f ′”.

Therefore, for a virtual program that is contiguous in memory, without con-
trol flow instructions7 and such that its execution trace includes all possible
combinations of fetches, we can expect its spectral matrix to be the matrix with
only ones.

7 For instance a virtual program such that for all instruction, the next instruction to
be executed is positioned at the address of the current virtual instruction + Δ.



184 G. Bonfante and A. Ithayakumar

5 VM Identification

Now we come to the operational aspects of the solution. Recall that our system is
supposed to take as input a program P and to return the list of fetches/dispatches
that can be extracted within P whenever they exist. To do that, we proceed in
two main steps, first, we compute an (approximated) control flow graph, from
which we extract fetches and dispatches.

5.1 Extraction of the CFG

The input program is run–within a sandbox if necessary–under the supervision
of a Pintool, see Intel’s documentation8 about it. The Pintool outputs an
execution trace, to each instruction along the computation. We register Tn:

– the current address of the (host machine) instruction,
– the opcode, source operands and target operands of the current instruction,
– addresses of memory access if any.

After that step, we get a sequence �T = T1, T2, T3, . . .. The program is inter-
rupted after a while if necessary.

From the addresses recorded along �T , we build a (approximated) control flow
graph. We then regroup nodes into instruction blocks.

5.2 Dispatch and Fetch Candidates

In a first step, since it is a necessary condition for dispatches, we extract all
dynamic jumps from the CFG. We keep only dynamic jumps that are followed
by at least two distinct instructions in the trace9. Indeed, a dispatch is supposed
to perform a switch. Let us call D this set. For cpython, the first step leads
typically to hundreds of instructions.

In a second step, we regroup candidates in D sharing the same function
frame. Thus, that leads to a partition of D =

⋃
i∈C Di where C denotes the set of

function calls. All coming operations will be done on each of the Di independently
with i ∈ C, but to keep notations simple, we will write D for Di.

Fetch Mapping. For each dispatch d, we compute a set Fd of corresponding
fetch candidates as follows.

First, we select all instructions that read some bytes at some non fixed address
within memory.

Second, from those, we select those instructions f for which there is a path
of length at most dF→D within the control flow graph from f to d. By path, we
8 https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic

-binary-instrumentation-tool.html.
9 In practice, once a first group of dispatches has been extracted using the following

method, we use the assumption that the interpreter is within a function in order to
add the dispatches that are followed by only one instruction.

https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
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mean a sequence of instructions without: calls, return instruction and dynamic
jumps.

Third, to account of the dependency of the behavior of the dispatch regarding
the address read by the fetch, we proceed by (reverse) tainting analysis. For that
sake, for each instruction on the path between the fetch and the dispatch, we
taint registers and virtual memory. A fetch is kept only if its color taints the
dispatch.

Alternation Verification. So far, we got a set D of potential dispatches
together with sets of potential fetches Fd for each d ∈ D. Let F = ∪dFd. Actu-
ally, a fetch may correspond to several dispatches. Thus, fetches and dispatches
form a bipartite graph associating fetches to dispatches.

We have seen above, dispatches and fetches must alternate along the execu-
tion. From the candidates we got above, we must extract those for which that
criterion is fulfilled. Actually, this problem has more than one solution in general
(for instance, two empty sets is a solution). Thus, we turn it into an optimisa-
tion problem: we maximize the number of fetches. For efficiency reasons, this is
solved via a SAT solver.

First, we define the alternation matrix A : F×F → {0, 1} with A[f1, f2] = 1 if
there is a path from f1 to f2 that does not cross some dispatch instruction (again,
a path without calls, return instructions nor dynamic jumps) and 0 otherwise.
In that case, to keep alternation, either f1 or f2 must be rejected. Given f ∈ F ,
A[ , f ] denotes the column within A corresponding to f ’s line and A[f, ] the line
corresponding to f ’s column.

In the matrix A, let us write

Fok = {f ∈ F | A[f, ] = (0) and A[ , f ] = (0)}
where (0) denotes the null vector. Elements f ∈ Fok are only reachable from
other fetches via a dispatch and conversely. Such fetches can be kept as is. As a
logical formula, that means:

Φok =
∧

f∈Fok

xf

where xf is a boolean variable meaning “f is a fetch”. So, we restrict our atten-
tion to fetches Fdontknow = F\Fok:

Fdontknow = {f ∈ F | A[ , f ] �= (0) ∨ A[f, ] �= (0)} .

Now, set:

Φdontknow =
∧

f,f ′∈Fdontknow×Fdontknow

(A[f, f ′] = 1) ⇒ (¬xf

∨
¬xf ′).

In ambiguous cases, at most one of the candidates is a fetch. Any solution to

Φ = Φok ∧ Φdontknow

is a solution to the initial problem. We search for solutions with a maximal
number of fetches. For that, we use the library Pysat (see [IMM18]).
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5.3 Spectrum Criterion

For each dispatch candidates group (recall we group dispatches by function
frame), we build the spectrum S of fetches candidates. A fetch f such that
ΣM [f, ]) = 0 or ΣM [ , f ] = 0 is a fetch that is not reached, nor followed by a
sequential instruction. Such fetches are rejected from the candidates.

5.4 Selecting Dispatches

At this point, we make a last observation. Whenever the set of dispatches and
fetches is not empty, we output the group of dispatches that occurs the most
within the execution trace. In other words, we account for the fact that the
virtual program being interpreted, there is an underlying loop within the inter-
preter.

6 Experiments

6.1 Configuration of the Benchmark

Selected Interpreters. The benchmark is composed of six binaries obtained
by compiling three versions (2.7, 3.8 and 3.11) of the cpython interpreter
with respectively the two compilation options --with-computed-gotos and
--without-computed-gotos. The choice of these versions of python and
compilation options are based on the difference in functionality and implemen-
tation of their underlying instruction set but also on differences of the interpreter
structure. This allows us to test our implementation on relatively different inter-
preter architectures.

Moreover, python interpreters have been included in some malicious pro-
grams such as Trilog10.

Extraction of the Ground Truth. In order to evaluate the performance
of the algorithm, the true fetches and dispatches of the interpreter must be
extracted for each binary of the benchmark. The extraction of these instructions
was done manually using the python source code to locate the interpreter within
the binary.

Program Execution. Benchmark binaries can run virtual programs in two
ways.

– The program is written in the Python high-level language (prog.py) and is
presented directly to the binary. Thus, the transformation to the Python byte-
code and the interpretation are done in the same x86 binary. This procedure
approximates the behaviour of a partially virtualised x86 program.

10 See for instance https://www.mcafee.com/blogs/other-blogs/mcafee-labs/triton-
malware-spearheads-latest-generation-of-attacks-on-industrial-systems/.

https://www.mcafee.com/blogs/other-blogs/mcafee-labs/triton-malware-spearheads-latest-generation-of-attacks-on-industrial-systems/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/triton-malware-spearheads-latest-generation-of-attacks-on-industrial-systems/
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– The program is first compiled into its Python bytecode form (prog.pyc). Then
it is presented to the x86 binary interpreter.

To avoid a bias due to the nature of the guest code, we used two Python
programs,

– fibonnaci that implements and call the fibonacci function with different argu-
ments.

– binary tree that implements a binary tree class, initiates an object and inserts
numbers.

Given a python interpreter and a python program, we collect only a single
execution trace and perform only a single program execution from which we
determine the fetches and dispatches.

As far as we could see, the interpreted programs do not play an important
role in the evaluation of the method. Nevertheless, generally speaking, when a
program is bigger and its execution lasts longer, the dynamic trace contains more
informations. For instance, the approximation of the static control flow graph
by the trace will be better.

6.2 Results

In the following, the results are presented in table form with the columns:

– “Dynamically detectable” which indicates the real number of distinct dis-
patches or fetches that are present in the dynamic trace of the program.

– “Total detected” which indicates the number of dispatches or fetches output
by the algorithm.

– “Correctly detected” which indicates the number of true positives.
– “Undetected” which indicates the total number of undetected dispatches or

fetches within the static program.
– “SAT estimate” indicates the estimate by our algorithm of the number of

false fetches by SAT resolution.

Table 1. Results for python 2.7 - --without-computed-gotos.

without
computed-gotos

Dynamically

detectable
Total

detected

Correctly

detected Undetected
SAT

estimate

Fibonacci
Dispatches 1 1 1 0

Fetches 1 2 1 1 1

Binary tree
Dispatches 1 1 1 0

Fetches 1 2 1 1 1
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Table 2. Results for python 2.7 - --with-computed-gotos.

with
computed-gotos

Dynamically

detectable
Total

detected

Correctly

detected Undetected
SAT

estimate

Fibonacci
Dispatches 23 23 23 74

Fetches 23 36 23 73 13

Binary tree
Dispatches 20 20 20 77

Fetches 19 31 19 77 12

Table 3. Results for python 3.8 - --without-computed-gotos.

without
computed-gotos

Dynamically

detectable
Total

detected

Correctly

detected Undetected
SAT

estimate

Fibonacci
Dispatches 1 1 1 0

Fetches 2 3 2 0 1

Binary tree
Dispatches 1 1 1 0

Fetches 2 3 2 0 1

Table 4. Results for python 3.8 - --with-computed-gotos.

with
computed-gotos

Dynamically

detectable
Total

detected

Correctly

detected Undetected
SAT

estimate

Fibonacci
Dispatches 39 28 28 100

Fetches 40 30 29 99 1

Binary tree
Dispatches 38 28 28 100

Fetches 38 29 29 99 0

Table 5. Results for python 3.11 - --without-computed-gotos- fibonacci.py for
Δ = 16 and Δ = 8.

without
computed-gotos

Dynamically

detectable
Total

detected

Correctly

detected Undetected
SAT

estimate

Δ = 16
Dispatches 1 1 1 0

Fetches 52 54 51 138 4

Δ = 8
Dispatches 1 1 1 0

Fetches 52 48 47 142 2

6.3 Analysis

Compliance with the Model. As far as the model is globally respected by
the interpreter, the algorithm correctly detects the dispatches occuring in the
dynamic trace. We essentially miss dispatches that were not executed. True
fetches are also detected but accompanied by false positives. However, the esti-
mation obtained by SAT problem solving is able to correctly estimate the number
of false positives11 as shown in the Tables 1 and 2 for Python 2.7 and Tables 3
and for Python 3.8.

11 Total detected - Correctly detected.
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However, we can observe for python 3.8 --with-computed-gotos in
Table 4 that some detectable dispatches are not detected. This is due to the
fact that multiple calls to the interpreter can be made and the concatenation
of the different groups of dispatches is not systematic. Indeed, in these condi-
tions, two groups of dispatches are concatenated only if they have a dispatch in
common.

Finally, as expected, some dispatches and fetches are not detected because
our approach relies on dynamic analysis.

Non-compliance with the Model. The condition for picking the true group
of dispatches out of all the groups of candidate dispatches gives good results as
seen above. However, when the real dispatch group is less executed than another
dispatch candidate group, the criterion may be insufficient. For example, it has
been found that the compilation process to the Python bytecode can sometimes
be confused with the dispatch group.

However, we can claim that the proposed “quick and dirty” approach allows
an analyst to narrow the focus of his work by reducing the number of groups to
be studied. At that point, it is time to reuse the deep analysis we mentioned in
introduction.

We notice for Python 3.11, in Table 5 that the SAT estimate is incorrect.
This discrepancy is again due to a non-exhaustiveness of the dynamic analysis.
We miss some part of the control flow graph. Therefore, there is a special pattern
in the graph with two fetches. In that case, our procedure removes one of the
two.

Fetch 1

Fetch 2

Dispatch

Finally, we observed for python 3.11 for Δ = 8 (Table 5) that among the
dynamically detectable fetches, 5 fetches are not detected. However, by chang-
ing the value of Δ to 16 (Table 5), among the dynamically detectable fetches,
only one fetch is not detected. Indeed, since Python 3.11, the notion of “inline
caching” has been introduced, which allows to insert data directly into the vir-
tual program in the form of a cache instruction in order to save the cost of some
calculations.

7 Conclusion

So, we get an effective procedure catching dispatches and fetches within a
binary code. On that, one may describe in more details the behavior of the
virtual machine. First, one should determine two remarkable virtual pointers:
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the instruction pointer and the stack pointer whenever it exists. In his mas-
ter thesis, Mathis Bouverot showed how to get those for a 1-fetch/1-dispatch
interpreter [Bou].

Second, the SAT solver appeared to be remarkably efficient. It is not surpris-
ing since we formalized the problem as a 2-SAT formula. It is clear that we could
go further on that way with a complete formalization of the problem in logical
terms. Notice also that we solve an optimization problem. For those, the compu-
tation time depends heavily on the formulation of the problem. Extensions may
be quite tricky.

There are quite simple extensions of the model. For instance, we could gen-
eralize a little bit the shape of dynamic jumps. For instance, we could think of
calls or ret. Since these cannot occur as a result of a standard compilation
procedure, we just skipped them. But for obfuscated code, we should take them
into account.

Here, we formalized the relationship between the fetch and its dispatch via a
tainting analysis. One could take some finer approach using the spectral analysis.
The behavior of the virtual pointer is close to the behavior of the host pointer.
It does a lot of small jumps corresponding to sequential virtual instructions.
However, this approach leads to some algorithmic issues that we left for further
work.

Final point, we will publish our tool at the time of the conference.
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Abstract. Mobile networks are essential for modern societies. High
bandwidth and low latency communications for massive numbers of sub-
scribers have enabled various applications with much impact on life qual-
ity. However, the widespread of mobile network communications has also
increased the interest in security and privacy issues. In this work, a known
4G and 5G NSA vulnerability, attach request fingerprinting, is examined
in detail and a novel classification method for attach request fingerprint-
ing is proposed and extensively evaluated. The novel method significantly
increases the severity of the privacy attack.

Keywords: Device fingerprinting · Privacy violation · 5G · 4G ·
Mobile networks · Information security

1 Introduction

Long Term Evolution (LTE) and 5G are modern and dynamically growing tech-
nologies. Not least because its use is widespread all over the world and radio-
capable terminals are now used in many areas of everyday life. Such radio-capable
terminals, User Equipment (UE)s, can represent a router, embedded hardware
or cell phones. Since 2007, annual sales of cell phones to end users have increased
more than tenfold per year [5]. Wireless technologies that enable faster down-
load and upload rates have steadily advanced. It is hardly surprising that the
protocols used in the 4G and 5G network are among the most complex in the
networking domain. Because UEs and often network offer backward compati-
bility, problems from previous technologies prevail for multiple decades, even if
more recent technologies would provide countermeasures to mitigate known vul-
nerabilities. Such a vulnerability, the attach request Fingerprinting, is the focus
in this work.

The attach request is the initial request from a UE to connect to the radio
cell for further communication. As at this point in the communication, the UE
and the network do not know which security algorithms are supported and the
network also doesn’t know which key material to use, the request has to be
transmitted unencrypted. However, as the request does contain an abundance of
additional information, this can be abused to derive information on the UE.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G.-V. Jourdan et al. (Eds.): FPS 2022, LNCS 13877, pp. 192–207, 2023.
https://doi.org/10.1007/978-3-031-30122-3_12
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In this work, an in-depth investigation on the possibilities in terms of infor-
mation that can be deducted is performed in experiments with a large number of
real UEs. Various cell phones but also other devices such as routers and Internet
of Things (IoT) devices were tested. Furthermore, a novel classification method
for attach request-based fingerprinting is introduced. This method uses machine
learning to optimize itself based on the available data for classification. Cur-
rent state of the art relies on expert knowledge to build classifiers for this attack
[4,11,11]. On the other hand, our method is scalable and required minimal knowl-
edge on each parameter that is used for classification. We evaluated our method
against the state of the art and found that our method significantly outperforms
current classification methods. We also investigated several advanced classifica-
tion objectives, such as to derive the UE vendor or the software versions. The
following research questions (RQs) are answered in this work:

1. How well do machine learning (ML)-based classifiers perform compared to
state of the art expert classifiers?

2. Can a distinction be made between chipset vendors based on the attach
request?

3. Can Android devices be distinguished from Apple devices based on the attach
request?

4. Does the operating system version have an influence on the attach request?
5. Can the device type, i.e. cell phone, router, IoT be distinguished based on

the attach request?
6. Can manufacturers of cell phones be distinguished based on the attach

request?

The remainder of this work is structured as follows: In Sect. 2, an overview of
related mobile security topics is provided. Our experimental setup is described
in Sect. 3, followed by the description of our experimental procedure in Sect. 3.2.
Based on the conducted experiments, our novel classification approach is intro-
duced in Sect. 3.3. The results are extensively presented and discussed in Sect. 4.
Section 5 concludes the work.

2 4G and 5G NSA Mobile Networks and Security

Mobile networks are organized in two domains, the Radio Access Network (RAN)
and the core network. UE initially establish a connection with the base station,
which is part of the RAN. After the radio link, also called Access Stratum (AS), is
established, a Non Access Stratum (NAS) link between UE and core network can
be used. This basic architecture is the same for all mobile network generations.
However, to facilitate a smooth transition from 4G to 5G a in-between solution,
called 5G Non-Stand Alone, was introduced. This means that the RAN from 5G
and the core network from 4G is used to establish AS and NAS connectivity.
Therefore, NAS security mechanisms for 4G and 5G NSA are similar.

In general, essential parts of the mobile network cryptography rely on sym-
metric keys stored on the Universal integrated circuit Card (UICC) and in the
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Table 1. Mandatory parameters of the attach Request, excerpt from 3GPP TS 24.008
V17.6.0 [1]. M: Mandatory, O: Optional

Information Element Presence

Protocol Discriminator M

Skip indicator M

Attach request message identity M

MS network capability M

Attach type M

GPRS ciphering key sequence number M

DRX parameter M

Mobile identity M

Old routing area identification M

MS Radio Access capability M

... O

mobile network core network, e.g. the Home Subscriber Server (HSS) in 4G.
Initially, cell phones establish an unprotected AS link to base stations nearby
based on cell selection, handover or cell re-selection mechanisms. Afterwards,
an attach request is send via the NAS link to the core network. This requests
contains the International Mobile Subscriber Identity (IMSI) and several more
parameters. As the network cannot know the identity of a subscriber before the
IMSI is available, no key can be selected from the key database (e.g. HSS in 4G)
and thus, no encryption or other protection can be applied to this message. After
the attach request is received, the network selects the relevant key for the sub-
scriber based on the received IMSI. Based on this key, an authentication request
is created and send to the UE. The UE responds with the authentication result.
If the result is correct, the network considers the authentication successful. The
network as well as the UE derive sessions keys from the stored keys and begin
to encrypt the subsequent communication.

Many vulnerabilities are associated with this procedure, which is called
Authentication and Key Agreement (AKA) since 2G. The reader is referred to
Rupprecht et al. [10] for a general introduction in mobile network vulnerabilities
from 2G to 4G and to Kahn and Martin [8] for recent vulnerabilities in 5G.

In 2019, Shaik et al. [11] presented the attach request-based fingerprinting
attack. Their method is to derive information about the UE from the parame-
ters transmitted encrypted over the air within the attach request. They derive
information on the baseband vendor and the device type from the network capa-
bilities included in the attach request. The network capabilities are parameters,
e.g. supported security algorithms, that the network can use to provide early
optimizations or that are needed to establish the connection. Capabilities are
organized in so-called information elements. Each of these elements serves as
a domain for the specific parameters. Of these information elements, 10 out of
30 are mandatory, and the remaining 20 are optional [1]. The mandatory ele-
ments can be found in the Table 1. A complete list can be found in the 3GPP
specification TS 24.008.
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The number of parameters transmitted in an attach request cannot be known
before as most parameters are optional. However, a recent work found the num-
bers to be between 100 and 220 for mobile phones [4]. Shaik et al. used a small
number of about 10 parameters for classification.

3 Experimental Setup

In order to assess the accuracy of the classifier of Shaik et al. and to develop
improved algorithms, a test bed was developed, which features the following
components: Mobile network (RAN and core), capability database and classifier.
Commercial devices, e.g. mobile phones, were used as UEs. An overview of the
experimental setup is given in Fig. 1.

Fig. 1. Test setup, from left to right: URSP B210 (SDR), D-Link 4G Portable Router
(UE), Fujitsu Lifebook with srsRAN

3.1 Mobile Network Components

Mobile network RAN and core build on the open source software srsRAN,
running on a Fujitsu notebook with Manjaro Linux and the kernel 5.15.28-1-
MANJARO as operating system. The Fujitsu Lifebook has a Intel i3 processor
of the 8th generation and 16GB RAM. As radio front-end a USRP B210 with two
VERT900 antennas is used. For the interaction with the card reader the pySim
software is used. A SCR3310 is used to read and write the Universal Integrated
Circuit Card (UICC)s (sysmoISIM-SJA2).
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The capabilities are transmitted in the attach request, which is part of the
NAS protocol. We monitored and captured all NAS communication between
RAN and core network (s1ap protocol) with Wireshark. Since this method results
in many packets that are irrelevant to this work, the relevant packet must be
extracted from the captures. An attach request is identified in NAS via message
type 0x41. The filter nas eps.nas msg emm type == 0x41 will thus only include
the attach request. Using the tshark application, a Command Line Interface
(CLI) implementation of Wireshark, it is possible to parameterize this filter for
generating a JavaScript Object Notation (Json) file, which includes all attach
requests received by the mobile network.

To further process the Json formatted attach request, a parser was imple-
mented in Python that iterates over files and pulls the nested Json structure to
one level. The flattened capabilities are then stored in a SQLite database. From
the generated list of all capabilities present at the UEs, a database schema is
generated. The columns carry the names as specified in the Wireshark Dissector.
If a capability does not exist, it takes the value NULL on initialization. Tables
including information on the device type, baseband manufacturer and the cap-
tured capabilities are linked to the main table, which includes all UEs used in
the experiment. The database is designed to be able to represent other device
types as well.

Based on the capabilities and further information, e.g. manufacturer etc., a
classifier is trained and used to derive information about a particular UE from the
capabilities captured. So that the attach requests can be analyzed, the Evolved
Packet System (EPS) is simulated first. For the classifier and visualization the
following Python libraries were used: scikit-learn, matplotlib, pandas, numPy,
pySimpleGUI and graphviz.

3.2 Attach Request Capturing Procedure

As a manual recording of a large number of devices is time-consuming and error
prone, a Python script was implemented to automate the control of srsRAN, the
capture of attach requests and the capability extraction and storage.

Each run involves manually entering the UEs metadata and automatically
extracting the attach request. Once the device has connected to the cell, the net-
work record is stored with a name generated from the metadata. The metadata,
whose schema is tied to the UE database model, is retrieved manually via the
CLI.

All captured capabilities are transformed into a json file. However, the capa-
bilities are also filtered to remove unnecessary capabilities. Unnecessary capabil-
ities are capabilities that have no value to derive information about UEs. Par-
ticularly, capabilities that have always the same value for each UE or that are
set randomly, e.g. the Global Unique Temporary Identifier (GUTI), are removed
from the set of capabilities to build a classifier. A status flag initialized with
0 or 1, which is assigned to each capability, determines whether the parame-
ter is included in the classification procedure. The list resulting from this pre-
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Table 2. Example transformation for one-hot encoding using the example capability
exmplPrmtr. Left: Input data, right: One-Hot encoded data. NULL Values can be
normalized.

UE Capability Value

UE 1 exmplPrmtr 0xFF

UE 2 exmplPrmtr 0x0F

UE 3 exmplPrmtr 0xF1

UE 4 exmplPrmtr NULL

→

UE Capability Value

UE 1 exmplPrmtr CON 0xFF 1

UE 1 exmplPrmtr CON 0x0F 0

UE 1 exmplPrmtr CON 0xF1 0

UE 2 exmplPrmtr CON 0x0F 1

UE 2 exmplPrmtr CON 0xFF 0

UE 2 exmplPrmtr CON 0xF1 0

UE 3 exmplPrmtr CON 0xF1 1

UE 3 exmplPrmtr CON 0xFF 0

UE 3 exmplPrmtr CON 0x0F 0

UE 4 exmplPrmtr CON 0xF1 NULL

UE 4 exmplPrmtr CON 0xFF NULL

UE 4 exmplPrmtr CON 0x0F NULL

processing is then provided to a data extraction application for further consid-
eration.

In cases were UEs do not transmit a particular capability, the database field
is initialized with the default value NULL. This also applies to One-Hot encoded
parameters.

Since decision trees are used as classifier, it is required to process only binary
capabilities, i.e. capabilities that have one out of two possible values (typically 0
and 1). However, the transferred value of a capability does not necessarily take
either 0 or 1. For example, a hexadecimal or decimal value is often associated
with the capability. Such parameters must be binarized. The One-Hot Encoding
scheme is used for this purpose. An example transformation is shown in Table 2.

3.3 Classification of Device Fingerprints

Decision trees are a classification and regression method. An algorithm is trained
so that a classification is possible on the basis of different, successively queried
attributes. Attributes are the capabilities transmitted in the attach request.
Which attributes are relevant for classification is calculated by the algorithm
itself, reducing the required expert knowledge and also the manual effort signif-
icantly.

Two well-known calculation methods can be used to select the attributes
with the most significance - entropy-based calculation and Gini index-based cal-
culation. In our initial testing, both calculation methods provide almost similar
results with a slight accuracy advantage when using entropy. However, the calcu-
lation of entropy is more complex than for Gini index [3]. As in our scenario the
calculation is part of the offline phase of the attack, meaning that computational
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resources and time consumption is less significant for the attack to succeed, the
entropy-based calculation method was used for best results.

One advantage of decision trees is their comprehensible representation. The
capabilities used for the decision can be easily extracted and verified from a
generated tree diagram.

There are several parameters that need to be provided for configuration of
decision trees, such as the maximum number of attributes in combination that
may be decisive for the classification (depth), how many terminal nodes there
may be, or the minimum number of objects assigned to a class. If not specified
otherwise in this work, the default settings from scikit-learn were used.

4 Performance of Decision Tree-Based Classifiers

After the data is pre-processed and stored in the database, scikit-learn was used
to define the decision tree classifiers. Proprietary classifiers are based on decision
trees.

We used the classifier from Shaik et al. as a reference to evaluate the per-
formance of our proposed classifier. However, several System On Chip (SoC)
manufacturers such as Samsung, Huawei, Apple and also Google build modems
into their solutions that are not manufactured or designed by themselves. An
example of this is the Google Pixel 6, which implements an in-house chip called
Tensor, but uses a modem from Samsung [7]. In some cases, across different
product lines, the suppliers of the modems have been diversified. For example,
Apple uses modems from Intel and Qualcomm and states that it is already on
its way to developing its own solution [9]. Since the chipset manufacturer is
always specified for cell phones and it can be assumed that the hardware used
does not vary for a given SoC solution, our classifier distinguishes by chipset
manufacturer.

4.1 Reference Classifier

A partial result of the work of Shaik et al. [11] was that manufacturers of the
baseband modem are recognized based on a combination of four different capa-
bilities. These are the following parameters: EIA0 - EPS Integrity Algorithm,
CM Service Prompt, CSFB - Circuit Switch Fallback, Extended Measurements.
These take either the value 0, meaning disabled, or the value 1, meaning enabled.
UEs that cannot be classified using the parameter combination, are assigned the
characteristic Non-Classifiable (NC). The result is shown in Fig. 2 (a).

As it can be seen, Qualcomm chipsets in particular are less likely to be classi-
fied incorrectly (F1 score = 0.92). On the other hand, the classification of other
chipsets are less accurate. Mediatek chipset are also classified as Qualcomm,
Exynos, Intel and non-classifiable. About 50% of the UEs with Kirin chipsets
are classified as UEs with Intel chipsets.

Overall, nine devices are non-classifiable, meaning that the classification
method from Shaik et al. provides no conclusive result on the chipset of the
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Fig. 2. (a): Performance of the Shaik et al. classifier. [11] on classifiable data, NC =
Non-Classifiable. F(QC)=0.92, F(MTK)=0.74, F(KIRIN)=0.67, F(EXYNOS)=0.77,
F(INTEL)=0, F(NC)=0. (b): Performance of the Altaf Shaik classifier to our complete
data set. F(QC): 0.83, F(MTK): 0.74, F(Kirin): 0.67, F(Exynos): 0.59, F(Intel): 0.0,
F(NC): 0.06

UE. An in-depth analysis found that some of the tested UEs do not transmit all
capabilities required for the Shaik et al. classifier. A concrete example of this is
the Samsung Galaxy S6, which is interestingly among the devices used in their
original work [11, attachment]. In our experiment, the Extended Measurement
Capability was missing.

In a next step, the UE with chipsets from Apple, Spreadtrum and Unisoc
are included. However, as previously discussed it is unknown which modems the
chipsets include, therefore the added UEs are in the NC class. The results are
shown in Fig. 2 (b).

As expected, non-classifiable UEs are assigned to either Exynos or Intel. This
means that non-classifiable UEs transmit a capability combination that can be
associated with manufacturers.

According to Shaik et al. [11, appendix], two capabilities are crucial when
classifying operating systems into Apple’s iOS and Google’s Android. These are
the parameters VoiceOverPS-HS-UTRA-FDD and MS-Assisted GPS. Each of
them can be used as a stand alone classification parameter, i.e. if set to 1 the
UE is an Android device, else an Apple device. Testing with both parameters
revealed no difference in the quality of the result. Thus, it can be concluded
that each of them can be used interchangeably. The resulting confusion matrix
is given in Fig. 3.

The classification shows that all iOS devices are also classified as such. How-
ever, overall there are 55 correctly classified UEs (40 Android, 15 Apple) and
59 UEs that are Android devices but were classified as Apple devices. The F1
scores for the Operating System (OS) classifier from Shaik et al. are therefore
rather low (Android: 0.56, Apple: 0.35).
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Fig. 3. Operating systems according to classifier of Shaik et al. [11] F(Android)=0.56,
F(IOS)=0.34

4.2 UE Modem Classification

To train the decision tree, a part of the complete data available is split. The split
can be defined by the user. The best results were obtained with a 40 % training
data and 60 % test data split. Other parameters are set as follows: Maximum
number leaves := 8 and maximum tree depth := 6.

Accordingly, a maximum of 5 parameters may be used for classification and
the tree has 8 terminal nodes. This prevents overfitting of the tree so that it
does not make single case decisions, i.e. decisions which are only used for one
UE within the dataset, as much as possible. The results are visualized in Fig. 4.

Since the dataset is not considered as a whole to train the decision tree,
there may be too few devices from certain chipset manufacturers. Unisoc and
Spreadtrum belong to these manufacturers and are therefore not included in
the classification procedure. Apple as a chipset manufacturer is, as previously
discussed, not a modem manufacturer, however, since the objective is to investi-
gate to what extent chipset manufacturers can be predicted based on capabilities,
Apple is defined as class. Despite an under-representation of other classes in the
test set compared to Qualcomm, the devices are mostly classified correctly. This
indicates that chipset manufacturers have a strong influence on the capabilities.

With respect to RQ01 (Comparing the ML-based approach to Shaik et al.
expert approach), it can be stated that the classifier of Shaik et al. works well
for distinguishing the modems. However, we found that the trained decision tree
achieved significantly higher F1 scores. As the dataset used by Shaik et al. was
significantly smaller, the result is not surprising, however, it points out that large
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Fig. 4. Classifier with trained decision tree, F(QC): 0.93, F(MTK): 0.91, F(Apple):
0.86, F(Kirin): 0.86, F(Exynos): 1

datasets are required for high quality classification and that manual derivation
of decision rules by experts is not feasible for large datasets. Having the same
scope for each chipset manufacturer as for Qualcomm makes the procedure even
more accurate. The results favor the possibility that the chipset manufacturer has
significant impact on the network capabilities and therefore can often be inferred
(RQ02). To provide a more apt comparison between classifiers, one would need
to classify the manufacturer of the modem as well.

4.3 UE Operating System Classification

After training the decision tree with the corresponding split (40% training data,
60% test data), it can be assumed that a distinction can be made based on the
capabilities. Only two Apple devices are wrongly classified as Android, as can
be seen in Fig. 5.

It is also noticeable that decisions are only made on the basis of two capa-
bilities. This can be seen from the exemplary decision tree in Fig. 6.

For Apple, Idle Mode Signaling Reduction (isr) is mostly disabled. This does
not apply to the iPhone 12, which is equipped with an A14 Bionic chipset.
However, the capability is disabled on the chipset-equivalent iPhone 12-Pro.
Since it was shown in the differentiation between chipset manufacturers that
Apple can be distinguished from others in most cases, it would make sense to
combine the chipset and OS classifiers to increase their overall accuracy.
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Fig. 5. Operating systems according to own classifier, F(Android)=0.98, F(iOS)=0.88

With respect to RQ03, it can be stated that even after little optimization on
the training process for the decision tree, it can be said that a distinction between
Apple and Android is reliably possible. To further optimize the classifier, one
could evaluate even more Apple devices.

4.4 Influence of the Operating System Version

In order to verify whether the OS version has an influence on the transferred
capabilities (RQ04), two older devices with long-term update capabilities were
analyzed in-depth. These are the LG V30, which was updated from Android 7
to 9, and the Apple iPhone 6s. Especially Apple devices have rather long-term
update support. The iPhone 6s can be upgraded from iOS version 9 to 15. This
corresponds to a period from 2015 to 2021, and for LG from 2016 to 2018. After
both devices were resumed with the updated OS, no difference in the essential
parameters of the attach request could be detected.

If the capabilities were easy to extend by the OS, it stands to reason that this
would be practiced. However, the version of the OS does not seem to have any
effect on the attach request for the same device. Among other things, energy-
saving measures are defined in the capabilities, which is why especially older
devices could benefit greatly. Just because Apple consistently provides its devices
with updates over a long period of time, it would have an even stronger sales
argument. It might not be profitable to optimize in this respect. However, it
should be noted that only two devices were examined. This is too small for a
test volume to make a sound statement.



Device Fingerprinting 203

Fig. 6. Decision tree operating system according to own classifier

4.5 UE Type Classification

A different approach is taken for differentiation of device types, as amount of
test data is rather limited in our experiments to sufficiently evaluate a potential
classifier. Four LTE routers, three LTE cameras, and one stick are available to
train the decision tree. The result of the training shows that 101 of the phones
have two parameters in common and can thus be distinguished from the rest
of the devices. The result would be even clearer if one of the cameras did not
have ue usage setting-capability in common with the phones. This parameter
determines whether the UE Prefers data- or voice-based communications [2,6].
If only phones and non-phones were considered, the resulting tree in this example
would have only five leaves. A maximum of three parameters are decisive for the
classification into cell phones or other devices. This indicates that cell phones
can easily be distinguished from other devices.

With respect to RQ05, it can be stated that it is reliably possible to distin-
guish device types. How granular this is practicable would have to be investigated
with a database expanded to include routers, sticks, cameras, and other UEs.

4.6 UE Manufacturer Classification

For the UE manufacturer classification, several manufacturers were excluded in
the training procedure because, only one phone per manufacturer was included
in the overall data set. These are the following manufacturers: Ulefone, Reolink,
Fairphone and Archos. The split of the training data had a significant influence
on the quality of the results. If a training data ratio larger than 40% was chosen,
more devices are predicted incorrectly, hinting to over-fitting of the decision tree.
The same was observed for a training data ratio below 30%, which is typical in
the case of under-fitting. The best results were achieved with a split of 35%
training data and 65% test data and the resulting confusion matrix is given in
Fig. 7.
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Fig. 7. Confusion matrix for differentiation by device manufacturer. F(ALCATEL)
=0, F(APPLE)=0.78, F(BLACKBERRY)= 0, F(GOOGLE)=0.22, F(HONOR)=0.2,
F(HUAWEI)=0.63, F(LG)=0.89, F(MOTOROLA)=0, F(ONEPLUS)=0, F(OPPO)
=0.33, F(REALME)=0.11, F(SAMSUNG)=0.46. F(SONY)=0.5, F(VIVO)=0.4,
F(XIAOMI)=0.44

It is noticeable that a particularly large number of devices from several ven-
dors are wrongly considered as Realme. Motorola, Oneplus and Blackberry were
not even once classified correctly. The fact that so many devices are classified as
Realme could be due to the fact that this manufacturer implements three differ-
ent chipset manufacturers (Mediatek, Qualcom, Unisoc). As already expected,
this indicates that the chipset has a significant influence on the attach request.

With respect to RQ06, it can be stated that the classifier trained for the
mobile phone manufacturers gives by far the worst results. Most likely, this is
because of the distribution of chipset manufacturers among smartphone man-
ufacturers. However, even UE manufacturers such as Apple and Huawei have
reasonable F1 scores, in comparison to other UE manufacturers the results of
the chipset classifier are significantly better, indicating that the chipset is more
relevant for the attach request capabilities than the UE manufacturer. There-
fore, it can be stated that some manufacturers might be distinguished, however
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Fig. 8. Comparison of the F1 score of the Shaik et al. classifiers and the proposed
classifier.

it is not clear to which degree this classification correlates with the distribution
of chipsets used by a particular UUE manufacturer.

4.7 Overall Classifier Performance

The performance of the F1 scores of each classifier previously discussed is
visualized in Fig. 8. The outliers in the Shaik et al. procedure [11], which are
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attributable to the Intel and non-classifiable classes, are not considered. The
columns represent the average F1 score of each class. Even without in-depth opti-
mization, the Machine-Learning (ML)-based method produced better results,
with the exception of the device manufacturer.

The results after evaluation and analysis of the classifiers based on attach
requests support the hypothesis that manual expert-based classifier construction
can be automated with ML-based decision trees and also that the performance
of these classifiers is significantly better than the baseline classifier.

5 Conclusion and Discussion

In this work, the attach request-based device fingerprinting was analyzed in-
depth. Attach request-based device fingerprinting allows an attacker to actively
(i.e. interacting with the target UE) or passively (monitoring the radio channel
without any interaction) derive information on a device or even to track users
based on a particular fingerprint that can be derived from the attach request
[4]. This attack is possible in 2G, 3G, 4G and 5G NSA networks, while 5G SA
networks introduced a countermeasure that limits the severity of the attack by
minimizing the number of parameters that are allowed to be transferred in the
attach request (3GPP TS 33.501).

Two major contributions were provided. First, a series of research questions
regarding the general possibilities and limitations of attach request-based device
fingerprinting were evaluated. The findings can be summarized as follows: 1. ML-
based classifiers (in our case decision trees) archive an overall high performance
in the classification 2. The chipset vendor can be distinguished based on the
attach request with a high probability (F1 score = 95% ) 3. Android devices
can be distinguished from Apple devices with a high probability (F1 score =
97%) 4. The operating system version does most likely not have a significant
impact on the attach request. 5. The device types of mobile network devices,
e.g. cell phones, routers, IoT, can be distinguished based on certain parameters
(as already postulated by Shaik et al.) 6. The manufacturer of cell phones can
only be distinguished with a low probability (F1 score = 35%) Second, a method
was introduced, implemented and evaluated against state of the art classifiers for
decision tree-based classification of attach requests. The main advantage of our
method is that it does not require any expert knowledge for training and also that
it does not require any manual effort in analyzing the attach requests. Therefore
even large data sets can easily be used to further optimize the classifiers and
archive an even higher F1 score.
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research towards future mobile network generations. CoRR abs/1710.08932 (2017).
http://arxiv.org/abs/1710.08932

11. Shaik, A., Borgaonkar, R., Park, S., Seifert, J.P.: New vulnerabilities in 4G and
5G cellular access network protocols: exposing device capabilities. In: Proceedings
of the 12th Conference on Security and Privacy in Wireless and Mobile Networks,
pp. 221–231. WiSec 2019, Association for Computing Machinery, New York (2019).
https://doi.org/10.1145/3317549.3319728

https://quantdare.com/decision-trees-gini-vs-entropy/
https://quantdare.com/decision-trees-gini-vs-entropy/
https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/
https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/
https://www.etsi.org/deliver/etsi_ts/124300_124399/124301/09.07.00_60/ts_124301v090700p.pdf
https://www.etsi.org/deliver/etsi_ts/124300_124399/124301/09.07.00_60/ts_124301v090700p.pdf
https://br.atsit.in/de/?p=136873
https://winfuture.de/news,119991.html
http://arxiv.org/abs/1710.08932
https://doi.org/10.1145/3317549.3319728


Malicious Human Behaviour
in Information System Security:

Contribution to a Threat Model for Event
Detection Algorithms

Olivier de Casanove1,2(B) and Florence Sèdes1,2

1 Université Toulouse III - Paul Sabatier, 118 route de Narbonnes,
31062 CEDEX 9 Toulouse, France

2 Institut de Recherche en Informatique de Toulouse (IRIT), Toulouse, France
{olivier.decasanove,florence.sedes}@irit.fr

Abstract. Among the issues the information system security commu-
nity has to fix, the security of both data and algorithms is a concern. The
security of algorithms is dependent on the reliability of the input data.
This reliability is questioned, especially when the data is generated by
humans (or bots operated by humans), such as in online social networks.
Event detection algorithms are an example of technology using this type
of data, but the question of the security is not systematically consid-
ered in this literature. We propose in this paper a first contribution to a
threat model to overcome this problem. This threat model is composed of
a description of the subject we are modelling, assumptions made, poten-
tial threats and defence strategies. This threat model includes an attack
classification and defensive strategies which can be useful for anyone who
wants to create a resilient event detection algorithm using online social
networks.

Keywords: Threat model · Adversarial Learning · Online Social
Network · Event Detection · Security

1 Introduction

The reliability of the output data of a machine learning algorithm is determined,
among other factors, by the reliability of the input data. A small perturbation in
the input can result in a misleading output [25]. This perturbation may be due to
either data gathering or malicious behaviour. When the input data are generated
by human, perturbations due to malicious behaviour cannot be disregarded. Data
from online social networks is an example of data generated by human or prone
to malicious perturbation.

Online Social Networks (OSN) allow users to exchange short messages and
media. From these data published in real time, information can be extracted on
events. Atefeh and Khreich [5], in their review on event detection on OSN, stated
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G.-V. Jourdan et al. (Eds.): FPS 2022, LNCS 13877, pp. 208–220, 2023.
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that “in general, events can be defined as real-world occurrences that unfold over
space and time”. To detect these events, event detection algorithms can be used.
They take as an input the OSN stream of messages and give as an output clusters
of messages, where each cluster defines an event. There are many applications,
ranging from earthquake detection to musical event detection [5]. The literature
on the subject focuses on how to improve the performances of the detection
and the question of the detection’s security is neglected. Yet, when the input
data is made up of messages crafted by unknown users, this subject becomes
a concern. If the implicit hypothesis: “Input data are absent from malicious
messages crafted in order to disrupt the event detection” may hold in specific
contexts, it does not in others. For example, when detecting events related to
cybersecurity, the adversaries want their attacks to stay undetected. In this
field, it’s easy to find papers which do not take into account a potential threat
to their detection [14,21]. When this hypothesis is false, we find ourselves in an
adversarial learning context and event detection is under many threats.

This paper is a first contribution to a threat model for event detection algo-
rithms on Twitter, but the same threat model could be used for other OSN.
According to OWASP (Open Web Application Security Project) [19], a threat
model is “a structured representation of all the information that affects the
security of an application. In essence, it is a view of the application and its
environment through the lens of security. [...] A threat model typically includes:

– Description of the subject to be modelled.
– Assumptions that can be checked or challenged in the future as the threat

landscape changes
– Potential threats to the system
– Actions that can be taken to mitigate each threat
– A way of validating the model and threat and verification of success of actions

taken.”

Our contribution addresses all the points of this definition except for the fifth
one, which will be addressed in future works. We believe that this threat model
can be used to develop more resilient event detection algorithms and therefore,
develop a technology more suited for real-life applications.

In the next section, we briefly discuss the related work. We will use the
previous definition of a threat model to structure the rest of our paper. In Sect. 3,
we describe the subject we model. In Sect. 4 we provide the assumptions on which
our model is based. In Sect. 5 we describe the threats. In Sect. 6 we present
defence strategies. In Sect. 7 we present future works and possible extensions to
our threat model. Finally, we conclude in Sect. 8.

2 Related Work

Adversarial learning is a recent field, yet there is already a good literature on it
[25]. Current threat models for machine learning focus on three aspects: attack
direction (does the attack happen during the learning phase or the classification
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phase?), security violation (which kind of security concept the attack violates,
traditionally confidentiality, integrity and availability) and attack specification
(is it a targeted attack or not). We will see in Subsect. 5.2 why this threat model
is not useful for us, as it is. Adversarial learning specifically applied to OSN
has been studied in three different ways. The first one focuses on text process-
ing applications, which is what event detection algorithms are. Alsmadi et. al.
[3] review the literature to categorise attacks against text processing applica-
tions. All the attacks identified are message-level attacks, while event detection
algorithms could also be attacked at the event-level (set of messages); therefore
attacks against event detection algorithms are not fully covered in [3]. The second
one is more specific, it is about evading spam detection [10]. Cleaning the input
data with spam detection is a common and useful preprocessing step for text
processing applications, but once again these attacks focus on message-level. For
the same reason as in the previous point, this does not fully cover attacks against
event detection algorithms. The third one consists in listing the adversaries and
threats which can be faced in OSN. For example, Sabottke et al. [22] proposed an
event detection algorithm with a list of actors willing to disrupt their algorithm.
This is a first step, we used this list as a basis to construct the list of profiles in
Subsect. 5.1, but this work needs to be extended into a complete threat model.
Finally, the subject of fake news is out of scope because they impact the users.
They are not meant to disrupt the operation of a machine learning algorithm.

3 Modelling Event Detection Algorithms

Atefeh and Khreich [5] as well as Hasan et. al. [11] reviewed the literature to list
the techniques used to detect events on social media. Regardless of the technique
used, an event can be formalised with the following definition:

Definition 1 (Event). An event is defined by a tuple of messages related one
to another and which are in the same spatial or time window. We note an event
ek, where ek ∈ E and E is the set of all events possible and k ∈ N is the unique
identifier of the event.

We define the function F , the function which associates to a tuple of messages
the corresponding event if the messages actually form an event and e0 otherwise.
Here, e0 symbolise the null event, which means that the messages are not related.
The set of all messages possible (or in our case all tweets possible) is noted T.

Definition 2 (Event Detection function).

F : T1 × ... × Tn → E

(t1, ..., tn) �→
{
ek if t1, ..., tn form an event
e0 else

An attacker can create fake messages thanks to techniques such as Markov
Chain or Neural Network. When executed, these algorithms will produce a new
fake message contained in a set of messages the algorithm is able to generate.
Therefore we can represent the fake message by a random variable.
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Definition 3 (Fake message random variable). Let X be a random variable
following an unknown distribution over the set T.

We define a false positive event (FP event), in the adversarial context, as
an event which is composed of both legitimate and crafted tweets, but if the
legitimate tweets were to be considered alone, no event would be triggered.

Definition 4 (False Positive Event).

Let (Xi)i∈N∗ be independent and identically distributed variables following
the same law as X, ∀(tj)j∈N∗ ∈ T and ∀k �= 0 if F (t1, ..., tn) = e0

and F (X1, ...,Xm, t1, ..., tn) = ek then ek is a false positive

In opposition, we define a true positive event (TP event), in the adversar-
ial context, as a set of messages mainly composed of legitimate messages and
recognised as an event.

Definition 5 (True Positive Event).

Let (Xi)i∈N∗ be independent and identically distributed variables following
the same law as X, ∀(tj)j∈N∗ ∈ T and ∀k �= 0 if F (t1, ..., tn) �= e0

and F (X1, ...,Xm, t1, ..., tn) = ek then ek is a true positive

4 Assumptions

As previously said in Sect. 1, a threat model needs assumptions. We identify
three assumptions for this threat model to make sense.

Assumption 1. Input data from Twitter, and more generally social networks,
contain messages written by malicious users with the objective to deceive event
detection algorithms taking this data as input.

We know that extracted data from Twitter contain spams and other malicious
messages like phishing, for example. Those messages have an influence on the
quality of the detection of our algorithms. Working in an adversarial context
means taking the idea one step further and supposing that malicious users craft
messages just to disrupt event detection algorithms.

Assumption 2. Attackers have access to the algorithms, training and test
dataset and any other relevant information.

The datasets used to compare event detection algorithms are public, papers
describing how event detection works are also easily accessible; therefore it is
safe to assume that the attackers have access to any information related to
event detection. It also means that the system is a “grey box” for the attackers,
they have at least partial knowledge of how it works. Security by obscurity is
not an option here.
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Assumption 3. The benefit of disrupting the detection for the attacker is equal
to the cost for the defender to see its detection disrupted.

We make this assumption to model the adversarial context as a zero-sum
game. A zero-sum game, in game theory, is a situation where the benefit of a
player (i.e. the attacker) is exactly equal to the cost of the other player (i.e. the
defender). Interesting properties could be derived from zero-sum game, we will
use them in a future work to validate the model. This is a common assumption
in adversarial problems [24,28] and in information system security in general
[26,27].

5 Threats to the System

In our context, a threat is defined as the combination of a malicious actor (the
attacker) and a means to disrupt the event detection (the attack). We will detail
both the attacker and the attack in the next two subsections.

5.1 Attacker Profiles

In a previous paper, we reviewed other contributions [8] and identified three
profiles in the literature: trolls, spammers and adversaries. We will summarise
these three profiles except for the troll where we can give a better definition than
the one originally given. This gives us the following attacker classification:

– Trolls: their objective is to create rumors or make disappear subjects and
therefore, events. They target both humans and automatic tools which anal-
yse the news. In the second case, their objective is to create FP events and
make TP events disappear.

– Spammers: they publish a lot of messages serving their own interests. They
can use buzzwords, keywords or tag people to improve the efficiency of the
spamming activity. They do not target our algorithm directly, but their activ-
ity creates a lot of noise in the Twitter stream.

– Adversaries: their objective is specifically to attack the event detection algo-
rithm, in every way possible. Their means are diverse, but we can suppose
that they have at least partial knowledge of the technology behind event
detection since they are directly targeting it.

The definitions of the attackers are centred around the impact he could have.
These profiles could be refined with two additional criteria: 1) is the attacker
ignorant or knowledgeable of the system? And 2) is the attacker constrained
or free of any constraints? Indeed the attacker could have multiple types of
constraints, economic or political, for example. Now that we discussed about the
profiles of the attackers, let’s continue with the type of attacks they can use.
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5.2 Attacks

In information system security, the CIA model (Confidentiality, Integrity and
Availability) is often used [23]. However, this model does not suit our needs
well in our adversarial learning context. For example, it does not make sense
to defend the confidentiality of the detected events when all of the message
composing it are public and messages. We propose instead to use the reliability
and validity, which are measurement properties. “A measurement property is
a quality aspect of an instrument” [1], i.e. event detection algorithms. “Each
measurement property requires its own type of study to assess it” [1].

Reliability. The reliability of a test is its ability to stay consistent. In other
words, a same input should always give the same output. In our adversarial
context, the reliability becomes 1) the ability of the event detection algorithm
to detect a same event, both when the input data are not corrupted and when
a malicious actor is tampering with the input messages, with no less messages
in it and 2) the ability to detect an event, with no more messages in it, when
a malicious actor is tampering our data. To measure the impact on consistency,
we need to first run our algorithm on a dataset without fake messages and
label the messages associated to an event. We run again our algorithm, this
time with the fake messages in the dataset and we compare the new clusters to
the initial labels. This is a clustering problem, therefore a relevant metric for
clustering tasks should be used. Traditional metrics such as recall or precision
are not the best option for that. According to their review of different metrics for
clustering tasks, Amigo et. al. [4] conclude that the best metrics, in regard of the
properties they defined in their paper, are the BCubed recall and the BCubed
precision combine into the BCubed F1-Score; therefore we choose these metrics
for our problem. They define BCubed recall as“how many items from its category
appear in its cluster” [4], which match our first objective for reliability and the
define BCubed precision as “how many items in the same cluster belong to its
category” [4], which match our second objective. The BCubed precision and the
BCubed recall are calculated for every cluster, then “The overall BCubed recall
[respectively the BCubed precision] is the averaged BCubed recall [respectively
BCubed precision] of all items in the distribution” [4]. These two metrics are
then combined to create the BCubed F1-score in the same way that traditional
precision and recall are combined to create the F1-score. In conclusion, we will
use the BCubed F1-score to measure the reliability.

Reliability = BCubed F1-Score

The exact formula of the BCubed F1-score is complex and would require the
introduction of multiple notions. We encourage the interested readers to go read
Amigo et. al. [4] if they want to go into BCubed metrics in depth.

Validity. The validity of a test is its ability to detect what it pretends to
detect. In our case, is the event detection algorithm detecting events and not
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just give a random output? The objective of the event detection algorithm is
therefore to maximise TP events and minimise FP events. The precision metric
increases when the number of TP increases and decreases when the number of
FP increases; therefore we will use the precision to measure the validity.

Validity = Precision =
TP

TP + FP

Attacks Classification. After studying event detection algorithms, we identify
eight attacks. These attacks are described in terms of their impacts on the reli-
ability and the validity of the detection. They are classified in three categories:
event creation, event dispersion and event modification. These categories gather
the attacks which use the same means, but they don’t always have the same
goal. We summarise the attacks in Table 1.

Event creation. The attacker triggers an event detection, which increases the FP
events and therefore impact the validity. The attacker uses a tool to procedurally
generate fake tweets. Those messages are then injected in the Twitter stream.
We identify three attacks in this category:

– Craft: fake tweets are created. Those messages are close enough for the event
detection algorithm to consider them as related but does not necessarily make
sense for a human. Those messages trigger a detection.

– Message expansion: real tweets, not related to any event, in association with
malicious tweets trigger an event. This attack also impacts the reliability since
a legitimate message, not related to any event, becomes related to an event.

– Replay: A TP event is replayed, entirely or partially, at a time where the
event doesn’t make sense.

Event dispersion. The objective is to inject enough malicious messages during
a small lapse of time so the legitimate tweets appear too far from one another
in the Twitter stream for the event to be detected. Three attacks exist in this
category:

– Fragmentation: an event is split in two or more subgroups of tweets, resulting
in detection of multiple events when they are the same. One TP events become
many TP events under attack; therefore the reliability is impacted.

– Cancellation: an event doesn’t trigger a detection when it should. The tweets
are so split by the malicious messages that they aren’t recognised as an event
anymore. This attack decreases the number of TP events and transforms a TP
event in nothing, therefore both the validity and the reliability are impacted.

– Deterioration: the number of tweets in an event decreases when under attack.
This is a mix case between fragmentation and cancellation. The first or last
messages are too far to be associated with the event, but they are still enough
messages to trigger a detection. This is an inconsistency under attack; there-
fore it impacts reliability.
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Table 1. Attacks against event detection algorithms

Name Description Impact on
Reliability

Impact on
validity

Event Creation

Craft A collection of fake tweets triggered
an event

NO YES

Message Expansion A collection of fake and real tweets,
which wouldn’t have triggered an
event otherwise, triggered an event

YES YES

Replay A true event is replayed a second
time by the attacker

NO YES

Event Dispersion

Fragmentation An event triggered multiple detection
due to spam activities

YES NO

Cancellation An event doesn’t trigger detection
due to spam activities

YES YES

Deterioration The number of tweets related to an
event is less than expected due to
spam activities

YES NO

Event Modification

Drift The attacker change the event
keywords or event

YES NO

Merge Messages from an event start to
aggregate to another event

YES NO

Event modification. The attacker generates malicious tweets which seem related
to one another by the event detection algorithm. As for event creation, the
messages are generated procedurally.

– Drift: the attacker creates malicious tweets which aggregate on a TP event.
The objective is to change the event keywords or subject. It creates an incon-
sistency; therefore the reliability is impacted.

– Merge: the attacker changes the event keywords or subject so another event
messages start to aggregate on the first event. For this attack to be successful,
the attacker needs to know the subject of two different events. It is safe to
assume that if the attacker knows this, then both events already have been
detected by our algorithm. Therefore it only creates an inconsistency on the
number of messages aggregated to each event, and not in the number of TP
events detected. The reliability is impacted.

6 Defence Strategies

The defender can protect the detection by adding filters at two different levels.
The first one is at the level of the tweets, where tweets which seem malicious
are filtered. The second level is at the level of the cluster, where TP events are
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distinguished from FP events. We define the filter function h, the function which
associates, to each set of messages recognised as an event, 0 if the set of messages
does not satisfy the constraints or a unique value otherwise.

Definition 6. (Filter Function).

h : E → E

ek �→
{
ek if ek satisfies the filters
e0 else

With this new element in mind, we redefined TP and FP event as follows:

Definition 7. (True Positive Event).

Let (Xi)i∈N∗ be independent and identically distributed variables following
the same law as X, ∀(tj)j∈N∗ ∈ T and ∀k �= 0 if F (t1, ..., tn) �= e0

and (h ◦ F )(X1, ...,Xm, t1, ..., tn) = ek then ek is a true positive

Definition 8. (False Positive Event).

Let (Xi)i∈N∗ be independent and identically distributed variables following
the same law as X, ∀(tj)j∈N∗ ∈ T and ∀k �= 0 if F (t1, ..., tn) = e0

and (h ◦ F )(X1, ...,Xm, t1, ..., tn) = ek then ek is a false positive

We will now discuss what the defence strategies are. Table 2 summarises
which defence strategies mitigate which attacks.

6.1 Filtering Messages

The objective of a spam filter is to distinguish fake users, spams and spammers
from legitimate tweets and users [2]. A spam filter can be made on the content of
the tweets, the characteristics of the tweets, the users behind the tweets or the
relationships in the OSN of the users behind the tweets [2]. All these solutions
are machine learning solutions; therefore we introduce a new level of adversarial
learning. However, the problem of adversarial learning for spam detection has
already been discussed by [6,7,9,13]. Generating fake messages that can fool the
spam filter increases the cost of the attack. Therefore, this strategy is effective
against every attack which needs to create fake tweets. It is especially effective
against dispersion attacks since those attacks are based on flooding and flooding
are easily detected by spam filters. Finally, spam detection based on user features
is effective against replay attacks because it means that the accounts replaying
the events should avoid spam detection; therefore it increases the cost of the
attack.
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6.2 Filtering Clusters

TP and FP events have different characteristics. Setting thresholds for these
characteristics is a way to differentiate TP from FP events. These thresholds are
used as filters to discard FP events. We identified five metrics in the literature
on which events can be filtered:

– Word entropy: The entropy of a cluster was introduced by [20]. The formula
(1) is used where X is a random variable and P (Xi) is the probability to draw
a specific word out of all the words of the cluster. A cluster with a very low
word entropy is probably composed of very similar crafted messages.

– User diversity: The formula (1) is applied but instead of applying it to words,
it is applied to users in the cluster. We have X a random variable and P (Xi)
the probability to draw a specific user out of all the users of a cluster. User
diversity in a cluster was introduced by [15]. This metric is particularly inter-
esting because accounts are the most difficult thing to fake as an attacker.
User diversity is one of the rare defence measures against event replay. The
attacker can replay the exact same tweets but not the exact same author.

– Least Common Subsequence (LCS): Hasan et al. in [12] use a filtering method
based on the LCS at word-level. The idea, based on empirical evidence they
found, is that cluster of newsworthy events will have a higher LCS than non-
newsworthy events. In their paper, the authors fixed an LCS threshold under
which an event is discarded. It may help to identify drifted and merged events
since the first and last messages of these events are likely to be very different.

– Named entity recognition: This technique is introduced by [18] as a way to pre-
select tweets with significant improvement in the final result. The argument
behind this constraint is that a tweet without a named entity does not provide
any information and is therefore useless.

– Event size: Intuitively a cluster of fewer than 3 tweets cannot be considered
as an event. However, finding an exact event size threshold separating mean-
ingful events from similar but not related messages is impossible. Event size
should be considered as a hyperparameter of our model to help us drop FP
events.

H(X) = −
n∑
i

P (Xi)logbP (Xi) (1)

Some of the filter proposed are easy to bypass. For example, attackers can
automatically add a random named entity in their fake tweets. We should keep
in mind that, for the attacker, every attack is a trade-off between the costs and
benefits of the attacks. Therefore, every defence strategy increasing the cost of
the attack is worthwhile.

6.3 Other Strategy

Defragmentation is a process where events are reviewed to check if two detected
events are in fact only one. Some event detection algorithms are prone to
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fragmentation [5]. Our context adds another interest to defragmentation: the
resilience to the event splitting attack. We found one utilisation of defragmen-
tation in [12].

Table 2. Defence strategies

Attack Defence strategy

Tweets Expansion Spam filters, Cluster filters

Event Crafting Spam filters, Cluster filters

Event Replay Spam filters, User diversity filter

Event Fragmentation Spam filters, Defragmentation

Event Cancellation Spam filters

Event Deterioration Spam filters

Event Drifting Spam filters, LCS filter

Event Merging Spam filters, LCS filter

7 Future Works

We seek in future works to validate the model with a mathematical proof of how
this formalisation is relevant. Thanks to our definition of TP and FP events,
the hypothesis 3 and game theory theorems, we can prove that it exists a point
where neither the attacker nor the defender will have interest into changing their
strategies; therefore we avoid the pitfall of the Red Queen hypothesis [17]. The
Red Queen hypothesis, in cybersecurity, is the hypothesis that there is a form of
coevolution between attackers and defenders. Attackers develop their offensive
strategies and the defenders develop countermeasures, which will lead to the
attackers to change their strategies and so on.

On another note, we would like to develop a solution which could emulate the
attacks in 1. We will need for that a public dataset for event detection [16] and a
text generator able to generate credible messages and credible set of messages to
form an event. The solution would automatically insert the fake messages in the
dataset and the event detection algorithms would be tested on this new dataset.
The resilience of the event detection algorithms would be measured thanks to
reliability and validity. This future work can help to test the resilience of event
detection algorithms.

8 Conclusion

In this paper we proposed a first contribution to a threat model for event detec-
tion. We define the situation we are modelling, assumptions that were made, the
attackers’ profile, possible attacks and defence strategies. In future works we will
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propose a way to validate our model. This threat model includes an attack clas-
sification and defensive strategies. This work is dedicated to help future event
detection algorithms to be more resilient against adversarial attacks and there-
fore, develop a technology more suited for real-life applications. This threat
model is especially useful when the event detection algorithms detect events
related to any subject where an adversary can be found.
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Abstract. Computers of different types and portable devices like: mobile phones,
smartwatches and an increasing number of IoT devices, collect and use our per-
sonal data, to improve and simplify our daily lives in new and unexpectedways. So,
the awareness and safetymeasurements in this area are pretty important. Computer
and networking security (e.g. attacks on confidentiality, integrity and availabil-
ity) are subjects in undergraduate and graduate curriculums. Security awareness
training has become a ubiquitous requirement for employees in industrial settings.
However, privacy-related education has not advanced as quickly as security-related
education. As the value of our private information and the possibilities for its
misuse increase, we must develop and learn more about privacy-enhancing tech-
nologies and the role that they can play in our digital lives. Therefore, appropriate
privacy education is required at different levels in the education system. This paper
reviews and analyzes the digital privacy education research literature and identi-
fies potential future research areas, based on coverage gaps that are detected using
a taxonomy of the surveyed academic literature on privacy-based education. This
taxonomy is based on: a classification decision about the subject of the data as
personal or for a third party, the application domain, the specific teaching delivery
method, and the teachingmodality (e.g. collaborative, synchronous, asynchronous
online, experiential, etc.).

Keywords: Privacy · Education · Survey · Taxonomy · Teaching-methods

1 Introduction

Private information leakage has become more of a problem, with the increased use of
digital devices and the rapid growth in AI and Machine Learning. This has motivated
efforts to improve privacy protection [28]. Data stored via the internet can be used for
different purposes and can persist for long periods of time,without the owner’s awareness
or the owner’s control or both. Although these points should be clearly mentioned in the
privacy policy, very few users verify such policies completely or at all. Even if a privacy
policy is read and understood by a user, the remote entity may or may not be auditable
against that policy, presuming legislation exists to require compliance.Moreover, privacy
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also means different things to different people [1]. Research has started in the areas of
privacy-enhancing technologies and related data handling laws and related software
behavior is evolving quickly.

Therefore, currently, privacy education might be more important than law enforce-
ment [9]. In Europe, GDPR legislation was enacted in 2018 to protect all digital data.
NIST has also proposed a framework [31] for privacy improvement. People can under-
stand the importance of privacy and may even want to protect their personal information
when and if explicitly informed [44].While privacy-related lawsmight exist [46], privacy
education seems to be relatively absent [45].

Privacy education programs for younger children [51] have been created and educa-
tionmaterial has been tailored specifically for small children [42, 50]. However, very few
technical undergraduate and graduate-level privacy programs and courses are available
in universities and colleges, worldwide. Most of these are being offered by faculties of
law [22]. Moreover, nothing like the European GDPR legislation [55] exists yet in North
America, although the U.S. state of California has pioneered legislation [56].

In this paper, we analyze the different privacy education initiatives that have been
proposed in the literature for privacy education. We categorize what is being taught,
to whom, and the methods that are being used to teach privacy-related material at all
educational levels. We exclude education that is based on law or focused on privacy
policy, focusing instead on technology-based research. We create a taxonomy, based on
this categorization, and use it to analyze current trends and identify possible education
gaps. Finally, we suggest future development areas and approaches for teaching privacy,
especially at the post-secondary level.

Our paper should be valuable to researchers in privacy technology education, but
should also assist educators who want to teach technical aspects related to privacy (e.g.
to help them design their curricula). Our work should provide researchers or educators
in non-technical fields with a view of the current state of the art in privacy technology
education.

In general, we would like to have more research in privacy technology education
and increase the amount of privacy technology education that takes place at all levels,
including in university undergraduate education. Privacy technologies will shape our
future society in significant and fundamental ways, which can be both exciting and
concerning, depending on their design and implementation.

Privacy legislation can constrain and limit technological development in certain
ways. By understanding privacy technologies, exciting new possibilities can also be
considered that might otherwise be overlooked in a “privacy environment of constraint”
alone. Equilibrium is required between the design of newprivacy-impacting technologies
and the privacy laws that are designed to protect us, as we use those technologies.
Education is required on both sides of this privacy technology equation. We limit our
study to technical privacy education, rather than focusing on broader analysis in a social
or legal context, although both of these are also clearly very important.

2 Research Method

We are mainly interested in how the non-legal, academic world has responded to the
specialized need for digital privacy education learning material in the last decade. Not
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only is privacy now emerging as an independent research area, even a secure system can
still leak private information [64]. In keeping with our objective of stimulating privacy
technology-related education, we have chosen to exclude research papers that discuss
privacy education as a side-topic to a more central cybersecurity education main topic.

Fig. 1. Privacy education research related data gathering process

To review the “state-of-the-art” of privacy education, we decided to findout what
research happened in the last ten years around the world. We first looked at special-
ized journals and conference proceedings for education in information technology and
computer science like SIGITE, SIGCSE, and ITiCSE. Thenwe used some keyword com-
binations in Google Scholar. After filtering out the papers, we read the Title, Abstract
and Conclusion sections to determine the related papers.

Fig. 2. Distribution of the sources of the collected papers

Figure 1 illustrates the entire search process. In total, 51 articles were found that
related to digital privacy education, including 31 papers that suggested different kinds
of teaching proposals. The rest of the papers used human participants to determine the
importance of different types of learning material or methods. We found one unique and
interesting older paper that proposes privacy education, specifically for the marketing
domain.

We have considered all the papers having “Privacy” in the title in SIGITE, SIGCSE,
and ITiCSE. However, our search strategy might not be exhaustive in the case of IEEE
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and Google Scholar, due to the use of keyword combination search. While searching in
Google Scholar, we found a few duplications which were already covered in the previous
search categories, and we discarded those. To make sure that no important related paper
is missed, we have gone through the “Title”, “Abstract”, and “Conclusion” sections of
all the filtered papers, before discarding any unrelated paper. Figure 2 also demonstrate
the diversity of the sources of the collected papers, which suggests this survey provides
a solid attempt at summarizing the “state-of-the-art” in digital privacy education.

Interestingly, privacy-related course listings in universities around the globe were
reviewed recently [22], and found that undergraduate level offerings in privacy are scarce.
Also, the authors have shown how privacy education varies with geographic location and
disciplines. We have not duplicated this work. There might also be recent training or
awareness programs, from commercial or private organizations. Our focus in this work
is on the public, academic literature.

3 Taxonomy of Privacy Education

We now define and justify each of the four descriptors for our classification. Most
reviewed articles talk about a specific target audience in a specific context. The specific
details for the privacy education that is being described usually depends on this audience
and context heavily.

Fig. 3. Taxonomy of Privacy Technology Education Research

We have attempted to cluster or categorize these audiences or contexts in our work
and also to cluster the education methods being used or studied. We believe that newer
papers should be classifiable with our taxonomy, but are not claiming that this is the only
possible taxonomy.

Besides the different audience and contexts, all reviewed papers discuss one of
three basic education delivery methods (Fig. 3). Researchers tried to attract learners
toward privacy education by using games and awareness programs along with formal
courses. Education researchers continue to investigate personalized teaching modalities
or are studying ways to improve overall teaching effectiveness, also making this a useful
ontological classifier.
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The figure shows a taxonomy of existing privacy technology education-related aca-
demic articles. Each category is further broken down into multiple subcategories. Not
all papers have all of the main categories defined (e.g. delivery method might not be
specified, while audience is always specified).

The level of opacity of the grey color in the background of the boxes of the figure
represent the percentage of articles in the specific category or subcategory, relative to
the total number of surveyed papers. The darker the background color of the box (i.e.
the larger the percentage of the total number of academic papers) and the ‘hotter” the
research area. Details for each of these categories are given in the subsequent chapters.

4 Target Audience

Studies have shown that privacy education impacts privacy-protective behavior [14].
However, the same kind of privacy education is neither effective nor required for all [6].
Most of the existing teaching methods are targeted toward a specific audience.

Broadly speaking, privacy education initiatives are usually aimed at the owner of the
information, which we term “Individual data owner”. Within this category, students of
various ages or education levels are specified. If not, the audience defaults to a “general
public” category.

Students at undergraduate and graduate levels are more mature and might be more
capable of understanding newer privacy-enhancing technologies (PETs). This includes
non-technology students who might not be expected to be computer systems or security
experts (e.g., medical students) [47]. Despite this, very few privacy -related courses are
analyzed in the literature at the undergraduate or graduate level and most that do address
the subject from a legal perspective [22]. In the last five years, a few initiatives in the
technology domain have been presented [7, 20, 54], along with a few earlier studies [12,
18, 19].

Maintaining the privacy of others is more critical, based on the number of people
that are potentially affected. Software developers often play a crucial role in maintaining
the privacy of others but seldom receive formal or even informal education in this area.
Designing software to preserve the privacy of others relates to basic questions about
the storage and usage of the data of those third parties. However, designers have been
criticized for having a lower sense of privacy than their users [21].

Public employees deal with the private information of others regularly. Therefore,
they need to know the value of that information and how to deal with it safely. For this
reason, the education of specific public sector employees, notably health informatics
workers [3, 4] and librarians [36, 52], has been evaluated.

Although organization-specific training programs for software developers related to
privacy might be common in industry and there are several websites that talk about the
legislative requirements, especially in Europe, only a single academic research paper has
been found in this category [54]. However, software developers are a critical audience,
especially when handling personal information for large numbers of end users. There are
now examples of courses that focus on privacy, specifically, often as part of a software
requirements research framework [65].

Teachers are needed at different levels who can teach privacy-related issues and
technology to others. Therefore, “privacy teachers” themselves are an important potential
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audience. Lesson planning and learning material design are discussed in [50]. High-
school level teaching of different aspects of privacy has also been studied [10].

5 Application Context

Many teaching initiatives start from basic requirements of personal privacy protection,
such as understanding the careful usage of computing devices with internet connections
and awareness of the associated privacy implications. Making people aware of what
information is private and how such data may be leaked while interacting via public
websites has been studied [5, 13, 24]. Precautionary measures when using common
personal devices (e.g. disabling the GPS, lowering the brightness on a smartphone) can
be taught early in the education cycle [20, 40].

Privacy awareness is required in the context of system development as well. Learners
should understand the basic components of modern software architectures and how
attackers may target them to gain private information. Teaching initiatives have been
taken to make learners more aware of the privacy implications of using data mining, big-
data etc., [37, 38], which may be used to analyze a large amount of personal information.

Privacy concerns when using Single Sign On (SSO) authentication systems have
been analyzed for education purposes [19]. Privacy implications of mouse-keyboard,
malicious use of cookies etc., can be considered [12, 18, 19]. Developers can be taught
to consider obfuscation techniques, while dealing with user location information, to
enhance the privacy of the resulting applications [54]. The idea of blurring images or
videos to enhance privacy is also explored in an educational context [53].

Sensitive and non-sensitive personal information is often shared on different social
media platforms. Default security configurations are often used, without full understand-
ing of the corresponding privacy implications. Adopting the persona of a hacker is one
teaching method used to make learners aware of the methods that can be used to extract
lucrative information from social media postings [33]. Other education approaches like
gamification [2] or novel visual methods [32] have been used to educate students about
the flow of private information and to encourage proper configuration of privacy settings
(e.g. in profiles for web applications).

IoT devices continue to proliferate and permeate different areas of our lives (e.g.,
smart meters and thermostats, home security systems, vehicles, and many more). IoT
devices will account for over half of the world’s internet traffic by 2023 [60]. Sophis-
ticated personal devices like fitness trackers and smartwatches can monitor and record
our activity levels using heart rate measurement sensors and step counters, as well as our
movement levels and location information [26]. While IoT security education seems to
be increasing, privacy education is lagging.

Information can be recorded locally on devices or transferred to remote servers
for storage and analysis. However, few people read the privacy policies and waivers
associated with such data logging. Several initiatives have been taken in the IoT domain,
like the OWASP Internet of Things Project [34], to help people better understand the
security and privacy issues associated with their IoT devices.

An interesting, recent educational toolkit [23] has been developed to educate people
about potential privacy-related issues associated with their personal and IoT devices.
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The challenge for such education aids is to keep them up to date with new software
applications.

The marketing industry has taken advantage of progress in machine learning and
artificial intelligence. However, this can come at the expense of client privacy. Privacy
and ethical aspects for information protection should be taught carefully in modern
business and management courses and this has been proposed for teachers creating
marketing courses [17].

6 Education Delivery Method

Different delivery methods have been adapted to suit specific audiences and contexts.
As already mentioned, using games in privacy education has become more popular [48].
Research on the use of interactive elements, different intrinsic motivation factors, and
other modern pedagogical research areas are now being considered in the context of
privacy-related education.

While games are the primary focus in several papers [25, 26], researchers may only
use gamification as a sub-module for the primary privacy-related learning material [2].
This depends on the context for the learning, which has already been discussed. Students
can learn through playing games using web-based simulations [11] or can participate
on their mobile devices [13]. Besides digital games, physical games (e.g., Card-based
games) have also resulted in good educational outcomes [5, 15].

Privacy-awareness initiatives and campaigns [8, 24] often use websites, YouTube
content, etc., to teach privacy, combined with “in person” delivery methods. Using more
traditional approaches, privacy experts provide live lectures to specific sets of learners
[36]. Push notifications in digital media [3, 27] or hands-on activities with audiences are
also used. These activities vary from experiments in controlled lab-like environments
[12, 18] to gathering data from more “authentic” learning environments [4], including
outdoor activities [40].

While advanced digital privacy courses are scarce [22], countries like Canada are
adding introductory-level concepts and countermeasures to the curriculum of younger
students [42]. Resources to make privacy teachers more knowledgeable are also in the
development phase [10].Manymarket research and advertisingmethods can conflictwith
basic requirements for customer information privacy too. As already mentioned, privacy
education needs to be incorporated into the business curriculum for this reason [17].
Historically, few advanced-level, structured courses are available for STEMstudents [19,
37], but this seems to be changing. A common body of knowledge has been identified
recently [16], identifying productive areas for course development.

7 Teaching Modality

Several teaching modalities can be used to improve the privacy education process.
“Hands-on” experiments can enhance learning and are becoming more common
in the privacy education literature. Students perform supplementary experiments in
combination with preliminary reading activities [2, 12, 18, 19].
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Experiments can be the main focus of the training. For example, a hands-on learning
approach based on the RapidMiner data analysis tool [61] was designed to teach privacy
related to Big-data and data mining, etc. [38]. Other researchers used experiments with
pictures to show students how even simple images can leak critical private information
[40].

Clearly, other theoretical and practical pedagogical advancements could inform the
teaching of privacy-related material too. Reviewing these advances is not feasible here,
but we note a significant focus of the privacy technology education literature on asyn-
chronous learningmethods. It is not clear whether this focus is related to the recent global
pandemic or pedagogical experiment, rather than on established pedagogical principles
or based on the subject topic of privacy education itself, which is often closely linked
with digital forms of personal information in the literature.

Health informatics students were asked to collect information from different stake-
holders of a drug supply chain [4] to illustrate privacy-related issues. Privacy leakage via
shoulder surfing might be classified as security-related, but researchers in [39] identified
this as more of a privacy-related issue almost two decades ago. Recent work with a sim-
ulated social networking platform (“Fakesbook”) allows students to see a graph-based
visualization of their social networking profile data, as it proliferates between simulated
platform users [32].

Along with traditional textual information, using audio-visual elements in an
offline/asynchronous learning method has been shown to improve student learning. As
an example, addingmovie themes provided good results in privacy education formiddle-
school students [38]. Personalized “nudging”, in a peer-based teaching modality, was
shown to be reasonably effective in [27].

As already stated, non-digital, physical teaching modalities can also be used [5]. The
effectiveness of using interactive elements to teach abstract concepts like privacy has
also been shown to vary with different age groups [41]. To address this, pedagogical
methods that emphasize motivation, like the ARCS model [43], have been applied to
improve learning, especially in the earlier age groups [13]. These methods are probably
applicable to other learning settings, as already mentioned.

We define “peer learning”, as situations where learners interact with other learners of
potentially different abilities to learn material. This is usually done while being taught in
other ways or by other people (i.e. instructors). While potentially applicable anywhere,
using group work in privacy education has had promising results. For example, in a
collaborative learning setting, where students formed groups to achieve a common goal,
privacy education worked very well with younger students [30].

However, the effectiveness of peer learning can depend on different social aspects.
The sense of community for group members and even the group formation process,
itself, can be critical to learning outcomes. This has been seen in the context of teaching
privacy-related material [29, 35].

Learners can role-play as a “teacher” but also learn in parallel with the “student”.
Non-experts can benefit from this approach, while creating privacy teaching materials
in the context of social media [25]. Similarly, researchers have studied the effectiveness
of a teaching initiative, where undergraduate students led a privacy education campaign
to teach middle school-aged students [24].
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8 Gap Analysis and Recommendations

In contrast to the privacy education papers in the technology domain, we attempted to
quantify concurrent security education activity using similar search methods. Specifi-
cally, we used a similar keyword search (“Education” OR “Teach” OR “Learn”) AND
“Security” in Google Scholar using only their Title, Abstract, and Conclusion sections.
We also tried to capture the state of research regarding privacy in the legal domain in the
last ten years by simple keyword search (“Privacy” AND “Law”) in the title (Fig. 4).

Fig. 4. Privacy education in the technology domain in comparison to others

Among the reviewed papers, we have found some common key findings. The main
obstacle against privacy education is the lack of awareness of the audience regarding the
concept of privacy andwhy it is important. In fact, even if they aremade aware, the ease of
using digital platforms and sometimes the notation of a false trust on the used platform
restrain them from following privacy-preserving behaviour [14]. Among the applied
different approaches, the inclusion of interactive activities like hands-on activities, games
(especially with multiple participants) etc., are most common. In contrast, detailed and
complicated approaches did not work well [5]. However, regarding multi-party games,
researchers put a lot of emphasis on effective partner matching. The need for customized
privacy teaching is identified, even among people from the same audience class [27].

Lack of diversity among the researchers is noted in (Fig. 5), and it raises a lot of con-
cerns. In today’s world, everyone uses technology andmay be a victim of privacy-related
attacks. However, the privacy problems, solutions, teaching methods, etc., vary depend-
ing on the person’s culture, background, local law, etc. So, diversity among researchers
is an essential criterion for making privacy education effective.

Very little technical research has been done to educate students about third-party
privacy and data handling (e.g. for software developers). Among the 31 novel methods,
only four of them relate to this area. Many workplace environments require this kind of
understanding, (e.g. software developers, system adtministrators) and not just those in
the public sector, like healthcare workers, and librarians.
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Fig. 5. Geographical and affiliated department-wise distribution of the researchers

Software users can require education, themselves, making the software developer’s
education even more important. Indeed, the number of available privacy experts or
technical workers is smaller than required by the software industry [57]. Privacy (and
security) can be viewed as more than just “another” functional requirement and perhaps
more of a mandatory area of study for STEM students.

Equally,more researchers and teachers are requiredwith this technical privacy exper-
tise, so that this is possible. In general, both cybersecurity and privacy education pro-
fessionals are currently scarce, which might explain the observed research focus on
asynchronous online methods for teaching privacy-related concepts.

Encouragingly, there are now a few examples of universities and colleges that include
privacy-related material in their security curriculum at the graduate level. However, this
is less common at the undergraduate level. Some elementary privacy-related topics are
usually covered inside secondary school security-related courses, usually when access
control is being discussed.

For computer science or software undergraduate students in secondary education
settings, privacy coursesmight be focused on: available Privacy-EnhancingTechnologies
(PETs), common PET usage as well as their relative advantages and disadvantages.
Applicable legal requirements might also be extracted and interpreted.

In undergraduate medical programs, students need to be aware of standards like
HIPPA [62]. In experiential learning contexts, understanding and then interpreting such
standards in practical situations would be useful. Besides understanding the legal con-
straints, medical students also need a basic understanding of the capabilities of the tech-
nology, as the amount of personal data, collected by personal and non-personal digital
devices, increases.

The marketing industry has always embraced the use of data. However, business
students would benefit from reconciling modern marketing methods, that rely on data
mining techniques at different levels of granularity, with privacy preservation legislation
(e.g. European GDPR). For successful marketing campaigns, an understanding of tech-
nology and its capabilities and required restrictions is also useful [58]. This remains the
least populated education area in our research taxonomy (Fig. 3).

In a recent comparison of the effectiveness of different methods for teaching privacy-
related material, a combination of classroom training and gamification was proposed
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as being the most effective [49]. Practice and rehearsal were shown to aid retention in
learners and thismaynot be specific to privacy-related education. Similarly, gamification,
for privacy-related training, will be constrained by the difficulty of designing good
educational games [59].

Much of the existing pedagogical research needs to be applied and adapted for
privacy-related education. As can be seen from our taxonomy, privacy education varies
with the age of the students and applies to personal data as well as the treatment of the
personal data of others, resulting in different learning objectives in each situation.

Formal courses to teach privacy as a stand-alone subject are required. Developing (or
developed) legislation needs to be comparedwith the capabilities of available technology
and the control mechanisms that are provided or that need to be provided with that
technology. Understanding of and practice using PETs is required and must be taught.
It is possible for our own privacy rights or those of others to conflict with the desires
of governments to observe our activities or control those rights, so learning privacy
technology “on the job” might be dangerous or just inefficient.

Synchronous learning activities seem to help students learn complex topics like
privacy [63]. Moreover 75% of the experiential learning activities reviewed take place
in a synchronous setting, although this value cannot be discerned directly from Fig. 1.
Privacy (and security) instructors are scarce and the industry demand for privacy and
security professionals currently exceeds supply, which might explain researcher interest
in minimizing the role of the instructor in asynchronous teaching modalities.

The research trends might then also make sense in the context of the recent restric-
tions that have been imposed by the current global pandemic. Synchronous teaching of
privacy-related material, while now recognized as being important, is harder to imple-
ment. Perhaps, novel teaching modalities that combine online learning with peer-based
learning somehow (and yet remain “experiential”) are the most promising and practi-
cal approaches to privacy-related education or perhaps online learning will diminish as
the memory of the global pandemic recedes. The privacy technologies themselves are
evolving, and privacy education needs to track these changes.

9 Conclusions

We have reviewed the literature related to digital privacy education. We used this to
produce a taxonomy and identified several gaps. These gaps could help guide future
research on how to educate people about digital privacy more effectively. Our research
has shown the need for related undergraduate curriculum changes in privacy education.

New graduates from STEM programs will need to understand privacy-related issues
frompersonal and third-party perspectives. Indeed, privacy awareness among IT employ-
ees has become more critical in North America, which lags Europe in privacy-related
legislation. Indeed, the research on how to teach privacy-related information manage-
ment, especially for third parties, seems inadequate, especially when compared with
security-related education activities.

This might be because the cost models of security-related attacks are clearer and
more tangible. Various teaching modalities (e.g., experiments, interactive elements, and
interpersonal activities) seem to be effective in creating new courses for privacy-related
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education, and it is encouraging to see them being studied in the context of privacy-
related education. Novel education methods are worthwhile considering, to compensate
for instructor shortages.

Acknowledgements. We thank the anonymous reviewers for their comments and ideas for
improvements.
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Abstract. Most recommendation systems in social networks provide
users with relevant new friend suggestions by processing their personal
information or their current friends lists. However, providing such recom-
mendations may leak users’ private information. We present a new dif-
ferentially private recommendation algorithm that preserves the privacy
of both attribute values and friend links. The algorithm mainly proceeds
by adding calibrated noise to an adequate matrix representation of the
social network. To get a good trade-off between privacy and accuracy,
the required amount of noise should be limited and therefore we need
to mitigate the prohibitive sensitivity of the matrix representation. For
that, we apply a graph projection technique to control the size of friends
lists. The effectiveness of our approach is demonstrated by experiments
on real-world datasets and comparisons with existing methods.

Keywords: Social Networks · Recommendation · Link Privacy ·
Differential Privacy

1 Introduction

Online social networks (OSN) have been widely used by people to get connected
with other users. Users choose to create profiles by setting some personal details
like gender, age, hobbies, etc. OSN also allows users to create different groups,
or pages to have a connection with other users of similar interests.

Suggesting suitable candidates for friendship to a target user is a challenging
task for a recommendation system. In the existing literature, different approaches
have been proposed to solve this problem. Recommendation methods are classi-
fied into different categories: relationship-based recommendations, interest-based
recommendation, location-based recommendation, etc. [2]. In general, OSN users
receive recommendations from their platforms based on their profiles and their
behavior. Due to privacy concerns, users hide their sensitive information from
other users but this information can be leveraged by the service provider to
generate more accurate recommendations.

Current recommendation systems (RS) apply artificial intelligence techniques
to predict users’ behavior or users’ preferences. As each user of an OSN is con-
nected with friends, some RS exploits information provided by the user’s friends
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to generate recommendations [3]. Matrix factorization is considered as an effi-
cient approach to generate recommendations by identifying latent factors that
characterize users or items [4]. Without private user information, a recommen-
dation result may be less accurate and even fail to generate personalized service.
Hence, RS inputs should include such information, possibly in noisy form.

Differential privacy (DP) considers the leakage prevention of private data by
adding calibrated noise to query results [5]. DP has been widely adopted to imple-
ment effective privacy-preserving recommendations where a Service Provider
(SP) collects user information and generates recommendations. Existing liter-
ature [6] has also introduced Local Differential Privacy (LDP), a decentralized
version of DP where every user injects noise locally. LDP is particularly inter-
esting to ensure privacy in a setting where the SP is not trustworthy.

To illustrate privacy issues with social recommendations let us consider an
OSN that allows the user to specify a friend-list and values for some attributes.
Assume User u has 40% friends who have declared “football” as their favorite
sport. The remaining 60% have opted to keep it hidden. Now, if the recommen-
dation model suggests some pages/videos related to “basketball” to User u then
u can make a guess that a majority of those 60% friends have declared “bas-
ketball” for sport. Assume another situation where User u has 65% friends that
are male (private attribute value) and have chosen “soccer” as a sport (public
attribute value), then u will probably get “soccer” as a recommendation. Now,
if another User v has the same friends as u but gets a different recommendation
such as “badminton”, then u and v can infer each other’s gender. In another
case where User u keeps their friend-list hidden and User u is recommended to
User v (e.g., because they are sharing many friends) then v can make a guess
about u’s friends. These scenarios show privacy problems while generating rec-
ommendation results. This motivates us to design a recommendation system that
takes advantage of both user’s friends and attribute values for a more accurate
friend recommendation, while mitigating the risk of leaking attribute values or
friendship links.

In this paper, we model an OSN by a labeled graph and propose a privacy-
preserving friend recommendation system for OSN users. A service provider
extracts the social network data and applies it to a recommendation algo-
rithm. We assume that recommendations are generated by a fully trusted service
provider (TSP). TSP has access to public and private information of every user
to generate a recommendation result. This operation is based on computing the
number of connections attached to every user for every attribute value. This app-
roach allows one to refine standard binary approaches that only record whether
a user has some attribute value or not: in our proposal, we record the proportion
of friends that have some attribute value and this allows one to measure the
interest of a user for some value. The recommendation results may be shared
publicly for further usage by any third party, e.g., it can be used to target users
for advertisement.

For the social graph setting, we assume that attribute values and friend links
(or connections) are hidden from other users. Obviously, there is an exception
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when user u is a friend with user v since in that case, v knows one link from u. The
concept of DP is enforced by TSP on the connection counting matrix to make
the recommendation results implausible to reveal the user’s private attributes.
For a given social graph, we aim to generate the recommendation results while
ensuring that any malicious attacker cannot accurately infer a user’s private
information.

The main contributions of this paper are: 1) a recommendation system for
OSN users that leverages both friends and attributes information 2) a differential
privacy setting that ensures that recommendations preserve OSN users’ privacy
3) experiments on real social graphs to evaluate the proposed approach and
compare it with existing ones. From the experimental analysis, we can tune
parameters to get a good trade-off between privacy and utility.

The paper is organized as follows. In Sect. 2, we summarize existing methods
of DP models. Section 3 contains the explanation of some fundamental defini-
tions and terms related to a social network. The proposed approaches are briefly
described in Sect. 4. In Sect. 5, we perform an experimental analysis of our pro-
posed approach. We conclude and define future scope in Sect. 6.

2 Related Work

Privacy of recommendation systems for OSN can be ensured with cryptographic
protocols as in [7,20] but with significant computational cost and high key update
management due to the size and dynamics of OSN. The privacy-preserving friend
recommendation system proposed in [8] considers anonymized social graph struc-
ture. However, the approach does not provide a formal analysis of the privacy
risks that we can benefit from differential privacy.

In [9], the authors present a differentially private system for recommending
friends in social networks while preserving the privacy of links. Their system is
based on metrics between nodes such as Common Neighbours, Katz Centrality,
and Graph Distance. Therefore the system ignores attribute information and
admits a cold-start problem when some user joining the network does not have
any friends yet. Instead, our recommendation system relies on collaborative fil-
tering through matrix factorization. As a result, our friend recommendations also
take into account user attributes and this leads to more accurate suggestions.
Unlike other perturbation methods, DP-based recommendation systems quantify
formally the amount of privacy leakage in order to ensure some recommenda-
tion accuracy [5]. Indeed, DP injects noise that depends on the sensitivity of the
data queries and the level of privacy offered to the user. In [3], DP is applied to
recommendation systems by injecting Laplace noise to the covariance matrix for
the prediction of missing ratings. The same concept has also been applied to the
recommendation in OSN platforms [10] but disregarding the recommendation of
friends.

The privacy-preserving friend recommendation system in [15] focuses on pro-
tection against fake accounts attacks by building a friends candidate graph from
the user’s phonebook. The authors do not evaluate the privacy level offered
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by their solution. In [11], the authors present an item recommendation system
based on graph embedding and neural network approaches that prevent infer-
ence attacks on user profile sensitive data, through the combination of several
differential privacy techniques. They do not consider friend recommendations.
In our case, we rely on matrix factorization and besides attributes, we also take
advantage of friends links and OSN homophily properties to perform friend rec-
ommendations.

Based on a latent factor model for recommendations, [6] shows that adding
noise to inputs gives the best accuracy while ensuring robust protection against
attacks aimed at gaining knowledge about user ratings. We will adopt here a
similar input perturbation approach. Moreover, we consider both the friend-list
and attributes attached to each user. This allows one to generate more accurate
recommendations and also to provide useful results even if the user has only a
profile with attributes but no friend-list or vice versa.

3 Preliminaries

In this section, we give the notation and concepts used throughout the paper.

3.1 Labeled Social Graphs

A labeled social graph is defined as G = (V,E,L), where V is the set of users, E
is the set of undirected edges representing relationships or connections between
nodes and L is the labeling of nodes by attributes values defined as follows.
Consider A is a set of attributes where each attribute a ∈ A has a set of values
ā.

We assume that for any two distinct attributes a, b ∈ A, their set of values ā
and b̄ are disjoint, and the set of all attribute values Ā =

⋃
a∈A ā is ordered as

z1, z2, . . . , zk. The labeling function L assigns to every node u a set of attribute
values. The label or attribute-value for user u is defined by:

L(u) =
⋃

a∈A

l(u, a) (1)

where l(u, a) is a subset of ā for all u, a.

Definition 1 (Attributed Connections (AC)). For a labeled social graph
G = (V,E,L), user u ∈ V and attribute value z ∈ ā where a ∈ A, the set of
attributed connections is ACG(u, z) = {v | (u, v) ∈ E and z ∈ l(v, a)}. If there
is no confusion we write AC(u, z) instead of ACG(u, z).

Given a labeled social graph G = (V,E,L) and user u ∈ V , N(G) repre-
sents the adjacency matrix of G and dG(u) represents the degree of u in G. We
use simply N and d(u) when G is clear from context. Given two matrices C
and D with the same number of rows, C||D represents the matrix obtained by
concatenating their corresponding rows.
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3.2 Differential Privacy

DP [5] provides formal guarantees of individual privacy against adversaries with
background knowledge. DP effectively perturbates computations by injecting
noise to ensure that the output is not significantly affected by a single change
in the inputs. Initially defined for tabular data, DP has been extended to graph
data, e.g., to protect a node or an edge.

Given a query f on a social dataset D, we look for an algorithm A which
returns a noised result obtained from D, that is sufficiently close to f(D) to be
useful. DP ensures privacy for participating users in the social dataset while min-
imizing the difference between A(D) and f(D), by adding a controlled amount
of noise. The ε-differential privacy property (ε-DP) [5] is satisfied for a positive
real number ε if:

Pr[A(D1) ∈ S] ≤ eεPr[A(D2) ∈ S] (2)

for all subsets S of the set of outputs and for all neighbour datasets D1 and
D2, where the neighbouring definition is specific to the dataset and the data
to be protected. For a social network dataset, the neighboring datasets can be
defined with reference to nodes, edges or labels (attribute values) attached to
nodes. Existing literature [12] has introduced node-neighbor graphs and edge-
neighbor graphs and the related differential privacy notions: Node-DP and Edge-
DP, respectively. In this work, we consider neighbour graphs to be pairs of graphs
that differ either by one edge or by the presence of one label in a single node.
This two part definition is a variant of the one in [13]. We recall our assumption
that for any two distinct attributes their set of values are disjoint.

Definition 2 (Neighbor Graphs). Two labeled social graphs G1=(V , E1, L1)
and G2=(V , E2, L2) are neighbors if either i) there is a node v such that the
symmetric difference of L1(v) and L2(v) is a singleton and for all nodes u �= v,
L1(u) = L2(u), or ii) they differ by a single edge.

In order to evaluate the magnitude of noise to be injected into the query
result, one has to compute the maximum variation of the query result on neighbor
graphs, which is known as Global Sensitivity.

Definition 3 (Global Sensitivity). For a numeric function f : G → R, the
global sensitivity GSf of f for neighbor graphs G1 and G2 is defined as:

GSf = max
G1,G2

|f(G1) − f(G2)| (3)

This definition is extended to function returning vectors (or matrices) by inter-
preting the notation |.| as the L1-norm.

A well-known technique to achieve DP is to apply Laplace mechanism [5].

Definition 4 (Laplace Distribution). The Laplace distribution centered at 0
and with scale parameter b has for density function:

Lap(x|b) =
1
2b

exp(−|x|
b

) (4)
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The Laplace mechanism injects noise into the result of function f . The noise
is drawn from Laplace distribution Lap(x|b) where the scale coefficient b is the
quotient of the global sensitivity of f by the privacy parameter ε.

Proposition 1. [14] Given a function f with value in R
k, fDP (x) = f(x) +

(Y1, . . . , Yk) satisfies ε-differential privacy when the Yi are independent, identi-
cally distributed random variables sampled from distribution Lap(x|GSf/ε).

To simplify notations, the noised version of f(x) above will be denoted by
fDP (x) = f(x) + Lap(GSf/ε).

3.3 Social Recommendations

Matrix Factorization Approach. Matrix factorization (MF) is a popular
approach of recommendation systems because of its prominent predictive accu-
racy and computational scalability. Given m users and n items, we consider a
matrix R of size m × n where each of the entries rij represents the rating of
User i for Item j whenever (i, j) ∈ E (E the set of couples for which the rating is
available) and a default value ⊥ otherwise. In order to predict the rating rij for
a pair (i, j) /∈ E an SP can apply MF to compute an approximate factorization of
R into matrices U and V of dimensions m × d and d × n, respectively, are called
user latent factor matrix and item latent factor matrix respectively. We assume
that d is small w.r.t. m,n. Row ui of U represents the weights for user i of d
user latent factors. Likewise, column vj represents the weights for item j of d
item latent factors. Then, the service can recommend Item j to User i according
to the value of ui · vj , where a · b =

∑d
s=1 asbs is the usual inner product in R

d.
The (approximate) factorization can be obtained by the following least-

square estimation:
min

{ui}m
1 ,{vj}n

1

∑

(i,j)∈E
|rij − ui · vj |2 (5)

The minimization in Expression 5 can be achieved by stochastic gradient
descent or alternating least squares method [16]. Once the latent matrices are
generated, the prediction of the missing rating can be done by doing the dot
product of the corresponding user and item latent factors vectors:

r̂ij = ui.vj (6)

If rij = ⊥ and r̂ij > T for some fixed threshold T determined experimentally
then the system will recommend j to i.

Application to Friends Recommendation. To recommend friends in OSN,
the approach is the same as above, except we replace the set of items with the
union of the set of users and the set of attribute values. Then the rating matrix
r is defined as follows:

– if j is the column index of a user then rij = 1 if users i and j are friends and
0 otherwise;
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– if j is the column index of an attribute value then rij records the importance
of this attribute value for User i. For instance rij = 1 if attribute value j is
in the profile of i. Otherwise, rij is the proportion of friends of User i who
have attribute value j.

To get an idea of our friend recommendation approach, note that if users i
and j have many mutual friends and common attribute values, their vectors will
be close to each other. Matrix factorization will tend to complement the vectors
so that they get even closer together. In our proposed approach, the attributes
are included in columns along with the users for factorization. As a result, the
recommendation not only depends on friends but also on attributes. Thus, our
approach outperforms standard recommendation methods where a new connec-
tion is suggested to users when they have a certain number of mutual friends.
In addition to the graph structure, our approach exploits attribute information
to improve the recommendation as detailed below.

4 Differentially Private Recommendations for Social
Networks

In this section, we consider a scenario where user information including sensitive
one can be shared with the TSP in charge of providing recommendations.

4.1 Overview of Social Networking Scenario

We consider a TSP that collects information from all OSN users and provides
useful recommendations to each of the users. Given a set S we denote the number
of elements in S by |S|.

To generate the recommendation, the TSP builds the adjacency matrix N(G)
(of dimension |V |× |V |) and an auxiliary matrix M(G) (of dimensions |V |× |Ā|)
where V is the set of users and Ā =

⋃

a∈A

ā. A matrix entry M(G)(u, z) stores

1 if User u has attribute value z, otherwise it stores ACG(u,z)
d(u) , i.e., the number

of connections of u ∈ V that are labelled with attribute value z ∈ Ā divided by
the number of friends of u (i.e., the proportion of u’s friends with label z). We
recall our assumption that different attributes have disjoint sets of values.

The attribute value z ∈ Ā can be either public or private. Information in
matrix M(G) records the number of user friends labeled by a specific attribute
value and thus allows one to infer user preferences by appealing to a homophily
principle: the likelihood that a node has some given label increases with the ratio
of its connections with the same label. Therefore this matrix will be applied as an
input to the recommendation module. Now, as we want to generate the recom-
mendation using private information too, processing directly raw information
may violate the user’s privacy. Thus, the attributed connection count in the
matrix should be differentially private before it is transferred to the recommen-
dation module.
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To do that, we devise an algorithm that generates a matrix Mε1(G) by adding
noise to M(G) such that for two label-neighboring graphs G1 and G2:

∀S, Pr(Mε1(G1) ∈ S) ≤ eε1Pr(Mε1(G2) ∈ S) (7)

As a consequence, the algorithm satisfies ε1-DP and any label of any user in
G will be protected (i.e., plausibly deniable) if we can take ε1 sufficiently small.
In the same way, we consider the adjacency matrix N(G) of G and we generate
a matrix Nε2(G) by adding noise to N(G) in such a way that it satisfies ε2-DP.

4.2 Differential Privacy with a Trusted Service Provider

We present here a differentially private recommendation model for a TSP.
Figure 1 shows the system architecture for the proposed approach. The TSP
collects attributes (i.e., attributes of user profile such as gender, age, occupa-
tion, etc.) related to each user and connections among users from the social
platform. Each user can opt to hide some of their attributes or their friend-list
considered to be private. So, every user can view the public information of other
users but cannot access their private (hidden) information. However the TSP
collects both public and private information.

Fig. 1. Differentially Private Social Network Recommendation Scenario

The TSP receives the structural information of a graph and the profile of
each user. Based on this information, a matrix M is generated. The matrix M
represents connections among every node pair and the impact of all attribute
values for each user. Since this matrix records AC count for sensitive attributes
too, the TSP should keep the matrix entries secret to prevent an attacker to
predict a specific user attribute value. Therefore some noise is added by the
TSP to the matrix M to obtain matrix M ′. Next, M ′ is combined with N ′ a
noisy version of adjacency matrix N . Finally, the recommendation is computed
by factorization of the combined matrix. Every user can see the recommendations
made by the TSP for all users of the social network.
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Although the recommendation results are public, an attacker cannot derive
other users’ private information with full confidence since the combined matrix
computation satisfies DP which is preserved by post-processing [5]. Here, the
post-processing mainly consists of Matrix Factorization (explained in Subsect.
3.3).

The different steps of the approach are detailed below.

Reducing Sensitivity by Graph Projection. We plan to compute a matrix
M(G) whose entries record the proportion of friends (connections) of a given user
u that have a given attribute-value z1. We can show that the global sensitivity
GS for M(G)

GSM(G) ≤ Max(dmax, 2|Ā|) (8)

where dmax is the largest degree (or friend list size) of a node in the social graph.
Since the number of connections for any attribute value may be very large (up
to the number of social network users), this leads to a large value for global
sensitivity GS. As a consequence, without further operations, a reasonable trade-
off between privacy and utility is not possible since a high Laplace noise would
be required for preserving privacy. To solve this issue, we appeal to the graph
projection technique [13] which permits to get a lower sensitivity by truncating
high-degree nodes. For a given value of λ < dmax, the projection technique
deletes some edges from G in order to obtain a new graph μ(G,λ) with the same
set of nodes but such that dμ(G,λ)(u) ≤ λ for all nodes u. We recall the result
from [13] and [17] (Definition 2 page 110) that we adapt to our framework:

Definition 5 (Edge Truncation Algorithm [13,17]). Given a graph G =
(V,E,L), a truncation parameter λ > 0 and a canonical ordering on E, the
truncation algorithm μ(G,λ) is defined by iterating on E and deleting every
edge (u, v) such that either degree(u) > λ or degree(v) > λ

The following lemma and its proof are adapted from Proposition 1 in [17].
Our bounds are not the same since the queries we consider are different from
[17].

Lemma 1. Given two neighbor graphs G and G′, we have |M(μ(G,λ)) −
M(μ(G′, λ))|1 ≤ Max(λ, 4|Ā|).
Proof. Let us consider label neighbor graphs G = (V,E,L) and G′ = (V,E,L′).
Let us assume there is a node u and an attribute value z such that L′(u) =
L(u) \ {z}. Since the labels have no effect on the projection, the same edges
are deleted in G and G′: μ(G,λ) and μ(G′, λ) are equal up to the label z of
u. Therefore for all v, and for all t �= z, AC(v, t) is identical for μ(G,λ) and
μ(G′, λ). Since the attribute value z is removed from u’label set in μ(G′, λ), for
all w connected to u in μ(G,λ) (or μ(G′, λ)), AC(w, z) differs by 1 whether
computed in μ(G,λ) or in μ(G′, λ)). As there are at most λ nodes w connected
to u, at most λ entries are different in M(μ(G′, λ)) from the respective ones in
M(μ(G′, λ)). Therefore, |M(μ(G,λ)) − M(μ(G′, λ))|1 ≤ λ.
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Now let us assume E′ = E \ {(u, v)}. The projection operation deletes k edges
incident to u if u has k + λ incident edges. Since u has only k − 1 + λ incident
edges in G′ the projection will delete k−1 edges incident to u in G′. If u has less
than λ incident edges in G then none is deleted in G or G′. We can reason in the
same way for v. As a consequence μ(G,λ) and μ(G′, λ) differ by at most 3 edges
[17] namely (u, v), one edge incident to u and one edge incident to v. Therefore
only values AC(c, a1) where c is one of the 4 extremities of the differing edges
are modified. Hence |M(μ(G,λ)) − M(μ(G′, λ))|1 ≤ 4|Ā|.

We can also determine easily the sensitivity for adjacency matrix N :

Lemma 2. Given two neighbor graphs G and G′, we have |N(G)−N(G′)|1 ≤ 1.

Proof. Changing node labels does not change the matrix N . Changing one edge
impacts only one entry by 1 above the diagonal of N and since N is symmetric
the result follows.

Since the sensitivity of N is small, the projection was not required for that case.

Generating the Recommendation Matrix. The next step after graph pro-
jection is to compute matrix M to store the number of connections (friends)
linked to each node for all possible values of attributes in the projected graph.
To do that, we introduce a connection matrix M of dimension |V | × |Ā|, where
V is the set of users and Ā is the set of all possible values of all attributes. For
instance, if user u is “Male” then M(u,Male) = 1. Otherwise, if u has no explicit
gender value we resort to their connections. In this case, if u has no connections
with gender value “Female” and m connections with gender value “Male” then
M(v, Female) = 0 and M(v,Male) = m/dμ(G,λ)(u). Note that every entry of M
has value in [0, 1].

In the following, two parameters are to be tuned, namely (i) λ for balancing
utility and privacy, and (ii) threshold T for recommendation accuracy.

1. TSP collects the attribute values and connections attached to every user to
build a social graph G and its adjacency matrix N . Data are sent directly to
the TSP by users.

2. TSP computes μ(G,λ).
3. TSP computes matrix M such that for all u, z1:

M(u, z1) = ACμ(G,λ)(u, z1))/dμ(G,λ)(u).
4. TSP adds independent Laplace noises to M ’s entries to generate:

M ′(u, z1) = M(u, z1) + Lap(Δf/ε1) where Δf = Max(λ, 4|Ā|).
5. TSP adds independent Laplace noises to N ’s entries above the diagonal to

derive N ′ as follows:
For u < v, let P (u, v) = N(u, v) + Lap(1/ε2). Then we define

N ′(u, v) =

⎧
⎨

⎩

P (u, v) if P (u, v) ∈ [0, 1]
0 if P (u, v) < 0
1 if P (u, v) > 1.

For u > v, define N ′(u, v) = N ′(v, u) and
For u = v, define N ′(u, v) = 0.
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6. TSP applies MF to N ′||M ′ and generates Nr||Mr, where Nr has dimension
|V | × |V |.

7. TSP recommends to every user u the users v such that Nr(u, v) > T and v
is not already a friend of u (in G).

We can deduce:

Theorem 1. The procedure to derive the recommendation matrix Nr satisfies
ε1 + ε2-DP.

Proof. Laplace noise added to M (resp., N) has been chosen in order to get
matrix M ′ (resp., N ′) satisfying ε1-DP (resp., ε2-DP) (see also Proposition 1).
By applying the sequential composition property of DP [5], the result follows.

5 Experimental Evaluation

We have implemented the proposed approach in Python and experimented on
social datasets. In this section, we describe the evaluation metrics and the results
of our experiments.

5.1 Datasets

Our experiments have been performed on publicly available OSN data collected
from Facebook with a Python crawler. We are committed to keep them in secure
storage and only use for the time necessary to achieve our work. We have then
extracted connections and attributes attached to the collected profiles.

The extracted dataset contains 2262 connections among 487 users. We have
also extracted 626 pages and the sensitive gender and marital status attributes
from user profiles. Then we have selected the top 100 pages that are the most
liked/followed by the users.

5.2 Evaluation Metrics

Since the recommendation results from the differentially private inputs generally
differ from the original one (without noise) we need to evaluate the accuracy loss.
The following metrics are used to assess the deviation in the recommendation
result due to injected noise:

1. Root Mean Square Error (RMSE). The utility of our approach is defined
by comparing scores generated for each pair of nodes. For node-pair vi,vj ∈ V ,
let R1(i, j) and R2(i, j) be the results of matrix factorization derived without
and with differential privacy, respectively, then RMSE is defined as:

RMSE =

√
Σ

|V |−1
i=0 Σ

|V |−1
j=0 (R1(i, j) − R2(i, j))2

|V |2 (9)
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2. F-score. The F-score parameter measures the accuracy of the proposed
model. The value of true positive, false positive and false negative are computed
by comparing the attribute suggestions obtained from the original and from the
noised matrix. We compute the F-score over all users of the social network as
follows:

F-Score =
2 × True Positive

2 × True Positive + False Positive + False Negative
(10)

5.3 Experimental Results

Experiments are performed on the dataset of Sect. 5.1. First, we evaluate the
effectiveness of the recommendation model without noise (Table 1). In that model
User uj ∈ V is recommended to User ui ∈ V if Nr(i, j) is greater than the
predefined threshold T . In the following, we always take T = 0.5.

In order to verify our recommendation model, we randomly removed some
connections and tried to recover them from existing connections and attributes.
We have varied the percentage of removed connections. Table 1 shows that the
proposed recommendation model can recover 50%–65% of missing connections.

Table 1. Recommendation results for |V | = 487, |E| = 2262

No. of missing connections Recovered connections Total no. of recommendations

5 2 376

10 5 436

25 15 462

50 33 483

75 56 510

100 67 439

Second, we compare the recommendation results generated from matrices
without noise and with noise for different values of ε and λ. We compute F-
score and RMSE parameters for different levels of privacy. We report below the
average obtained from executing the same experiments 10 times. First, we set
the value of λ to 10 since the average node degree is 9.28 in our dataset (i.e.,
|V |=487 and |E| = 2262). When ε1 and ε2 are assigned the same value we write
it ε.

Figures 2 and 3 show F-score and RMSE respectively for different ε values.
We observe how the F-score increases with the privacy budget ε. But, RMSE
decreases from 0.35 to 0.10 when ε increases since less noise is injected. We note
a generally good accuracy (from 0.60 to 0.75) for different ε (0.8 to 2).

The projected graph for various values of λ differs in terms of the number of
edges. To represent the impact of λ on F-score and RMSE, we have experimented
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Fig. 2. F-Score for various ε values Fig. 3. RMSE for various ε values

with a fixed ε = 1 and various values of λ in the range from 5 to 50 as shown in
Figs. 4 and 5. F-score value is around 0.70 for large λs (i.e., 50). As the sensitivity
depends on λ (see Lemma 1), a larger λ means that more noise has to be injected.
The utility parameter RMSE increases with λ as shown in Fig. 5.

Fig. 4. F-Score for various λ values Fig. 5. RMSE for various λ values

Fig. 6. F-Score for various ε1 values Fig. 7. RMSE for various ε1 values

Next, we perform experiments to observe the results by considering different
values of ε1 and ε2. The parameter ε1 (resp. ε2) controls the noise added to
matrix M (resp. N). Figures 6 and 7 show the recommendation results in terms
of F-score and RMSE for various values of ε1 while keeping ε2 = 1. As ε1 is
used exclusively for attribute count, the recommendation result is not highly
sensitive to variations of ε1: there is only a minor change in F-score and RMSE
values with increasing ε1. Now, in Figs. 8 and 9 we analyze the impact of ε2
on evaluation metrics for various values, while keeping ε1 = 1. As the injected
noise in N depends on ε2, considerable deviations in F-score and RMSE values
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Fig. 8. F-Score for various ε2 values Fig. 9. RMSE for various ε2 values

can be noticed. An increase of ε2, induces an increase of F-score and a decrease
of RMSE. For ε2 in interval [0.75–1.25], F-score is about 0.7 while RMSE lays
between 0.22 to 0.18. Consequently, this range of ε2 offers a good trade-off for
privacy and utility.

Fig. 10. Comparison with [9] and [19] using our dataset

We have performed additional experiments to compare our approach with
existing ones, MR [9] and ME [19]. These two differentially private recommen-
dation approaches consider only the structure of the graph (i.e., friendship links)
and generate noise with an exponential mechanism. We have applied MR and
ME to our dataset. To compare the results, we have also considered the accuracy
metrics (defined in Sect. 5.1.4 in [9]). These metrics are based on common neigh-
bours and cumulative distribution function (CDF). Figure 10 shows, for a given
accuracy δ on the x-axis, the percentage of users that obtain recommendations
with accuracy ≤ δ on the y-axis.

We observe that for different values of ε, MR has major deviations in the
accuracy whereas ME has minor deviations. So, the results of MR for different
values of ε are presented in the graph. Figure 10 shows that our approach provides
better accuracy than MR and ME (w.r.t. the number of users), irrespective of
the privacy parameter ε. Next, we consider Facebook dataset from [18]. Results
obtained with MR, ME are shown in Fig. 11a and with our approach in Fig. 11b.
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Compared to MR and ME , our approach provides better accuracy. In particular,
unlike MR and ME , our approach can suggest friends to non-connected users
even if they do not have any common friend.

Fig. 11. Comparison with [9] and [19] using Facebook dataset [18]

6 Conclusion

We have presented a privacy-preserving friend recommendation system for OSN
users that leverages their friend lists and attribute values. To reduce the sensi-
tivity of the information provided by users we have selected a subset of friend
links and attribute values. Matrix factorization is applied to generate the final
recommendation result. By experimenting with various values of ε and λ param-
eters, we have observed that we can get a good accuracy (F-score = 0.70) of
the proposed approach and therefore good utility. Moreover, the experimental
results are helpful to choose a proper value for privacy parameters ε1 and ε2.

In future work, we will show how to preserve privacy with an untrusted
service provider by implementing a perturbation method based on Local Differ-
ential Privacy (see e.g., [1]). We will investigate sensitivity reduction by random
selection of attribute values in order to decrease their number. We also plan to
experiment with the recent optimizations of matrix factorization algorithms.

References

1. Arcolezi, H.H.: Jean-François Couchot, Sébastien Gambs, Catuscia Palamidessi,
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Abstract. JANUS is a NATO underwater communications standard.
In this paper, confidential communications for JANUS are explored.
The focus is on work published in 2021, Venilia and Tiny Underwater
Block cipher (TUBcipher). Venilia consists of protocol elements that had
been developed to provide confidential JANUS underwater communica-
tions. It leverages TUBcipher, a symmetric cryptography scheme. Some
important details were not considered in this original work, including
the security analysis of TUBcipher and key establishment and distri-
bution. Intending to improve Venilia, these two points are addressed
in the current paper. A security analysis is conducted for TUBcipher.
TUBcipher has been implemented. Entropy data of ciphertexts have
been collected with the ENT tool. Our results show that TUBcipher
achieves close to the theoretical maximum entropy value. Two key estab-
lishment/distribution solutions are introduced. They provide methods
of practically implementing Venilia within underwater communication
networks.

Keywords: Underwater communications · confidential
communications · security protocol · JANUS · Venilia · TUBcipher

1 Introduction

In contrast to classical networks, underwater communication networks present
unique challenges. They involve sending messages through multitudes of nodes
within large bodies of water. It is a harsh environment for communications [17].
Electromagnetic waves do not propagate well through bodies of water [4]. Acous-
tic waves are used to send messages. While they propagate in water, bandwidth
is narrow, and packets that can be sent are limited in size. Furthermore, acoustic
waves travel at a much slower speed than electromagnetic waves. It is an envi-
ronment where packet processing performance is not critical due to the relatively
low achievable data rates, particularly for long distances. However, the optimal
use of a small packet size is a critical aspect.
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JANUS, the Roman God of openings and gateways, is the name of an under-
water communication standard developed and tested by the North Atlantic
Treaty Organization (NATO)’s members. It specifies a means of encoding data
within acoustic waves [15]. The packet size is 64 bits. Such a small packet size
is not adapted to modern cryptographic methods that require a relatively large
block size. For example, the Advanced Encryption Standard (AES) [12] requires
a minimum block size of 128 bits. Thus, a small block cipher, called TUBci-
pher, has been created to work alongside a new JANUS data block class called
Venilia [8].

The Venilia protocol is one of a kind. It aims to achieve confidential under-
water communications. However, there are important aspects of it that deserve
further investigation, such as the security analysis of TUBcipher. In this paper,
the security of Venilia is analyzed. Concrete measurements of security metrics
on TUBcipher are presented. They enable making statements about the secu-
rity provided by TUBcipher, in comparison to other small block ciphers. It is
concluded that TUBcipher does not achieve perfect indistinguisability, but does
reach near maximum entropy. Ideas to improve the current Venilia solution are
developed. A problem complementary to confidentiality is dynamic key distri-
bution. Two key distribution protocols to be used with Venilia are created, a
simple approach and a more complex one.

Related work is reviewed in Sect. 2. Section 3 describes the security analysis
conducted for TUBcipher. The two key distribution solutions are discussed in
Sect. 4. Section 5 concludes.

2 Background Work

JANUS, the Venilia class, and TUBcipher are briefly introduced.

2.1 JANUS

JANUS is a NATO communication protocol for underwater assets [15]. It aims
at manufacturer independence and interoperability within networks containing
assets of different suppliers. It was developed to become an underwater commu-
nications standard.

JANUS packets are smaller than typical network packets because of the harsh
underwater propagation environment. The tiny sizes of packets make traditional
cryptographic schemes unfeasible for use with JANUS. For reference, a typical
UDP or TCP packet has a size of 1,500 bytes, that is, 12,000 bits [6]. Thus,
the 128-bit block size of AES, a popular and strong cryptographic scheme, does
not cause any problems for typical internet communications. However, JANUS
packets have a size of 64 bits. Every packer comprises a 34-bit data block, over
three times smaller than the required block size of AES. Given this limitation,
a user class named Venilia, was developed for confidential JANUS communica-
tions [8]. A user class designates the purpose of the communication. Different
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user classes handle the 34-bit data blocks of packets differently. Venilia is pro-
posed as user class id 17 for confidential JANUS communications. The Venilia
class is described in more detail in the upcoming section.

2.2 Venilia and TUBcipher

A solution to JANUS’ lack of security has been proposed as a new class named
Venilia [8] and a small block cipher called TUBcipher [9].

Fig. 1. 64-bit JANUS packet.

A JANUS packet has 64 bits, of which only 34 bits are utilized for a data
block, while the rest is overhead, see Fig. 1. According to the suggested behav-
ior of the Venilia class, there is an eight-bit Pre-Canned Message field, which
contains an index for one of 256 unique messages predefined in the Venilia code
book [8].

It is followed by the fields Destination ID (7 bits), Source ID (7 bits), and
Inner Cyclic Redundancy Check (CRC) (5 bits), see Fig. 2.

Venilia adopted a code book approach to message content coding [8]. Given
that only eight bits are used for the message in a packet, an integer from zero
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Fig. 2. JANUS class 17: Venilia data block.

to 255 is sent. This integer corresponds to a message for command and control
or status communications.

Confidentiality is achieved through partial content encryption. Only the first
27 bits of the data block are encrypted using TUBcipher, i.e., the fields Pre-
Canned Message, Destination ID, Source ID, and Inner CRC. Hence, encryption
requires a block size of only 27 bits [9]. TUBcipher is a deterministic cryptosys-
tem. The remaining seven bits of the 34-bit data block comprise a nonce made
of an Initialization Vector (IV) (5 bits) and an Epoch ID (2 bits). The nonce is
part of a mechanism for replay attack detection [19].

TUBcipher is a symmetric small block cipher based on PRINTcipher, origi-
nally developed for integrated circuit printing [11]. TUBcipher is a substitution-
permutation network that encrypts a 27-bit block with a 2560-bit key over 56
rounds [9]. The 2560-bit key is generated using a concatenation of an epoch ID,
a 256-bit key, an IV, and an eight-bit counter. This concatenation is hashed
with SHA512. This process is repeated five times, every time incrementing the
counter. All five hashes are then concatenated to form the 2560-bit key used in
the cipher. The first 2520 bits of the key are partitioned into 45-bit subkeys.
Every subkey is used in one round. Each round starts with keyed XOR, using
the first 27 bits of the current round subkey, followed by a fixed permutation,
a keyed permutation using the last 18 bits of the round subkey, and a fixed
substitution. The process is reversed for decryption.

TUBcipher solves the problem of encrypting a small amount of data. How-
ever, open problems remain. One of them is key distribution. It is important to
note that since the cryptography scheme is symmetric, the 2560-bit encryption
key is the same 2560-bit decryption key used. Thus, two parties communicating
using Venilia/TUBcipher must have a secure channel to establish this shared
key. Another open area is the security analysis of the TUBcipher. The analysis
is required to achieve confidence in the security provided by the TUBcipher.

3 TUBcipher Security Analysis

A security analysis aims at demonstrating a cryptography scheme’s security. It
can provide confidence in the scheme. In this case, security analysis can assist
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in deciding if Venilia can become a standard or if there are better alternatives.
There is no security analysis of TUBcipher. Besides, TUBcipher is based on
PRINTcipher, an already established small block cipher whose security has been
analyzed in the paper that introduced it [11]. However, we cannot assume that
the results of this security analysis also apply to TUBcipher, as both differ in
certain areas. Namely, block size, key size, number of rounds, and handling of
the key in every round. PRINTcipher keeps the same key between rounds but
updates it with a round-dependent value determined via a shift register-based
counter. TUBcipher uses a different segment of the 2560-bit key every round,
effectively using a different key every round. TUBcipher has been implemented
and a security analysis has been conducted.

3.1 Implementation

The implementation of the cipher was done in Python 3 [2]. This language was
chosen to keep the implementation to be as simple and straightforward as pos-
sible. To verify its correctness, we first check that given a key, an epoch, an
IV, and a plaintext, the correct ciphertext is generated. The paper originally
describing TUBcipher does include sample inputs and outputs [9]. Using the
paper’s sample key, epoch, IV, and plaintext, our implementation does generate
the same ciphertext. The implementation has also been submitted 100 differ-
ent randomly generated plaintexts and 100 randomly generated 2560-bit keys,
allowing the test of 10,000 encryption and decryption operations. Every random
plaintext was encrypted and decrypted with every random key. The plaintext
before encryption and the plaintext after decryption were compared. When they
were the same, the test was deemed successful. All encryption and decryption
combinations were successful. The random plaintexts and random keys were gen-
erated with a random data generation procedure that is described in the sequel.

Given that several keys were needed to analyze the security of TUBcipher
properly, we developed a key generation procedure to create 2560-bit keys. The
procedure takes a 32-bit epoch, a 256-bit key, a 32-bit IV and creates five con-
catenations with the following general form:

Concatenationi = (epoch||key||IV ||i)
for i = 0, . . . , 4, left padded with zeros to eight bits. Every concatenation is
hashed with SHA512 and concatenated together as follows:

Hash0||Hash1||...||Hash4.

This concatenation of five hashes forms the 2560-bit key. It is important to note
that some parts of the key generation procedure are not addressed in the original
description of Venilia/TUBciper, such as the generation of the epoch, 256-bit
key, and IV. Thus, for the 256-bit key, we generate a random 256-bit string. The
epoch and IV do not need to be random as long as their combination is only used
once. A counter is used that is incremented after every key generation. Given
that the counter is used to generate 64-bit of data, no duplicate epoch and IV
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combination is generated until 1.8×1019 keys are produced. Hence, no duplicate
epoch and IV combination has been used during the analysis of TUBcipher.

The 2560-bit keys were used to create several ciphertexts for the security
analysis. Every ciphertext was created using a 2560-bit key and a 27-bit plain-
text. Thus, we required a procedure to generate random plaintexts. The Java
SecureRandom class is used. It has been well analyzed and tested [10].

3.2 Indistinguishability

The indistinguishability property for a cryptographic scheme is nice to have [3].
Indistinguishability means that for any plaintext, given the ciphertext produced
by the cryptographic scheme and a random string, an adversary cannot deter-
mine which is the ciphertext with odds significantly better than 50%. In other
words, no information can be gained from analyzing the ciphertext alone [14].
This property is investigated theoretically and empirically.

Definition 1 (Birthday attack). The goal of the birthday attack is to find
two plaintexts x1 and x2 that are encrypted with the same nonce and produce
ciphertexts x′

1 and x′
2 such that x′

1 = x′
2. The pair x1, x2 is called a collision.

Proposition 2. Let us consider the TUBcipher used to encrypt m one-block
messages. An adversary perpetrating the birthday attack has the probability of
success at most 1−

(
237−1
237

)m

.

Proof. Given that the IV is five bits and Epoch ID is thirty-two bits, there is a
thirty-seven-bit nonce associated with every message. There are 237 · 237 = 274

unique nonce pairs while there are 237 · (
237 − 1

)
pairs of nonces, where the

coupled nonces are different. Hence, the non-collision probability for two random
one-block messages is

237 · (237 − 1)
274

=
237 − 1
237

.

For m one-block messages, the non-collision probability is
(
237 − 1
237

)m

.

Hence, the collision probability is at most

1−
(
237 − 1
237

)m

.

Table 1 provides the probabilities of collision as a function of m, in logarithmic
form. TUBcipher does not achieve perfect indistinguishability due to a non-
negligible collision probability. But let us also investigate that empirically.

To investigate empirically, we need a metric of randomness. Entropy provides
this metric. In information theory, the entropy of a random variable is the amount
of information, or uncertainty, that a variable contains based on its possible
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Table 1. Probability of collision versus the number of messages, in logarithmic form
(log2 m).

log2 m Collision Probability
(×10−9)

1 0.0146
2 0.0291
3 0.0582
4 0.116
5 0.233
6 0.466
7 0.931
8 1.86

outcomes [16]. If all outcomes have the same probability, the variable’s entropy
equals the theoretical maximum value, which is one. This value signifies that
the outcome of the event is uncertain. The outcome is effectively random. Such
a variable contains the maximum amount of information. If some outcomes are
more likely than others, the value of the variable’s entropy is between zero and
one, but not zero or one. These values signify that the outcome of the event is
not completely uncertain. The outcome is not completely random. This variable
would contain less information than the theoretical maximum. The following
equation defines the computation of entropy:

H(X) = −
n∑

i=1

P (xi)logP (xi) (1)

The concept of entropy is used to measure the randomness of TUBcipher. TUB-
cipher encryption is the random variable X. The ciphertexts produced are pos-
sible outcomes x1, . . . , xn, with respective probabilities P (x1), . . . , P (xn). When
entropy H(X) has the value of one or very close to one, it signifies that the
ciphertexts are effectively random. In other words, such a value signifies that
the ciphertexts are indistinguishable from a random string. It is demonstrated
empirically that TUBcipher possesses the indistinguishability property.

To measure the entropy of generated ciphertexts, we used the pseudorandom
number sequence test tool ENT authored by Walker [18]. This tool can measure
the entropy of a bit string at the bit level, producing a value between zero and
one. Twelve data points of 5,000 ciphertexts each were collected for five distinct
data sets. The first three sets measure the entropy value of ciphertexts from the
TUBcipher, while the last two sets measure the entropy of other random sources
for comparison. The first set, 1PXK, measured the entropy of ciphertexts gen-
erated from the same plaintext and 5,000 different keys. The second set, XP1K,
measured the entropy of ciphertexts generated from 5,000 different plaintexts
and the same key. The third set, XPXK, measured the entropy of ciphertexts
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generated from 71 different plaintexts and 71 different keys for a total of 5,041
ciphertexts. The fourth set measured the entropy of 5,000 random 27-bit strings
generated from Java’s SecureRandom class. The final set measured the entropy
of 5,000 random 27-bit strings generated from the Windows CryptGenRandom
function, being called via Python’s os.urandom() function. Statistical measure-
ments were made from those 12 data points, including the mean, range, vari-
ance, standard deviation, and standard error. A high entropy mean value was
expected from the set of data generated from Java’s SecureRandom. A lower
entropy mean value was expected from the set of data generated from Windows
CryptGenRandom.

Table 2. Statistical measurements of entropy from five sets of 12 data points. Each
data point consists of ∼132KB of 27-bit strings.

Mean Range Variance Standard Standard
Deviation Error

(×10−5) (×10−10) (×10−5) (×10−6)

1PXK 0.9999 1.1 0.103 0.321 0.926
XP1K 0.9999 2.2 0.515 0.718 2.07
XPXK 0.9999 1.9 0.684 0.827 2.39
SecureRandom 0.9991 46.1 145 12 34.8
CryptGenRandom 0.9999 1.7 0.342 0.585 16.9

A summary of the statistical measurements calculated from the gathered data
of all five sets is displayed in Table 2. The range, variance, standard deviation,
and standard error of the sets 1PXK, XP1K, XPXK, and CryptGenRandom
are low, indicating that the size of the data sets is sufficiently big. As expected,
the mean entropy value of Java’s SecureRandom is close to the theoretical best
value of one, with a difference of 0.000922. This is consistent with previous
research [10]. Unexpectedly, the mean entropy value of Windows’ CryptGenRan-
dom is higher than that of Java’s SecureRandom, with a difference of 0.000918.
This could reflect changes that have been made to Windows’ CryptGenRandom
algorithm since 2009, which is when the cryptanalysis was performed, or it is
possible that given a larger data set, the mean entropy value of Java’s SecureRan-
dom would have been higher than CryptGenRandom’s. However, the mean eFor
example, withpy values for each set of TUBcipher ciphertexts 1PXK, XP1K,
and XPXK, are close to the theoretical maximum, with the highest difference
being 0.000008.

Given that the entropy measured from ciphertexts is equivalent to or better
than the entropy measured from randomly generated strings with SecureRandom
and CryptGenRandom, we can be confident that an adversary would not be able
to distinguish the ciphertexts from random strings with odds better than 50%.
Thus, we can conclude that TUBcipher ciphertexts look nearly perfectly random
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4 Venilia Key Distribution

Augmenting Venilia with key distribution is discussed. A symmetric cryptogra-
phy scheme such as the TUBcipher encrypts and decrypts data with the same
key. This is a secret shared by both the sending and receiving parties. Typically,
symmetric keys are generated and transmitted through a secure channel before
the data payload is sent. With Transport Layer Security (TLS), asymmetric
cryptography schemes, such as Rivest, Shamir and Ademan (RSA), are used to
securely share symmetric session keys, which are then utilized to encrypt and
decrypt the data payload of the session [5]. Asymmetric ciphers make great candi-
dates for symmetric key distribution as they use two separate keys for encryption
and decryption. The key used for encryption, the public key, can be shared in
open channels, while the key used for decryption, the private key, is not shared.
This provides a secure channel to share secrets with the private key holder.
This method works well for typical Internet applications, as an entire symmetric
key can be shared within one packet. However, underwater networks have unique
constraints. One is the amount of data that can be sent with one packet. Sending
a 256-bit symmetric key in the clear or encrypted with an asymmetric cipher is
not feasible. Given the largest data payload possible with JANUS, 34 bits, eight
packets would need to be transmitted to send a 256-bit key. As such, Internet
key distribution solutions are not applicable for JANUS. A new solution must
be created with the underwater medium in mind. Two approaches are explored:
key pre-configuration and dynamic key distribution. In the sequel, we assume the
principle of confidentiality states that only the sender and receiver of a message
should be able to access the information it contains [13].

4.1 Key Pre-configuration

One simple solution is configuring nodes with 256-bit symmetric encryption keys
before deploying them underwater. Nodes can send encrypted Venilia packets to
other nodes, given that they have their symmetric keys. However, simplicity
comes with flexibility constraints. Once a network of nodes is configured and
deployed, no new nodes can be added. Let us assume that we have n nodes to
be deployed. Before deployment, each node is configured with its key and the
other’s 256-bit key. As such, every node has n keys: {k1, k2, ..., kn}. To deploy a
new node into the network, node n + 1, the node would have to be configured
with the keys of every other node in the network. This new node would need
n + 1 keys {k1, k2, ..., kn, kn+1}. Since each node currently in the network was
not configured with the key for node n + 1, no other node could communicate
confidentially with it.

No new keys can be distributed to the nodes already deployed without a
dynamic method for key distribution. Therefore, no further nodes can be added
to the network for confidential communications. To circumvent this problem,
every node could be configured with the same network key before deployment.
Using a single network key allows for new nodes to be added to the confidential
network since the number of keys a node must be configured with no longer
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increases with the addition of nodes within the network. Suppose all confidential
communications within the network are encrypted with the same key. With-
out confidential node-to-node communications, any network node can decrypt
encrypted messages.

4.2 Dynamic Key Distribution

An alternative solution is proposed, more flexible than the solution of Sect. 4.1,
at the expense of simplicity. This solution involves four components: a specific
network topology, node pre-configuration, session key generation, and a session
protocol.

Network Topology. Underwater networks are divided into subnetworks. Each
subnetwork node shares one 256-bit master key. Each subnetwork contains reg-
ular nodes but may also have border nodes. Border nodes can communicate
confidentially to at least one other node from another subnetwork. Subnetworks
may also contain mobile nodes. The nodes that communicate on several sub-
networks simultaneously are defined as mobile. Figure 3 pictures an example
of this topology. It is important to note that this approach avoids key desyn-
chronization issues since the master key never changes. To deal with border node
failures, backup border nodes can be included to take over when they have heard
the border nodes for a certain delay.

Pre-configuration. All underwater nodes must be preconfigured with the 256-
bit master key of the subnetwork they belong to. Since non-border and non-
mobile nodes only require a 256-bit master key, the number of keys that these
nodes must know never changes and always remains at one. This allows newly
deployed nodes to communicate confidentially with any other subnetwork node.
In other words, new nodes can be deployed within these subnetworks without
concern. Border nodes must also be preconfigured with the master keys of other
subnetworks they connect to. Border nodes allow newly deployed subnetworks
to communicate confidentially with other subnetworks. Already deployed border
nodes within the existing subnetworks do not need to be modified, as the one
deployed in the new subnetwork can be preconfigured with the required master
keys instead. Mobile nodes must be preconfigured with the master keys of the
subnetworks they use.

Session Key Generation. All network nodes using the same key violates the
confidentiality principle. To circumvent this issue, the master key can be used to
send an encrypted session key instead of the data itself. The session key, specific
to a session between two nodes, can then be used to send confidential data. Since
the sender and recipient only know this session key, data can only be decrypted
by those two nodes, and thus, this approach provides better confidentiality than
the simple solution. However, an entire 256-bit key is infeasible to send with
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Fig. 3. Example of network topology for Venilia key distribution solution.

Venilia. Thus, a session key must instead be generated from some known secret
and information that can be sent with Venilia and JANUS packets. Session keys
are thus generated from the 256-bit master key, a 26-bit random number, and
an 8-bit random number. Each session key is compromised of 230 bits from the
master key and 26 random bits such that the session key is identical to the
master key up to bit i, where bit i to bit i+25 are random, followed by the same
bits as the master key from bit i+ 26 to bit 255. The eight-bit random number
denotes the bit location to replace the master key bits with the 26 random bits.
In other words, the session keys are the master key with 26 consecutive bits
replaced with 26 random bits at location i to location i+25 where i is random.
The procedure for key generation is displayed in Fig. 4.

This approach allows an entire session key to be generated from two packets;
one encrypted Venilia packet sending the eight-bit random location and one
clear JANUS packet sending the 26 random bits. This method is inspired by the
export cipher schemes seen in the SSLv2 protocol, where a 40-bit of a 128-bit
symmetric key was sent in the clear [7]. This method does indeed reduce the
effective key size. However, in our case, 230 bits remain secret, and these session
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Fig. 4. Session key generation

keys are not vulnerable to brute force attacks from outside the subnetwork. It is
important to note that an attack can be perpetrated inside a subnetwork. Given
that the 26-bit key piece is sent in clear and that the master key is known within
the subnetwork, an eavesdropper could decrypt the eight-bit secret and build
the session key. From there, they could decrypt confidential data encrypted with
the session key. An eavesdropping attack would, however, have to be carried out
at the start of a session to capture the important key generation information. Of
course, with the assumption that legitimate nodes only share the master key, this
vulnerability is no longer present. However, this solution provides a more complex
system to attack than the solution where all nodes already possess the key to
decrypt confidential data. As such, this solution offers better confidentiality than
the solution of Sect. 4.1.

This approach is also safe from session key collisions. If the same session key is
generated for two or more sessions, nodes other than the intended recipient could
decrypt and read confidential data. However, given that there are 226 possible
random 26-bit sequences and 28 possible locations for these sequences, there are
effective 234 possible session keys. Even with a network that is compromised of
one million nodes, an extreme number of nodes for an underwater network, the
probability of having two nodes generate the same session key is around 0.005%.

Plaintexts encrypted with the 2560-bit extended keys generated from these
session keys must also have similar entropy as plaintexts encrypted with 2560-bit
extended keys generated from an entirely different 256-bit key. If the entropy of
these plaintexts is not high, there might be patterns to them. Such patterns yield
valuable information for malicious actors. Given that in the worst-case scenario
(where the random eight-bit number is the same for two session keys), only 26
bits differ from one session key to the next, this is an important metric to verify.
Following the same method described in Sect. 3.2, ciphertexts were generated
from a set of random plaintexts and 256-bit keys. For our base case, these 256-
bit keys were randomly generated. For our session keys, the same base 256-bit
key was modified with 26 random bits at all the 256 possible locations to cre-
ate the encryption session keys. In each case, 71 plaintexts were encrypted with
71 keys, generating 5,041 ciphertexts. The entropy of the 5,041 ciphertexts was
then calculated with the ENT tool. This process was completed for 12 sets of
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5041 ciphertexts. The results are displayed in Table 3. The entropy of plaintexts
encrypted with the session keys is comparable to that of plaintexts encrypted
with entirely different 256-bit keys. Given this result, it follows that the TUB-
Cipher achieves indistinguishability with the session keys.

Table 3. Statistical measurements of entropy from the base case and session key
ciphertexts. Measurements were taken from 12 data points, each consisting of ∼132
KB of 27-bit strings.

Mean Range Variance Standard Standard
Deviation Error

(×10−5) (×10−10) (×10−5) (×10−6)

Base Case 0.9999 2.1 0.512 0.715 2.06
Session key 0.9999 1.7 0.737 0.859 2.48

Session Protocol. A protocol is defined for creating and maintaining a ses-
sion between two underwater nodes. It is inspired by TLS [5]. It includes ses-
sion establishment, session key generation and distribution, the transmission of
confidential data, and session closure. The protocol is illustrated in Fig. 5. A
node first sends an acknowledgment to another node to establish a session. The
receiving node must then respond to this acknowledgment. These packets can
be sent in the clear with a standard JANUS packet. The session is established
once both nodes have received an acknowledgment. Once a session is established,
the sending node generates the 26-bit key piece (KP) and the eight-bit secret
described in the previous section. The key piece is then sent to the receiving
node in the clear with a JANUS packet. The eight-bit secret is sent in a Venilia
packet encrypted with the master key (MK). Using the key piece and secret;
both nodes generate the session key (Sk) following the method described in the
key generation section. To transmit confidential data, the sending node encrypts
the data with the session key and sends the encrypted data in a Venilia packet.
The receiving node decrypts the data with the same key. Confidential data is
transmitted following this method until no more data needs to be sent. The
session is then closed, and the session key is discarded. When confidential data
needs to be transmitted again, a new session is established, and a new session
key is generated.
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Fig. 5. Venilia key distribution and session protocol. x[JANUS] denotes message x is
sent with JANUS, and x[Venilia] denotes message x is sent with Venilia.
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5 Conclusion

The goal was to conduct further research for secure underwater communications.
The efforts focused on developing solutions that are compatible with JANUS.
As of the writing of this paper, the only solution that has been proposed to
secure JANUS communications is Venilia. Efforts were devoted to improving
this solution.

Areas of the Venilia class that can be improved have been highlighted. Firstly,
no security analysis of the TUBcipher has been published. Without such an
analysis, it is difficult to trust the security provided by the cipher. A security
analysis of the cipher has been performed. The entropy of ciphertexts produced
with the TUBcipher was measured. The results were very close to the highest
theoretical value of one, at an average of 0.9999. It can be concluded that the
TUBcipher, and by extension Venilia, provides near perfectly random ciphertexts
for JANUS communications.

There was also no key distribution solution for Venilia. The eight-bit mes-
sage size maximum makes key distribution challenging. However, such a solu-
tion provides important practicality. Key distribution solutions were developed
for Venilia. The solutions explore practical approaches to the implementation
of Venilia for underwater communications. The small message size of Venilia
communications has also been considered. A codebook approach for these eight-
bit messages allows 255 different messages. This could be a beneficial area of
improvement. A small message size limits the flexibility of communications by
only allowing predefined messages and limits potential key distribution solu-
tions and other potentially useful security mechanisms such as cryptographic
signatures. A cryptography scheme with less overhead would remedy this issue.
However, such a scheme would have to be developed considering the constraints
of the JANUS standard. Another way to improve message size could be to create
secure communications for another underwater protocol together [1].

Acknowledgments. This work was supported by the Public Works and Government
Services Canada under Contract No. W7707-227202/001/HAL through the Defence
Research and Development Canada.

References

1. Barbeau, M., Blouin, S., Traboulsi, A.: Adaptable design for long range underwater
communications. Wirel. Netw. 1–17 (2022). https://doi.org/10.1007/s11276-022-
03027-4

2. Beaupré, Y.: TUBCipher Python Implementation. https://github.com/YBeaupre/
TUBCipher.git

3. Bellare, M., Rogaway, P.: Introduction to modern cryptography (2005). https://
web.cs.ucdavis.edu/rogaway/classes/227/spring05/book/main.pdf. Accessed 11
July 2022

https://doi.org/10.1007/s11276-022-03027-4
https://doi.org/10.1007/s11276-022-03027-4
https://github.com/YBeaupre/TUBCipher.git
https://github.com/YBeaupre/TUBCipher.git
https://web.cs.ucdavis.edu/rogaway/classes/227/spring05/book/main.pdf
https://web.cs.ucdavis.edu/rogaway/classes/227/spring05/book/main.pdf


270 Y. Beaupré et al.

4. Blouin, S., Lucas, C.: Early results and description of an underwater electric-field
sensing and communication experiment in Bedford Basin. In: Proceedings of the
35th Canadian Conference on Electrical and Computer Engineering (CCECE2022),
pp. 1–4. IEEE, September 2022

5. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.2.
RFC 5246, RFC Editor, October 2008. https://www.rfc-editor.org/rfc/rfc5246

6. Gass, R., Scott, J., Diot, C.: Measurements of in-motion 802.11 networking. In: Sev-
enth IEEE Workshop on Mobile Computing Systems & Applications (WMCSA’06
Supplement), pp. 69–74. IEEE (2005)

7. Hickman, K.: The SSL protocol. Technical report, Netscape Communications Corp
(1995)

8. Hobbs A, H.S.: JANUS class 17 Venilia: secure pre-canned messaging. DSTL Cyber
and Information Systems, pp. 1–22 (2021)

9. Hobbs A, H.S.: Tiny underwater block cipher (TUBcipher): 27-bit encryption
scheme for JANUS class 17. DSTL Cyber and Information Systems, pp. 1–22 (2021)

10. Kenan, İ.: Security analysis of Java SecureRandom library. Eur. J. Sci. Technol.
157–160 (2021)

11. Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: a block
cipher for IC-printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 16–32. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15031-9_2

12. National Institute of Standards and Technology: Advanced Encryption Standard
(AES). https://csrc.nist.gov/publications/detail/fips/197/final. Accessed 29 June
2022

13. van Oorschot, P.C.: Computer Security and the Internet. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-83411-1

14. Phan, D.H., Pointcheval, D.: About the security of ciphers (semantic security and
pseudo-random permutations). In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004.
LNCS, vol. 3357, pp. 182–197. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-30564-4_13

15. Potter, J., Alves, J., Green, D., Zappa, G., Nissen, I., McCoy, K.: The JANUS
underwater communications standard. In: 2014 Underwater Communications and
Networking (UComms), pp. 1–4. IEEE (2014)

16. Rényi, A.: On measures of entropy and information. In: Proceedings of the Fourth
Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Con-
tributions to the Theory of Statistics, vol. 4, pp. 547–562. University of California
Press (1961)

17. Van Walree, P.A.: Propagation and scattering effects in underwater acoustic com-
munication channels. IEEE J. Oceanic Eng. 38(4), 614–631 (2013)

18. Walker, J.: ENT: A pseudorandom number sequence test program (2008). https://
www.fourmilab.ch/random/. Accessed 10 Dec 2021

19. Wikipedia: Replay attack. https://en.wikipedia.org/wiki/Replay_attack.
Accessed 06 Oct 2022

https://www.rfc-editor.org/rfc/rfc5246
https://doi.org/10.1007/978-3-642-15031-9_2
https://doi.org/10.1007/978-3-642-15031-9_2
https://csrc.nist.gov/publications/detail/fips/197/final
https://doi.org/10.1007/978-3-030-83411-1
https://doi.org/10.1007/978-3-540-30564-4_13
https://doi.org/10.1007/978-3-540-30564-4_13
https://www.fourmilab.ch/random/
https://www.fourmilab.ch/random/
https://en.wikipedia.org/wiki/Replay_attack


Defense Models for Data Recovery
in Industrial Control Systems

Alvi Jawad(B) and Jason Jaskolka

Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada
{alvi.jawad,jason.jaskolka}@carleton.ca

Abstract. Industrial control systems (ICS) have become a focal point
for cyberattacks due to the shift from trusted proprietary environments.
The now exposed attack surface mandates that ICS be equipped with
defenses to prevent or mitigate the impact of potential attacks. Conse-
quently, along with exploring the impact on system mission objectives,
impact analysis studies need to consider implementable defenses that
may reduce such impact. In this work, we equip a manufacturing ICS with
three system defenses, modeled using timed automata in UPPAAL, that
can perform data recovery against data corruption attacks. Additionally,
we compare and contrast how capable each model is in mitigating the
impact caused by data corruption attacks. The analysis provides insight
into different defensive behaviors and their effectiveness, how they can
be affected by attacker behaviors, and suggests some recommendations
for developing future ICS defensive strategies.

Keywords: Impact Analysis · Industrial Control Systems · Data
Recovery · Data Corruption · Timed Automata · Statistical Model
Checking

1 Introduction

Industrial control systems (ICS) were once thought to be immune to cyberattacks
due to their proprietary nature and reliance on “security by obscurity.” With the
emergence of ransomware attacks and other forms of cyber incidents [8], this
outdated viewpoint has proven to be nothing but a simple myth [4]. Modern
ICS that connect to the internet typically have some form of defensive mecha-
nism against common attacks such as firewalls and intrusion detection systems.
Consequently, studies that analyze the impact of attacks on ICS should also
consider how the impact of different attacks changes based on the existence and
capability of such defenses.

Impact analysis studies on ICS tend to focus primarily on the delayed, dis-
rupted, or halted ICS processes caused by various cyberattacks [13]. However,
often the solutions to such a problem, i.e., how to mitigate such impact using
defensive mechanisms, are not considered. We assert that it is equally important
for such studies to examine how implementing targeted countermeasures in ICS
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can reduce the expected impact. This undertaking will allow incorporating hypo-
thetical defenses into existing impact analysis approaches and assess whether the
time and resources spent on implementation would be worth the investment.

In our previous work on impact analysis [12], examining the impact of data
tampering and spoofing attacks allowed us to observe compromised ICS behavior
and operations. In this work, we emphasize examining defenses, leading to our
two main contributions:

1. Modeling three different system defense behaviors for data recovery (instant
recovery, delayed recovery, delayed recovery in safe mode) against data cor-
ruption attacks on an ICS case study using timed automata in UPPAAL,
and

2. Characterizing the effectiveness of the different data recovery mechanisms in
impact reduction using statistical model checking (SMC).

The analysis results provide insight into different interactions between the
defenses, the system, and the attacker, potential undesirable consequences, and
important considerations to guide the development of ICS defensive solutions.

The rest of the paper is organized as follows. Section 2 provides an overview
of the proposed approach. Section 3 introduces the ICS case study. Sections 4–
6 detail the activities involved in the various stages of the proposed approach.
Section 7 discusses related works. Lastly, Sect. 8 concludes the work.

2 Overview of the Approach

In this section, we provide an overview of our impact analysis approach and show
where defense modeling fits in the process. The approach involves modeling the
target system of analysis and possible attackers that can perform attacks on the
system model using timed automata [1] in UPPAAL [7].

Timed automata is a hybrid mathematical modeling formalism that uses a
finite set of real-valued clocks to represent continuous time in a discrete-event
system [1]. A timed automaton is a tuple (L, l0, C,A,E, I) [2], where L is a set
of locations, l0 ∈ L is the initial location, C is the set of clocks, A is a set of
actions, co-actions, and the internal τ -action, E ⊆ L × A × B(C) × 2C × L is a
set of edges between locations with an action, a Boolean guard, a set of clocks
to be reset, and I : L → B(C) assigns invariants to locations. Selecting a timed
modeling formalism is critical to model deviations in ICS processes, varying
attacker behaviors, and the speed and efficacy of various system defenses.

UPPAAL is an integrated tool environment that supports the modeling
and verification of real-time systems as networks of timed automata [2]. The
UPPAAL modeling language extends timed automata with additional capabili-
ties, allowing one to model real-time networked processes with bounded delays.
The advantages of UPPAAL are clear from applications in several time-critical
case studies such as bounded transmission protocols [6], remote control of indus-
trial processes [12], and timed botnet behavior [14]. We use UPPAAL-SMC
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Fig. 1. Four-stage impact analysis approach and the associated activities.

(v4.1.26-1) available under a free academic license1. Details on the notations
used to create timed automata models in UPPAAL can be found in [2].

2.1 Impact Analysis Approach

We take a four-stage systematic approach (as shown in Fig. 1) to identify and
analyze the impact of attacks on ICS. Activities are depicted as rounded rectan-
gles (in blue), and inputs to activities are depicted as documents (in red). In this
work, our focus is on the activities depicted in green fill, indicating that they
are related to defense modeling (see Sect. 2.2). As such, we only briefly discuss
the other activities in the original approach below, a detailed demonstration of
which can be found in [12].

System Modeling. In the first stage, a system model is built by leveraging
information from the system design description. A set of system invariants are
specified using temporal logic based on the system requirement specifications.
To verify that the system model represents the expected behavior and satisfies
the specified invariants, classical model checking is used for model verification.

Attacker Modeling. The second stage focuses on modeling different types of
attackers and their expected behavior using timed automata. From system threat
model information, potential attacks on the system are identified and used to
form and specify attack strategies for each attacker model.

Attack Execution. In the third stage, the system and attacker models are
executed in parallel to visualize the impact of attacks on system behavior. System
simulations are studied, and the specified system invariants are reinspected to
identify requirement violations due to attacks. Attacks that lead to a violation
or negatively impact the system’s objectives are selected for further analysis.

Impact Analysis. In the final stage, a suitable set of statistical model checking
(SMC) [7] queries are defined to quantify the impact of the attacks selected in
the third stage and gain further insight into the impacted system objectives.

1 https://uppaal.org/downloads/#academic-licenses/.

https://uppaal.org/downloads/#academic-licenses/
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2.2 Role of Defense Modeling

Defense modeling involves identifying potential defenses to the attacks modeled
in the second stage of our impact analysis approach. The behavior of the defenses
is then modeled to assess their effectiveness in reducing the impact of attacks.
Activities in our original impact analysis approach that need to be redone for
the analysis of defenses are depicted in green fill as shown in Fig. 1.

Modeling. First, in the System Modeling stage, the system defenses are modeled
as an extension (separate processes) to the originally defenseless system model.
This is followed by a model verification with the previously specified invariants
to ensure the expected system behavior. Notably, none of the activities in the
Attacker Modeling stage is affected, as the attacker models are modular, and
their behavior is separate from that of the system or the defenses.

Analysis. Next, we execute the attacker models in parallel with the augmented
system model with defenses in the Attack Execution stage to visualize how the
defenses mitigate the impact of attacks. Additionally, we reinspect our system
invariants to identify whether attacks can still impact the system operations.
Finally, we move to the Impact Analysis stage to obtain statistical data on the
potential impact and compare them with the defenseless case.

A detailed demonstration of these activities can be found in Sects. 4–6.

3 Case Study: Manufacturing Cell Control System

We will use a manufacturing cell control system (MCCS) as a case study to
illustrate the different steps of our approach related to defense modeling. The
MCCS is illustrative of a small ICS consisting of four primary system agents, each
of which consists of one or more components and an internal control system. The
expected operation of the MCCS is shown in Fig. 2 where solid and dashed lines
represent message-passing and shared-variable communications, respectively.

Fig. 2. Collaboration diagram depicting the expected operation of the MCCS

The Control Agent C is the central control system that manages the man-
ufacturing phases and coordinates the activities of other system agents. The
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Storage Agent S keeps track of whether the raw material inventory is full, and
performs loading and unloading of materials. The Handling Agent H is respon-
sible for moving materials from the storage to the Processing Agent P, allowing
P to process (e.g., drill) the material. The MCCS continues operating until it
has reached its mission objective of processing the required (M) units of material
within strict time constraints.

The simulations in this work will assume that a successful sequence of loading-
unloading-moving(handling)-working(processing), as shown in Fig. 6, will lead
to a single unit of material being produced within 10 time units. Uninterrupted
MCCS operations will thus lead to a production of 3 material units within 30
simulated time units. More details on the MCCS operations and its networked
timed automata model can be found in [12].

4 System Modeling with Defenses

In this section, we explain the concept behind modeling defenses for a system and
demonstrate the process through different abstract system agents. In essence,
this is an extension of the System Modeling stage of our impact analysis approach
where we extend the system model capabilities with defensive mechanisms.

4.1 Defense Modeling

There are two important parts to modeling defenses: (1) the detection process
(DP) and (2) the defensive action (DA). The behavior and efficacy of the sys-
tem defenses modeled in this work will be demonstrated using data corruption
attacks on the MCCS. Consequently, the DP and DA, respectively, would entail
detecting data corruption attempts and performing a corruption recovery for
data restoration. In this work, we focus on three types of defenses:

1. Instant Defense: The DP and the DA are both instantaneous, essentially
resulting in the prevention of an attack before it can cause an impact.

2. Delayed Defense: Both the DP and the DA take some amount of time to
complete, constituting a more realistic defensive mechanism. This is similar
to mitigating an attack since the attack may have already caused an impact
by the time the DA has finished.

3. Delayed Defense in Safe Mode: A special case of the delayed defense
where the system is taken to a safe mode during the DA. In the safe mode,
system processes are temporarily halted so that a race condition or fault does
not occur, and attackers are prevented from affecting the system processes.

Modeling Instant Defenses. To model a system with instant defenses, we
need to add a DP and a DA capability to the system that can be performed
instantaneously. To prevent data corruption attacks on the MCCS, we can do this
by extending the system model with two new agents focused on data recovery.
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Fig. 3. Modeling instant detection and recovery

The first agent (shown in Fig. 3a) is a Monitoring Agent (MON) that can
monitor the shared system variables and raise an alert (corruption_alert!) when-
ever there is a corruption of such variables. The behavior is similar to file system
integrity checking tools like Tripwire [15]. The corruption can be detected by con-
tinuous monitoring of the shared variables (e.g., through an IS_CORRUPTED()
Boolean function) and detecting whether any variable is assigned a value outside
its allowed value range. For example, in case of the phase variable, the allowed
values are 0, 1, 2, and 3, representing the four system phases. Therefore, at any
point during the system operations, assigning any values other than these four
allowed values would make MON send out a corruption_alert!.

The corruption_alert? is received by the second agent (shown in
Fig. 3b), named Recovery Agent (REC), that can take an instantaneous
DA by performing an immediate corruption recovery. The recovery action
(CORRUPTION_RECOVERY()) can be performed by determining the ideal state
of the corrupted variable based on the current overall system state and reassign-
ing to it the ideal value. Once the corruption is recovered, REC can send a
corruption_recovered! message to MON, informing that the effect of the corrup-
tion has been removed and that MON can start monitoring the system again.
The use of urgent synchronization channels allows both the detection and recov-
ery action to be instantaneous, thus resulting in immediate recovery from any
corruptions.

This duo of a monitoring and recovery agent will be used in our impact anal-
ysis approach to constitute a data recovery defensive mechanism and demon-
strate its effectiveness against data corruption attacks. Furthermore, extensions
to these models will allow us to model other defensive behaviors.

Modeling Delayed Defenses. While the capability to instantaneously detect
and recover from any attempted corruption seems great on paper, in reality, this
is hardly feasible. There may always be delays due to various reasons in both
the detection and recovery process. For example, some attacks may be harder
to detect than others, and the time to perform the recovery may include the
recovery of system data and parameters and resetting the system data to their
original state [5]. To model this varying delay, we extend the Monitoring Agent
and the Recovery Agent models discussed before, as shown in Fig. 4a and Fig. 4b.

Two additional clocks (mon_clk and rec_clk) and a set of four new
parameters (min_detection_time, max_detection_time, min_recovery_time,
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Fig. 4. Modeling Delayed Detection and Recovery

max_recovery_time) allow one to control the detection and recovery time for
data corruption. Once assigned, the DP or the DA will take a uniform random
time between the minimum and maximum allowed values. In our simulations,
we will assume that both the DP and the DA take at least one time unit to
complete to see the delayed behavior.

Modeling Delayed Defenses with Safe Mode. When multiple entities can
modify a shared variable, there are always chances of encountering a race con-
dition. With the inclusion of the Recovery Agent for defensive purposes, there
are now three different entities (i.e., system agents, an attacker, and a defense
agent) that can modify a shared system variable. For example, the status vari-
able can be assigned by the Storage Agent during normal system operations, by
the Attacker Automaton to cause data corruption, and by the Recovery Agent
to recover from corruption simultaneously. Therefore, the existence of multiple
actors leads to a few different problems and escalates when delays are involved.

For one, when we consider delayed defenses, the detection and defensive
action decisions are made before the delay is applied. This means that if an
attacker attacks and causes another compromise (e.g., data corruption) between
the time the recovery decision was made and the actual recovery is done, it can
lead to impacted system behavior despite a successful recovery action. Addi-
tionally, the system itself may complete a process (e.g., processing), leading to
a system assignment of different variables while the detection and recovery are
being done. When the recovery finally finishes, the system will be in a completely
different state than when the recovery started, and as a result, the recovery may
be done incorrectly. Thus, a delayed defense must consider the various race con-
ditions and the potentially undesirable consequences.

To augment the system model with delayed defenses with a safe mode, we
use the same Monitoring Agent shown in Fig. 4a while extending the capabilities
of the Recovery Agent . REC is extended (Fig. 4c) with two intermediate commit-
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ted states [12] IM_7 and IM_8 that start (START_SAFE_MODE()) and end
(END_SAFE_MODE()) the safe mode, respectively. The safe mode spans the
duration of the recovery action.

The goal of the safe mode is twofold: (1) the system may not complete any
processes, i.e., may not assign to any shared variables, and (2) an attacker may
not attack the system during the safe mode, i.e., may not tamper with any shared
variable. The first goal is reflective of pausing the ongoing system processes and
putting a lock on shared variables until DAs are completed. The second goal is
the equivalent of putting the system in a state where attacks cannot happen (e.g.,
by closing certain ports to prevent malicious remote connections from external
entities). While the DA will inevitably slow down the system processes, they will
allow the recovery to be done correctly without the possibility of being affected
by concurrent compromises by an attack and/or system process assignments.

4.2 Verification with Modeled Defenses

An ICS must always (1) reach its mission objectives (e.g., production end) in
time, and (2) reach the mission objectives uninterrupted. Thus, for the MCCS,
we specify two corresponding system invariants for the MCCS using temporal
logic in UPPAAL’s verifier2, details of which can be found in [12].

Invariant 1: ES .Begin � (ES .End ∧ total_time ≤ M ∗ 10)

Invariant 2: A (¬H.WFM ∧ ¬P.WFI ∧ ¬P.WFR).
Any time a new defensive mechanism (e.g., a defense agent) is added to

a system, it is important to recheck the system invariants (specified based on
system requirements) in the Invariant Specification activity. This check ensures
that the system retains its former capabilities, and that adding new defensive
functions does not inhibit it from reaching its mission objectives. For the MCCS,
adding the Monitoring Agent and the Recovery Agent should not prevent it from
reaching its mission objective of producing M materials within the specified time.
By rechecking the system invariants in UPPAAL, we confirm that all system
invariants are still satisfied even after the addition of the two defense agents.

Overall, the defense models presented in this section are reusable for any
ICS as long as the detection (i.e., IS_CORRUPTED()) and recovery (i.e., COR-
RUPTION_RECOVERY()) functions are adapted to meet the defensive needs of
the system in question. The base defense model shown in Fig. 3 is extensible, as
shown in Fig. 4 with the addition of clocks, parameters, and additional states.

5 Attack Execution

To execute attacks on various system defense configurations, we will follow the
impact analysis approach activities outlined in Sect. 2. As part of the Attack
Modeling stage of our impact analysis approach, we first execute data corrup-
tion attacks in the Model Execution activity by a random attacker and then
2 The syntax and semantics of the query language used by UPPAAL is a subset of

timed computation tree logic (TCTL) and can be found in [2].



Defense Models for Data Recovery in ICS 279

Fig. 5. Data corruption attacks on a defenseless system by a random attacker

Fig. 6. Effect of instant recovery against data corruption by a random attacker

perform Invariant Reinspection to quickly check for system invariant violations.
The random attacker has randomized behavior, and for simulation purposes, it
will prepare for a uniform random time between one and five time units before
each attack and take one to two time units to perform each attack. Details on
the attacker model and its behavior can be found in [12].

5.1 Model Execution

To compare with the case where data corruption attacks are performed by a
random attacker on a defenseless system model, we can look at the simulation run
in Fig. 5) generated by UPPAAL. The attacks, performed in random intervals,
end up corrupting random shared variables with garbage values when successful
(see the corruption of variables ready, part, and status by attempts 1 through 5).
The attacks can ultimately lead to a time deadlock [12], which is equivalent to
an infinite delay for a system that has no way to recover from data corruption.
Now, we examine attacks by the same attacker but with the system model being
equipped with three different defenses to compare their effectiveness.

Instant Recovery. We start by looking at the MCCS system model equipped
with an instant recovery mechanism (refer to Sect. 4.1). Figure 6 shows an exam-
ple simulation run of a random attacker attempting to corrupt the data within
the system. The Monitoring Agent can be seen to constantly monitor the sys-
tem (depicted in green) for any data corruption. Any attempted corruption by
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Fig. 7. Effect of delayed recovery against data corruption by a random attacker

Fig. 8. Effect of recovery in safe mode against corruption by a random attacker

the attacker was immediately found, and the Recovery Agent was alerted, which
recovered from the corruption immediately. This is an ideal case scenario where
both detection and recovery are instantaneous and can be seen by the system
remaining free of any corruption even after multiple attempts by the attacker.
While not exactly prevention (since the recovery is done on the already corrupted
data), this is a close equivalent for harder-to-prevent attacks since the effects of
the attacks are still prevented from impacting the system.

Delayed Recovery. Next, we look at data corruption attacks on a more realis-
tic MCCS model equipped with a detection and recovery mechanism with some
delays (Fig. 7). We can see the first data corruption attempt of the attacker suc-
ceeding slightly after three time units. The corruption was present in the system
for a short while as the detection and recovery mechanism both required some
time to complete. This led to a small impact on the system processes as the mov-
ing action was delayed due to unreadable corrupted values. The system resumed
its moving action after the corruption was recovered and all three material units
were produced, albeit taking slightly longer than 30 time units. Although not
shown in this particular simulation, if the simulations are run long enough, race
conditions would occur for the delayed recovery case for the reasons identified in
Sect. 4.1. This is especially apparent when system processes and delays between
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consecutive attacks are relatively shorter, and the recovery process takes longer.
To deal with such a situation, we make the delayed recovery action more robust
with a safe mode for the third system defense.

Delayed Recovery with Safe Mode. Finally, we examine data corruption
attacks on the MCCS model that has delayed recovery capabilities with safe
mode (Fig. 8). The simulated detection and recovery times are the same as the
delayed recovery case, however, the safe mode prevents the system agents and the
attacker from taking any action during the recovery process. The first attempt
of the attacker leads to a corruption slightly after three time units which result
in a small delay before the data recovery is done in the safe mode. The drawback
of stopping the system processes, however, can be seen from the second attempt
by the attacker. The safe mode pauses the system processes during the recovery,
and as a result, the moving process is extended beyond the expected duration
of three time units. Similar extensions can be seen in the case of processing
(about four time units) in the same production cycle and in the case of the
unloading and moving processes (combined duration of about 11 time units) in
the second production cycle. The MCCS could not even produce two units of
material within 30 time units due to both delays due to corruption and process
extensions caused by the safe recovery action.

5.2 Invariant Reinspection

Once the system model is executed in parallel with attacker models, it is impor-
tant to re-examine which system invariants (specified in the Invariant Specifi-
cation activity of Sect. 4.2) are violated and identify the reason behind it. In
our earlier work [12], we found the data corruption attack by random attackers
to lead to violations of both system invariants, but not to a system deadlock .
Additionally, we found the attacks to lead to a time deadlock and enter three
stalled states [12], where the system operations are endlessly waiting for correct
values of shared variables before they can proceed.

In this work, even with the system augmented with three different defenses
against data corruption attacks, we reached the same results through a rein-
spection of the invariants. However, the biggest difference is that the states of
time deadlock do not lead to an infinite delay. Rather, the system leaves the
undesirable stalled states after a successful corruption recovery. While it may
seem that instant detection and recovery should be able to avoid a time dead-
lock altogether, we did not find that to be the case. Part of the reason is that
UPPAAL cannot model “true concurrency.” At the same simulation time, both a
system agent, the DA, and the DP may be scheduled to act. Depending on which
transition fires first, the system invariants may be violated, and stalled states
may be briefly encountered. The persisting violations indicate that regardless of
the defense type, there is some amount of impact involved. For a more detailed
measure of the impact and how much of that is reduced by each of the three
defenses, we move to the final stage of our impact analysis approach.
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Table 1. Impact analysis results for different defenses against data corruption attacks
by a random attacker

Defense type Probability of
producing 864
material units (%)

Average units of
material produced
(no. of materials)

Average total
production
delay (minutes)

Production delay (%)

within
1 d

within
23 h

within
1 h

within
1 d

within
1 h

within
1 d

within
1 d

Defenseless 0 0 2.27 2.13 55.74 1435.89 99.71
Instant recovery 59.1 0 35.99 863.60 0.06 3.02 0.21
Delayed recovery 0 0 13.59 14.3 36.50 1413.65 98.17
Delayed recovery with safe mode 0 0 19.59 475.61 0 7.37 0.51

6 Impact Analysis

In this section, we analyze the impact of attacks in the SMC Results Inter-
pretation activity. Statistical model checking (SMC) is used to verify a formal
model based on whether it satisfies a property with a certain confidence level δ
and maximum error limit ε by monitoring stochastic simulations and leveraging
results from the statistics area [7]. The use of SMC enables us to gain further
insight into the impact of data corruption for the worst-case scenario (defenseless
system) and how effectively each defense model can reduce the impact.

Using SMC, we gather results from three queries in the SMC Query Definition
activity: (1) The probability of reaching system mission objectives (manufactur-
ing M units), (2) The expected level of mission completion (average units of
material produced), and (3) The average expected delay in system operation
(delayed production) in a timespan of t time units. The corresponding SMC
queries are specified as follows, details of which can be found in [12].

SMC Q 1: Pr[total_time ≤ sim_time; sim_runs] ( processed_mat == M)
SMC Q 2: E[total_time ≤ sim_time; sim_runs] (max : processed_mat)

SMC Q 3: E[total_time ≤ sim_time; sim_runs] (max : total_delay)

6.1 Impact of Attacks by a Random Attacker

The SMC query results, each with 1000 sample simulation runs, are shown in
Table 1. Each simulated time unit is assumed to represent ten seconds, mandat-
ing 100 s to produce a material unit. In the ideal scenario, the MCCS would
reach an hourly production of 36 and a daily production of 864 material units.
Undesirable results are depicted in red, whereas results considered to be a sig-
nificant improvement over the defenseless case are depicted in green. A detailed
discussion of the results for the defenseless system can be found in [12].

The results from SMC Q 1 (columns 2–3) allow us to quickly see how likely
the system is to reach its daily production goal. Only the instant recovery case
improves the odds of reaching the goal with a probability of 59.1%. Although
instant, this recovery mechanism is still not able to reach the ideal value of 100%
due to modeling artifacts (refer to Sect. 5.2). The two other defenses produce
results similar to the defenseless system, indicating that some system process
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Table 2. Impact analysis results for different defenses against accelerated data cor-
ruption attacks by a random attacker

Defense type Probability of
producing 864
material units (%)

Average units of
material produced
(no. of materials)

Average total
production
delay (minutes)

Production delay (%)

within
1 d

within
23 h

within
1 h

within
1 d

within
1 h

within
1 d

within
1 d

Defenseless 0 0 0.17 0.26 58.95 1438.97 99.93
Instant recovery 41.9 0 35.86 857.12 0.15 39.47 2.74
Delayed recovery 0 0 2.29 2.20 55.89 1436.29 99.74
Delayed recovery with safe mode 0 0 0 0 2.32 85.86 5.96

delays are inevitable even when these defenses are active. This happens due
to these two defenses having delays in both their DP and DA. Furthermore,
the delayed recovery mechanism is affected by race conditions, and the delayed
recovery with safe mode itself delays system processes to perform a safer DA.

In terms of the average production, i.e., SMC Q 2 (columns 4–5), we see
significant improvements in the instant recovery case. The production is nearly
identical to the ideal scenario of 36 and 864 material units produced hourly and
daily, respectively, despite the occasional delays identified by the results from
SMC Q 1. The results from the delayed recovery case are the worst, reaching
an irreversible state within the first few minutes of simulation start due to race
conditions. This is exemplified by similar average production both in the daily
and the hourly case. While the delayed recovery in safe mode halts system pro-
cesses during the recovery process, the benefits are evident; the MCCS is able
to produce many more materials (about 50% of the ideal case) despite the DP
taking the same, and the DA taking longer than the delayed recovery case.

Results from SMC Q 3 (columns 6–8) show a similar trend as SMC Q 2 for
the first two defense types. The instant recovery mechanism is able to prevent
nearly all production delays, whereas the delayed recovery case is not very effec-
tive at doing the same as the results are similar to the defenseless case with
98.17% daily production delay. The delayed recovery with safe mode is more
interesting; even though fewer materials are produced, we can only see less than
1% production delay. In this case, the production is less not because of delays
caused by data corruption but due to deliberately pausing the system processes
during the recovery operation to prevent any race conditions.

6.2 Impact of Accelerated Attacks by a Random Attacker

To get a different view of the effectiveness of the defensive mechanisms, we now
configure the random attacker model [12] to perform accelerated attacks. The
goal is to see whether attacks performed in quick succession, e.g., attacks from a
script, differ in the caused impact. For simulation purposes, a random attacker
will both prepare and perform each accelerated attack within one time unit.

Table 2 summarizes the SMC query results for accelerated attacks performed
by a random attacker. For a defenseless system, the impact is much higher,
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as shown by the MCCS not producing even one unit of material on average,
as it is spending almost all of its time (99.93%) in stalled states waiting for a
corruption recovery. There is barely any impact when the MCCS is equipped with
the instant recovery mechanism; the delays caused by the accelerated attacks are
minimal (2.74%), and the MCCS consistently reaches very close to its hourly and
daily production goals, with 41.9% chance of reaching its daily objectives.

More significant impacts can be observed for the other two, arguably more
realistic, defenses with delays. For the delayed recovery case, the overall impact is
close to that of a defenseless system. The accelerated attacks cause more frequent
race conditions, especially as during the DP and the DA, the random attacker
may perform more than one accelerated attack. The impact is amplified with the
inherent properties of the delayed recovery with safe mode. Even though there
is less delay caused by corruption, the MCCS can never produce any material
unit. The safe mode forces the system processes to be halted during the recovery
action, which is extended indefinitely if further attacks are performed before the
recovery action and subsequent system process can finish.

In summary, compared to the delayed recovery, the delayed recovery in safe
mode allows producing more materials when attacks are not highly frequent or
when the system process duration is short enough to not be paused indefinitely.
Our study shows how the same defensive mechanism (e.g., corruption recovery)
can exhibit different behaviors and how the characteristics of a defensive mecha-
nism can prove to be a bad match-up or be targeted by certain types of attackers.
Such efforts can lead to an enhanced understanding of potential trade-offs and
aid decision-making when implementing defensive mechanisms with privileges.

7 Related Work

Hou et al. [11] proposed an event-triggered cyber defense strategy that can
correct frequency deviations caused by non-simultaneous cyberattack events
on energy systems. Hong et al. [9] proposed a power system domain princi-
ple that involves a collaborative defensive scheme using intelligent electronic
devices (IEDs) to detect and block potential impacts caused by cyberattacks
and human errors. Kiss et al. [16] presented a framework to assess the aware-
ness of anomaly-based intrusion detection systems (IDS) against stealthy attacks
in power grids. Cam et al. [5] established attackability conditions to bypass
the detection of an anomaly-based IDS for distributed control systems. Some
game-theoretic approaches that analyze cyber defense strategies include using
discrete-event simulations to analyze how a combination of controllable defense
policies and uncontrollable security-based parameters can reduce performance
impact caused by attacks [3], reinforcing system infrastructure parts or com-
ponents to defend against incidental degradation [18], identifying that several
attack factors and defensive countermeasures play influential roles in a system’s
resiliency against attacks [17], work on a multi-defender model responsible for
CPS components and sharing management of nodes [10], suggesting a systematic
ICS patch prioritization method to reduce the impact of potential attacks [19],
among others.
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In contrast, our work incorporates modeling and analysis of different defen-
sive behaviors in an existing systematic impact analysis approach [12]. We used
simulations to perform a timed analysis of the defensive behavior in parallel with
system and attacker activities to observe mitigated and unmitigated impacts and
other potentially undesirable situations, such as race conditions.

8 Conclusions

Impact analysis approaches for ICS need to involve potential defenses when
considering the impact on system mission objectives. In this work, we focused
on reducing the impact of data corruption attacks on ICS operations by modeling
three different defensive behaviors related to data recovery. The defenses were
modeled as extensions to an manufacturing cell control system model using timed
automata in UPPAAL. Statistical model checking was used to analyze the impact
of data corruption attacks on the system equipped with each defense at a time,
allowing us to assess the effectiveness of each defense in reducing the impact.

Throughout the process, the timed analysis of the concurrent behavior of the
system, defenses, and attackers proved to be effective in identifying potential race
conditions and undesirable impacts such as process delays. Additionally, using
SMC, we characterized the residual impact of attacks when defenses were active
and observed how defenses vulnerable to a particular type of attacker behavior
could compound the impact. The analysis is helpful when designing defensive
behaviors to understand the many different and often unseen interactions and
to assign appropriate privileges to defenses by considering the trade-offs on the
system’s mission objectives.

Our priority in future work is to examine the impact with more comprehen-
sive defensive actions, such as recovery with patching [19], along with defenses
against more challenging attacks, such as data modification and spoofing [12].
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Abstract. Supervisory control and data acquisition (SCADA) systems
were designed to be open, robust, and easy to operate and repair, but
not necessarily secure. In recent years, there have been multiple success-
ful attacks targeting SCADA systems. Most of them have been caused
by deploying malware on a supervisory computer in order to control
and manage programmable logic controllers (PLCs) and remote termi-
nal units (RTUs). This work investigates a different potential way to
control PLCs or RTUs in a plant which consists in inflitrating over-the-
air (OTA) links based on SCADA wireless modems. Indeed, PLCs and
RTUs are often linked to a supervisory computer wirelessly using out-
dated radios, with low security at the physical-layer level. An example of
such a radio is the CalAmp Guardian-400 wireless modem. A blackbox
reverse engineering of the physical layer of the latter is performed, which
leads to complete signal demodulation and decoding. Our results demon-
strate that any electronic equipment connected serially to the radio is
vulnerable to wireless packet injection.

Keywords: SCADA · software defined radio · scrambling · NRZI ·
digital phase locked loops · FSK

1 Introduction

Radio waves can transfer information between two or more points quite effec-
tively, over large distances, at the speed of light. However, anyone with the ade-
quate equipment can act as a valid receiver and intercept those electromagnetic
waves, or interfere with the signal by transmitting on the same time/frequency
resource, commonly known as jamming. With the ubiquitous presence of radios
in many essential aspects of our day-to-day life (such as Wi-Fi, cellphones, cars,
computers, TVs, etc.), wireless security is of utmost importance. The same degree
of care should be applied to any wireless device required in industrial processes
and critical infrastructures underlying our modern society.
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SCADA stands for Supervisory Control and Data Acquisition. A SCADA sys-
tem is a combination of hardware and software that enables the automation of
industrial processes by capturing Operational Technology (OT) data. Hardware
such as Remote Terminal Units (RTUs) and Programmable Logic Controllers
(PLCs) serve as local collection points for acquiring this OT data. This infor-
mation can be acted upon directly using programmed logic or gathered by a
computer commonly known as a gateway.

Gateways can come in various forms such as edge computers, Human Machine
Interfaces (HMI) or a central server. One advantage of such an architecture
resides in the ability to monitor and control systems from multiple locations.
In the past, it has often been common practice to air gap such control system
networks as they typically didn’t need to interact with other corporate systems
or the Internet. In theory, having this disconnection has been a sufficient secu-
rity measure, however this is often no longer operationally feasible in today’s
connected world.

IBM Managed Security Services (MSS) data reveals there has been a 110%
increase in attacks on industrial control systems since 2016 - a threat land-
scape that is predicted to grow at a phenomenal rate in the upcoming years
[7]. A second report from Raytheon [8] mentions that 80% of companies expect
an increase in cyber risk over the coming years. This is to be expected since
OT systems constitute easy targets. Communication protocols designed with-
out stringent security measures (ModBus, DNP3 [2]), corporate environments
running outdated software and default passwords on embedded accounts and/or
personal devices are all common security vulnerabilities which can cause a lot
of damage on many different fronts (loss of operations and revenue, infrastruc-
ture shutdown, loss of physical well-being, etc.). Additionally, updating and/or
replacing industrial devices can prove to be quite expensive and complicated.
This directly leads to a large quantity of obsolete legacy equipment still in oper-
ation and involved in critical tasks. The present paper exposes a cyber risk linked
to the usage of outdated hardware designed without stringent security measures,
in an industrial power plant. More specifically, the vulnerability resides in the
radios used to establish wireless links between PLCs and supervisory computers.

The popular malware attacks on SCADA systems drove a lot of research in
the field of cybersecurity, but most of it focuses on potential network breaches
or possible software exploits. There is very little research on the potential risks
involved when using legacy RF equipment with an unsecured physical layer.
The only relevant work found on this topic is presented in [4]. Therein, the
reverse-engineering of a widely deployed GE MDS-9710 radio is performed. The
physical layer of the latter frequency-modulates a scrambled, duo-binary coded
signal as a means to transfer information OTA. Using GNU radio, successful
demodulation of the MDS-9710 radio signals was achieved, thanks to their access
to the theory of operation document (filed with the FCC by the manufacturer)
and the digital signal processor (DSP) firmware. In a similar fashion, our work
presents a step-by-step blackbox reverse engineering of the Guardian-400 wireless
modem physical layer, using only an ADALM-PLUTO SDR [9] platform and
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MATLAB software. No firmware access or technical document was available,
besides the user manual. Still, even with very limited knowledge, our work shows
how an unsecured physical layer can be simple to analyze, using widely accessible
and inexpensive tools.

The CalAmp Guardian-400 commercial radio is conveniently interopera-
ble with multiple discontinued radios such as the CalAmp DL-3400 analog
transceiver, the DL-3282 analog radio, and the T-96SR wireless modem. The
latter has the most interesting mode of operation since it is capable of telemetry
transmission at a rate of 9600 bps and thus, is more relevant in the context of
today’s SCADA systems.

The T-96SR radio was developed many years ago, circa 1999 [5], when wire-
less data transmission was very niche. Thus, little effort was made to protect
the equipment from potential wireless attacks and as a consequence, the radio
consists of a simple and unsecured physical layer. From [1], it is found that the
T-96SR physical layer implements differential raised-cosine minimum shift key-
ing (DRCMSK) modulation. Before modulation, the payload bits are scrambled
using a 7-bits scrambler, then differentially encoded using NRZI (Non-Return-
to-Zero Inverted). No forward error correction (FEC) and packet structure is
defined. Thus, it is assumed that the Guardian-400 radio behaves in the same
manner when in compatibility mode with the T-96SR. This constitutes the start-
ing point of our reverse-engineering process.

2 Previous Results

This paper is based on an in-depth signal analysis of OTA recordings, obtained
by standing at a 1 km radius from a power plant with an ADALM-PLUTO
SDR platform. In order to extract the transmitted bits, an FSK demodulator is
required. The block diagram in Fig. 1 shows the developed FSK demodulator.
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Fig. 1. FSK demodulator block diagram.

The demodulated bits are extracted from the DPLL_out signal. This signal
follows the ADALM-PLUTO SDR sampling rate of 528KHz and is affected by
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multiple RF impairments. In order to extract the bits, a bit extractor, based
on the digital phase-locked loop (DPLL) presented in Fig. 1, is used. The phase
detector is replaced by an inductive minimum mean-square error (MMSE) tim-
ing error estimator, which samples the DPLL_out input at twice the expected
symbol rate of 9600 bps, then calculates the discrete-time derivative. Figure 2
illustrates this concept.
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Fig. 2. Correct sampling phase vs. late sampling phase at twice the symbol rate.

The timing error estimation is calculated using the following formula:

τk+1 = τk − (Qk − Ak)(Qk+1 − Qk−1)

where Ak = ±1, following the polarity of Qk. A NCO (Numerically Controlled
Oscillator) is used to generate the sampling instants 19200Hz, with its phase
being controlled by the filtered timing error estimate. The complete block dia-
gram, including the MMSE timing error estimator, a loop filter and the NCO is
illustrated in Fig. 3.
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Fig. 3. Symbol extractor block diagram.

The first phase concludes with the fact that by using a signal processing
software such as MATLAB, one can use DPLLs to demodulate a Guardian-
400 signal down to its transmitted bits. These bits however, are assumed to be
encoded and scrambled at the physical layer and thus, no direct extraction of
payload bits can be performed.
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The present paper goes deeper into the physical layer analysis of the radio,
thanks to its commercial availability. It is shown that one could potentially
recover transmitted payload bits from OTA recordings but more importantly,
could inject its own message at the output of the radio’s serial port. Thus,
any piece of software or hardware connected to the Guardian-400 is exposed to
potential security threats.

2.1 Hardware Description

The two main pieces of hardware and their relevant settings are presented in
Table 1.

Table 1. Hardware configuration

GUARDIAN-400 ADALM-PLUTO SDR

Tx frequency (MHz) 450 425.5
Rx frequency (MHz) 425.5 450
Data rate (bps) 9600 9600
Bandwidth (kHz) 25 25
Sampling rate (kHz) N.A 528

Both devices can be connected to a Windows 10 laptop using USB cables.
The Guardian-400’s software is used to configure and communicate with the
Guardian-400 radio through a USB-to-serial cable and MATLAB is used to con-
figure and communicate with the ADALM-PLUTO SDR.

3 Tests Description

3.1 Loopback Test

As mentioned in Sect. 2, one can demodulate the transmitted bits using DPLLs
but not unravel their encoding, thus leaving one unknown layer to traverse to
get to the payload. In order to investigate these unknowns, the following test
plan was enacted:

1. Configure the Guardian-400 to transmit a known test vector;
2. Perform an OTA recording using the ADALM-PLUTO SDR;
3. Perform FSK demodulation and symbol clock recovery on the recording using

DPLLs;
4. Using the recovered encoded bits, draw conclusions regarding the physical

layer processing blocks.

In order to transmit a known test vector, the Guardian-400 is configured
in transmit mode with a 1-second interval ASCII pattern. The pattern used to
build the packets has the following format (55 ASCII characters):
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000ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
001ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

- - -
998ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
999ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
000ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
001ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

The second step towards this goal is to perform a recording using the
ADALM-PLUTO SDR. This is easily achieved in MATLAB using the ADALM-
PLUTO SDR FM receiver example from Mathworks as a starting point. The
real portion of a 2-seconds recording is shown in Fig. 4.

From Fig. 4, it can be observed that the Guardian seems to transmit data
continuously once in transmit mode. The ASCII pattern is only 55 characters
in length. Short transmit bursts were expected every second, in an otherwise
unbroken silence. At this point, the actual position of the payload within this
recording is unknown. Nevertheless, the DPLLs developed in the first phase can
be used in order to demodulate the bits. As a reminder, the demodulated bits
are (theorically) differentially coded using NRZI and scrambled using a 7-bits
scrambler. The details about both processes were still unknown at this point in
our investigation.

In order to ensure that our recording included the known test vector, the
recording can be transmitted back to the Guardian-400 for demodulation. To do
so, a 2-FSK modulator was developed. There are multiple ways to implement
such a modulator, but an approach which uses the NCO in Fig. 1 seemed the
most logical.

0 2 4 6 8 10 12

Sample index 105

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

A
m

pl
itu

de

Fig. 4. Recording of the Guardian-400 ASCII pattern transmission.
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Generating the 2-FSK waveform using the demodulated bits and transmitting
them OTA using the ADALM-PLUTO SDR yielded the following results on the
Guardian-400 software ASCII terminal.

FGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz (1)

A portion of the expected ASCII pattern was correctly received, but it is
important to point out that a total of 19200 bits (2-second recording at 9600bps)
were sent by the ADALM-PLUTO in order to achieve this result, which is much
more than the 47 received ASCII characters in output (1) (which gives 376 bits
assuming an 8-bits ASCII representation). At that point, it is obvious that the
pattern of interest is somewhere in the recorded file. However, it is not clear
where and it is also not clear why there is so much overhead.

3.2 Payload Analysis

Following the loopback test, it is now of interest to dig deeper into the received
payload bits and try to reverse-engineer the modulation process (from ASCII
characters to differentially-coded and scrambled bits). As a first step, the bits
of interest need to be isolated from the overhead bits in order to perform fur-
ther processing. By visual inspection of the demodulated bits in Fig. 5, one can
identify surprisingly long series of 1’s or 0’s at many points in the bit stream.
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Fig. 5. Sequences of same polarity bits from the demodulated bit stream.

It is surprising since the bits are supposed to be scrambled, which should
remove such scenarios. This could indicate the presence of some kind of preamble
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or synchronization pattern. Secondly, these series of bits also seem to appear
periodically. In order to check for the periodicity, convolution is performed using
the following coefficients, taken from the demodulated bits:

coeff =
[
1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 1

]

Plotting the result of the convolution operation gives the output shown in
Fig. 6.
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Fig. 6. Convolution output using coeff.

From Fig. 6, it can be observed that a good portion of the demodulated bits
seems to be filled with a repetitive pattern. It also shows two other locations
of interest, which are right after the first eight peaks and at the tail portion of
the recording. Using the convolution peaks as delimiters, the 19200 bits can be
divided into multiples blocks of bits which enables us to iteratively test for the
location of our ASCII bits, by simply sending these chunks of bits, one at a time,
to the Guardian-400. Using that process enables us to locate the bits of interest
which are between the eight and ninth convolution peaks, inside a block of 1504
bits. This is definitely a step forward but the block still contains more than the
expected 376 bits.

3.3 NRZI and Scrambler Decoding

At this point, the exact location of the payload bits is unknown. We began the
analysis of the NRZI decoding and scrambling processes, which prevented us
from relating the demodulated bits at the output of the DPLLs to the ASCII
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characters being sent. Figure 7 illustrates an initial hypothetical block diagram
of the expected ASCII characters encoding/decoding process.

ASCII
characters Scrambling NRZI

Encoding
FSK

Modulator To antenna

From antenna FSK
Demodulator

NRZI
Decoding Descrambler ASCII

characters

Fig. 7. Hypothetical Guardian-400 encoding/decoding process.

It is also important to mention that the block diagram in Fig. 7 acts as
a starting point, extrapolated from the information in [1] and only from that
source. Therefore, at this point, it is possible that additional blocks are present
and/or that some information may be false, such as the length of the scrambler
for example.

Compared to NRZ (Non-Return-to-Zero), NRZI is a differential encoding
technique which distinguishes data bits by the presence or absence of a bit polar-
ity transition at clock edges. Two NRZI scenarios are thus possible: a transition
from one polarity to the opposite polarity could either represents a 1 or a 0.

Regarding the scrambler, a 7-bits scrambler is expected from the data in [1].
However, the architecture of the scrambler and the scrambler polynomial are
unknown and thus, represent the main challenge to overcome. One popular and
well known 7-bits scrambler is the 802.11 (WiFi) scrambler shown in Fig. 8.

Input bits

7 6 5 4 3 2 1 Output bits

Fig. 8. 802.11 7-bits synchronous scrambler.

This is a synchronous scrambler with polynomial 1+x4+x7. One important
point to note is the fact that the input bits are not influencing the states of the
registers in such architecture. As a consequence, for correct descrambling, the
descrambler needs to be put into a specific state, at input bit b, usually using a
preamble detection mechanism which could be possible in our case, since there
are multiple overhead bits. Both the scrambler and the descrambler are identical
in such an architecture.

A second possible architecture, which is simpler implementation-wise but
prone to error propagation, could also be used: a self-synchronous architecture.
The scrambler/descrambler of the latter is shown in Fig. 9.

These are 7-bits self-synchronous scrambler/descrambler of polynomial 1 +
x6 + x7. Compared to the synchronous architecture, the register states are
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Input bits 1 2 3 4 5 6 7

Output bits

1 2 3 4 5 6 7 

Output bits

Input bits

Fig. 9. 7-bits self-synchronous scrambler(top) and descrambler(bottom).

affected by the input bits and thus, a detection error at the receiver will tend to
propagate through the descrambler. However, a preamble detection mechanism
is not required, which reduces the required hardware resource and computing
power. This architecture is definitely a possibility since there is hypothetically
no packet structure defined (so no specific preamble section defined). Further-
more, its low resource usage is a good fit to the limited processing capability of
an old T-96SR radio.

That being said, there remains numerous possibilities which need to be inves-
tigated. As a first investigative step, one can try to take the FSK demodulated
bits from the DPLLs and decode them in MATLAB into the expected ASCII
characters, using a brute-force approach, by testing all possible configurations.
The 7-bits synchronous architecture is analysed first.

3.4 Synchronous Architecture

As mentioned above, synchronous scramblers/descramblers require a specific
state reset mechanism for correct descrambling. In other words, at a specific
bit b, the scrambler/descrambler needs to be in a specific state. This means that
there is a total of four variables to test in order to cover all possible scenarios:

1. NRZI transitions either represent a 0 or a 1;
2. The starting bit b of our encoded ASCII sequence which is somewhere in the

1504 bits block;
3. The state of the descrambler at bit b;
4. The descrambler polynomial.

This looks intimidating at first but this can be coded using multiple for loops
rather easily, it simply takes a significant amount of processing time. The output
of the descrambling process is validated using a convolution operation with the
8-bits representation of the following ASCII sequence: JKLM.
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After multiple iterations of the current approach, the expected convolution
result of 32 never occurred. Descrambler sizes of 6-bits and 8-bits were also tried
but didn’t give the expected results.

3.5 Self-synchronous Architecture

Following the results in the previous section, the code was slightly modified
in order to implement a 7-bits self-synchronous architecture. The same four
variables are tested but again, the approach never gave a convolution result of
32.

4 Single Error Injection Approach

After the unsatisfactory results of the brute force approach, it is clear that some
form of understanding is missing. Another approach to resolution is therefore
proposed: the error injection approach. This approach consists of transmitting
the 1504-bits block, which contains the ASCII characters bits, to the Guardian-
400 but with the insertion of a single bit error beforehand. The goal of such a
test is to study how the received ASCII characters are affected by this error and
try to draw some conclusions about the unknown variables. Through trial and
error, flipping the 554th bit gave the result on the Guardian-400 ASCII terminal
shown below (2).

FGHaKKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz (2)

By careful observation, one can see that the I and J ASCII characters were
affected by the single bit flip, which already gives a good hint regarding the
descrambler architecture. In a synchronous architecture, a single bit error at
the input gives a single bit error at the output, but it is not the case in a self-
synchronous architecture. The error will affect the state of the descrambler and
thus, multiple bits at the descrambler output. A closer look at the IJ ASCII
characters and their error-injected version is presented in Table 2.

Table 2. I and J with error injection

I J
01001001 01001010
a K
10101010 01001011

From Table 2, it is clear that multiple bits were affected by our single error
injection. It is also clear that the 554th bit corresponds to the I character LSB
(rightmost bit). The same single error injection test was repeated by flipping
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the 555th, 556th, 557th, 558th, 559th bits. By checking the 8-bits representa-
tion of the decoded ASCII characters, two interesting observations are obtained.
First, the ASCII characters are definitely 8 bits long and second, the bits of
each ASCII character are sent OTA to the Guardian-400, LSB first. This is an
important point, since, in the brute-force approach, it was assumed that the
JKLM sequence used for the convolution operation was simply the direct 8-bits
representation of each character taken from the 8-bits ASCII table. So, instead of
testing for the bit sequence in Table 3, one should have checked for the sequence
in Table 4.

Table 3. MSB first “IJKL” bit sequence

I J K L

01001001 01001010 01001011 01001100

Table 4. LSB first “IJKL” bit sequence

I J K L

10010010 01010010 11010010 00110010

4.1 Multiple Bits Injection Approach

At this point, a self-synchronous scrambler is supposed, and another test comes
to mind, which exploits the fact that the input bits of the descrambler can
affect the register’s state. The second test consists of inserting a long string of
NRZI modulated ones or zeros. The following NRZI sequence is inserted in the
1504-bits block, at bit position 554:

1111 1111 1111 1111

The Guardian-400 ASCII terminal gives the result below (3).

FGHNÿøoLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz (3)

New characters appear on the screen, more importantly the ÿ character
at the expected location. The 8-bits ASCII representation of the ÿ character
is 11111111, which tells us about the NRZI encoding. The ability to fill the
descrambler registers with 1’s by using an NRZI sequence which contains no
polarity transition, means that a binary 1 is encoded by the absence of a transi-
tion and thus, a 0 is encoded by the presence of a polarity transition. It is now
known how to communicate a 1 and a 0 to the Guardian-400 and control the
state of the descrambler.
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4.2 Descrambler Impulse Response

Following the results from the previous test, it is now time to test for the impulse
response of the descrambler by first, feeding the descrambler with a series of 1’s to
put the descrambler in a known state and secondly, injecting a single 0, followed
again by multiple 1’s. The used NRZI coded sequence is as follows:

1111 1111 1111 1111 -1-1-1-1 -1-1-1-1 -1-1-1-1 -1-1-1-1

Transmission OTA to the Guardian-400 gives the output below (4) on the
ASCII terminal.

FGHNÿˆÿYJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz (4)

The characters of interest are ÿˆÿ which is illuminating with regards to the
number of registers of the descrambler and its polynomial. It is clear from the
ASCII characters that the descrambler is in an all-ones state, then a zero is
fed, which goes through all the registers, creating a sequence of multiple states
before going back to the all-ones state. The 8-bits representation of the ASCII
characters (left to right = MSB to LSB) is shown in Table 5.

Table 5. ÿ and ˆ 8-bits representation

ÿ ˆ ÿ

11111111 01011110 11111111

Simply by looking at the ˆ character from LSB to MSB, some hypothesis
can be made regarding the descrambler. First and foremost, it is indeed a 7-
bits descrambler and secondly, the polynomial is 1 + x5 + x7, which is not an
optimal choice since it is not a primitive one. One can validate these assumptions
by performing the descrambling process, by hand. The proposed descrambler
architecture from the all-ones initial state is shown in Fig. 10.

Input bits 1 1 1 1 1 1 1

Output bits

Fig. 10. Proposed self-synchronous descrambler architecture.

From Table 6, it is clear that the register length and the polynomial seem to
be correct.
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Table 6. Proposed descrambler impulse response

Inputs bits Register states Descrambled bits

0 1111111 0

1 0111111 1

1 1011111 1

1 1101111 1

1 1110111 1

1 1111011 0

1 1111101 1

1 1111110 0

4.3 Hello World! Test

With all this new information in hand regarding the encoding and decoding
process, one could be tempted to send his own message to the Guardian-400,
using the ADALM-PLUTO SDR. To perform this test, a modulator now needs
to be developed. The modulator needs to perform the following tasks:

1. Convert the ÿÿHello World! ASCII message to 8-bits representation (ÿ is used
to put the descrambler in a known state);

2. Perform a bit flip from left to right for each ASCII character, in order to feed
the bits LSB first;

3. Scramble the bit sequence using a self-synchronous scrambler of polynomial
1 + x5 + x7, with initial state 1111111;

4. Encode the scrambled bits differentially using NRZI, where 1 = No transition
and 0 = Transition.

The test is successful if the Hello World! message is correctly decoded by the
Guardian-400 ASCII terminal. Using MATLAB, the Hello World! message is
encoded and sent to the FSK modulator, for transmission to the Guardian-400.
The output of the ASCII terminal, by inserting our encoded bits at position 554
in the 1504 bits chunk, is shown below (5).

FGH/ÿHello World!]JKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz (5)

The test is conclusive and validates our assumptions regarding the encoding
and decoding process of the Guardian-400.

4.4 Updated Brute-Force Approach

Having successfully transmitted the Hello World! message, it could now be
interesting to go back to the brute-force approach and validate if the approach
was legitimate after all. Performing the brute-force approach, with the correct
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descrambler polynomial and architecture, with the proposed LSB first JKLM
convolution sequence still did not yield the expected result of 32.

However, performing the same approach with another sequence, GHIJ, did
give the expected convolution result of 32. The brute-force approach also gave
some interesting information regarding the location of the sequence and the state
of the descrambler. It actually gave multiple locations, which comes from the fact
that the polynomial is not primitive.

From these results, the longer sequence GHIJK was tried but did not give
the expected convolution results. Inspection of the descrambled data shows the
presence of the following ASCII character, which follows the GHIJ sequence: ∼
or 0x7E. This character appears periodically in the descrambled sequence (for
each 3 or 4 ASCII characters) and also appears to be added to the sequence,
since now, if the test sequence becomes GHIJ∼K, the convolution results gives
the expected result.

Bottom line, going back to the brute-force approach gave an additional piece
of information, the presence of a ∼ character, probably used for synchronisation
purposes since it never appeared on the ASCII terminal in our tests. This is
validated easily by performing the Hello World! test with the following message:

∼∼∼∼∼∼H∼el∼lo∼ Wo∼r∼ld∼∼∼∼∼∼!

Multiple tests were performed with multiple different numbers of sync char-
acters and insertion locations and the result on the ASCII terminal is still simply
Hello World!.

4.5 Preamble Detection

From the results of the previous tests, it is now easy to find and remove the
excess bits from the 1504 bits chunk, simply through trial and error. But simply
sending our NRZI encoded and scrambled Hello World! message without any
of the previous bits of the 1504 bits does not work. There is definitely some
kind of preamble which is used to trigger the radio’s decoding process. Through
trial and error, it is found within a few minutes that bits 334 to 513 seem to
include that preamble. Creating an NRZI message with these bits, followed by the
scrambled and encoded ∼∼∼∼∼∼H∼el∼lo∼ Wo∼r∼ld∼∼∼∼∼∼! message,
gives the output on the ASCII terminal, shown below (6).

Hello World! (6)

This additional piece of information is definitely useful. This preamble can
now be used to trigger the radio demodulation mechanism but this preamble
could also be used in order to intercept actual OTA signals from Guardian-
400/T-96SR radios and potentially extract sensitive information, since the pay-
load bits follow the preamble.
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5 Conclusion

In this report, a thorough analysis of the Guardian-400 physical layer is achieved.
As presented in Fig. 7, a 7-bits scrambler and an NRZI encoder are the only pro-
cessing blocks which manipulate the payload bits before FSK modulation. Addi-
tionally, the existence of a synchronisation character and a preamble is observed.
In order to perform these tests, one simply needs a Guardian-400, an off-the-shelf
SDR platform and a laptop. The absence of any packet structure, authentication
process and forward error correction mechanism makes the Guardian-400 physi-
cal layer unsecure and easy to investigate. This work illustrates the necessity to
add additional security layers to any equipment connected to a Guardian-400.
This recommendation can confidently be extended to any SCADA system which
includes radios which are interoperable with the latter, such as the T-96SR,
the DL-3400 and the DL-3282. Finally, using the acquired knowledge from the
present work, one can look back at Appendix A in [1] and identify other radios
which could be potentially reverse-engineered, which is worrisome. Most of them
are using FSK modulation but integrate additional signal processing techniques,
such as Hamming Code FEC and Cyclic Redundancy Checks (CRCs). The capa-
bility to reverse-engineer such radios would be very interesting to investigate in
the future. Our work demonstrates that the underlying assumption when those
SCADA radios were designed—that usage of an obscure and secret modulation
format was secure enough—no longer holds given the widespread availability of
low-cost SDR hardware and associated knowledge.
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Abstract. Smart contracts are a relatively new class of computer pro-
grams that are intended to run on a blockchain. Checking a smart con-
tract for security vulnerabilities is recognized as an important problem
in both research and practice. Motivated by recent empirical work that
suggests that existing tools suffer high numbers of false positives and
negatives for vulnerabilities that belong to commonly-occurring classes,
we ask: for even one such class of vulnerabilities, can there exist a tool
that is highly effective? We answer in the affirmative by construction:
for the class of unchecked low-level calls, checking for which is undecid-
able in general and PSPACE-complete under finitizing assumptions we
adopt, we propose an approach for Ethereum smart contracts that com-
prises a reduction to model-checking, encoding the property in Linear
Temporal Logic (LTL) and use of an off-the-shelf model checker. We find
that across almost 200 smart contracts drawn from curated and “wild”
datasets from the publicly available benchmark that underlies the prior
empirical work that points out that existing tools suffer high numbers of
false positives and negatives, our approach is highly effective in that we
see zero false positives and negatives.

Keywords: Smart contract · Security vulnerability · Unchecked
low-level calls · Model checking · Linear Temporal Logic (LTL)

1 Introduction

A smart contract is a computer program written with an intent of running it on
a blockchain [15]. A blockchain, as a substrate of running a smart contract, offers
certain guarantees when events occur in the running of that smart contract; for
example, when the smart contract transmits digital currency to another smart
contract and the latter accepts it, both the sender and the receiver can be assured
that these events have indeed occurred, and that this fact is recorded immutably.

We focus on smart contracts written for the Ethereum blockchain [11].
Ethereum provides a so-called Ethereum Virtual Machine (EVM) within which
a smart contract runs. The language an EVM understands and executes is called
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EVM code [33]. EVM code is a somewhat low-level language, with instruc-
tions similar to those we find in an assembly language. From the standpoint
of expressive power, EVM has been called quasi-Turing-complete; the rationale
from Wood [33] is: “the quasi qualification comes from the fact that the com-
putation is intrinsically bounded through a parameter, gas, which limits the
total amount of computation done”. (In Sect. 4, we address the computational
complexity of verification problems of interest to us more clearly). Typically, a
programmer writes a smart contract in a higher-level language such as Solidity
[10], which is then compiled to EVM code for deployment in Ethereum.

Fig. 1. The Solidity code for Lotto.sol from the curated dataset of Durieux et al. [8]
is to the left. To the right is a portion of its complied EVM code as bytecode to the
top, and the bytecode written as human-recognizable instructions and their arguments
below it. A number in square brackets, e.g., “[48]”, is the byte number within the
bytecode, starting at 0, of the particular instruction + arguments.

Figure 1 shows a smart contract written in Solidity and a portion of its encod-
ing as EVM code. As the Solidity code suggests, there is the notion of a contract,
within which one can specify functions. The address data type identifies a pub-
licly visible contract that resides on the Ethereum blockchain. A function in a
contract may be invoked from another contract, sometimes with arguments. A
function may invoke another contract, for example, via a send() call as shown in
the example code. EVM code, as we show to the right of the figure, is a string
of bytes. Each byte is either an instruction, e.g., PUSH4, or an argument to an
instruction, e.g., 0x0072.

Our Work. Verification as to whether a smart contract contains security vulner-
abilities is a well-recognized problem in both research and practice. There are a
number of software tools that address this; we present some of the most closely
related to our work in Sect. 2. Our work is motivated by a recent empirical assess-
ment of several such tools [8], which points out that they suffer high numbers
of false positives and false negatives when they check for vulnerabilities from
common occurring classes [23] in real-world smart contracts. (A false positive is
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a tool reporting a vulnerability where there is none. A false negative is a vulner-
ability that goes undetected by the tool). We think that the underlying reason is
that existing tools “try to do everything, none of them well.” Said differently, the
poor performance of existing tools leads us to ask: if we were to focus on even
one class of vulnerabilities only, can there exist a tool that for real-world smart
contracts, is highly effective? Lest one mistakenly think that checking for only
one class is somehow “easy”, as we discuss in Sect. 3, even a basic verification
problem, such as whether a contract is guaranteed to halt when run on some
input, is intractable for Ethereum smart contracts.

In this work, we answer the above question in the affirmative. Our proof is
by construction—we discuss our reduction to model-checking, the use of Linear
Temporal Logic (LTL) to meaningfully encode the property to be checked for,
and the use of the off-the-shelf model checker nuXmv [3]. Our choice of the class
of vulnerabilities is unchecked low-level calls. An unchecked low-level call is an
invocation to another contract whose return value is not checked. As we estab-
lish in Sect. 3, this problem is undecidable in general, and PSPACE-complete
under the finitizing assumptions we adopt. Our empirical results on almost 200
contracts from the benchmark of Durieux et al. [8] suggest that our approach is
highly effective—we see zero false positives and negatives.

The remainder of this paper is organized as follows. In the next section, we
discuss related work. In Sect. 3 we address the computational complexity of the
problem. In Sect. 4, we present our reduction to model-checking and encoding in
SMV. In Sect. 5, we discuss our empirical validation. We conclude with Sect. 6
in which we discuss also future work.

2 Related Work

Our work addresses checking a smart contract for security vulnerabilities that
belong to commonly occurring classes of such vulnerabilities. As such, our work
is related to work that proposes classifications of security vulnerabilities in smart
contracts, and tools and techniques for detecting vulnerabilities. From the stand-
point of tools, we focus on one class of vulnerabilities only, but are highly effec-
tive for that class. That is the key distinction between our work and all prior
work on tools. We leverage a particular classification [23], but otherwise make
no contributions to that aspect.

From the standpoint of classifications, several exist—Rameder [27] and Tol-
mach et al. [31] provide comprehensive surveys. We adopt the classification and
taxonomy of DASP [23], which in turn is adopted by the empirical work of
Durieux et al. [8]. The work of Durieux et al. [8] proposes two datasets of smart
contracts which they have made available publicly [9], and using which they have
assessed several existing tools and demonstrated that those tools suffer from too
many false negatives. One of these is a curated set, with several smart contracts
in each of the categories of DASP. Their other dataset is a “wild” dataset of
several thousand smart contracts. We rely on their datasets for our empirical
assessment. There have been other datasets that have been proposed, such as
that of Ghaleb and Pattabiraman [13].
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As the surveys of Rameder [27] and Tolmach et al. [31] express, there are
several tools which analyze smart contracts for security vulnerabilities; a com-
prehensive discussion is beyond the scope of this work. In the remainder of this
section, we survey several of the prior tools. We emphasize that none, to our
knowledge, claims to suffer zero false positives and negatives for even one class
of security vulnerabilities. That is the main difference between our work and
prior approaches.

A piece of work that is closest to ours is that of Nehai et al. [24]. That work
proposes applying model checking, and specifically the use of nuSmv, to “cap-
ture the behaviour of the Ethereum blockchain, the smart contracts themselves
and the execution framework”. Many of the other tools are based on verification
techniques that check for security assurance and correctness of smart contracts.
For example, Bhargavan et al. [2] create a framework that compiles contracts
written in Solidity to F* and checks for, e.g., safety with respect to runtime
errors; and decompiles EVM bytecode into F* code to check for low-level prop-
erties such as bounds on the amount of gas required for a transaction. Other
tools, such as the one created by Amani et al. [1] extend formalisations of the
Ethereum Virtual Machine and use theorem provers such as Isabelle or Coq to
check for reachability properties in smart contracts, such as termination. There
are symbolic execution frameworks, such as Manticore [21], which implement
state exploration, but do not target smart contract vulnerabilities that can be
exploited by attacks.

Oyente [19], however, does so. This symbolic execution tool uses the Z3 solver
to determine the feasibility of execution traces of smart contracts (input as byte-
code) to detect given vulnerabilities such as transaction-order dependence. Kalra
et al. [16] argue that Oyente is neither sound nor complete and propose a sym-
bolic model checker, Zeus, for Solidity-based smart contracts which categorizes
them into incorrect and unfair groups, and further detects vulnerabilities such
as re-entrancy in the former and ‘incorrect logic’ in the latter. Zeus inserts asser-
tions based on vulnerabilities into smart contract code and, after translation to
LLVM bitcode, uses the SeaHorn verifier to determine assertion violations. Zeus’
soundness claims are refuted by the creators of eThor [30]: a sound and static
analyzer for bytecode. This tool creates semantic abstractions based off of the
blockchain environment, gas modelling, the memory model, and the callstack
and scans for reachability properties to search for re-entrancy bugs.

Several other symbolic execution tools exist. MadMax [14] uses another tool,
Vandal [4] to translate EVM bytecode to an intermediate representation and
then detects out-of-gas exceptions. Maian [25] (based on Oyente) detects three
types of vulnerable contracts: suicidal (can be killed by anyone), prodigal (can
send Ether to anyone), and greedy (cannot have Ether extracted from). Mythril
[22] uses a symbolic interpreter for EVM bytecode known as LASER to find
abstract program states and reason about their reachability (using a Z3 solver)
given certain conditions to determine vulnerabilities (such as integer overflow);
then uses concolic testing to deign whether the vulnerabilities are exploitable.
Securify [32] is a security analyzer for smart contracts that takes as input the
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bytecode of a contract and checks for compliance and violation security patterns
such as locked Ether.

teEther [18] is an automated framework which scans bytecode for instructions
(such as CALL) that can be used to extract Ether, and then creates exploits.
Another tool (which focuses on instructions related to inter-contract reasoning,
memory, and hash functions) is the bounded model checker EthBMC [12]. The
creators of the tool test it against others upon toy smart contract examples
before conducting a large-scale analysis and comparing their results with those
received from their experiments using teEther and Maian. That work has since
been followed-up by those of Perez et al. [26] Zhang et al. [35], Rodler et al. [28],
Chinen et al. [7], Cecchetti et al. [5] and Chen et al. [6]. All these pieces of
work except those of Rodler et al. [28] and Cecchetti et al. [5] address detection
of exploits and vulnerabilities; those two pieces of work propose defenses, the
former via patching and the latter via a new type system.

Finally, specifically as it pertains to unchecked low-level calls, there is work
on simply replacing such calls entirely in the source-code [34]. However, that
work has its own set of limitations, such as the inability to identify all low-level
calls, and whether the replacement indeed results in a contract that is equivalent
to the original.

3 Computational Complexity

Our approach, which we discuss in the next section, is based on model-checking.
In this section, we articulate the underlying foundations in computational com-
plexity. We have two sets of results: that in general, checking for unchecked
low-level calls in Ethereum smart contracts is undecidable, and that under fini-
tizing assumptions we make, it is PSPACE-complete. To establish these results,
we appeal to the halting problem for smart contracts. We omit full proofs on
account of lack of space, and provide sketches only.

As we mention in Sect. 1, EVM has been called quasi-Turing-complete, with
the quasi- being attributed to the fact that a sequence of computations is
bounded by a parameter called gas, and every computation consumes some gas.
Therefore, assuming that the value for gas is bounded by a constant, EVM is
not Turing-complete. However, in our observation, gas is not the only limiting
factor in this regard. The only storage offered in EVM are: (i) a program counter,
which is 256 bits, (ii) a stack, which has a maximum size of 1024, each entry 256
bits, (iii) memory, addressed by 256 bits, each entry 8 bits, and, (iv) storage,
addressed by 256 bits, each entry 256 bits. As all of these are bounded by con-
stants, we do not have the unboundedness required to encode an arbitrary Turing
machine. However, as the number 2256 is large, certainly from the standpoint
of verification in practice, we may assume that any value whose upper-bound is
2256 is unbounded.

Theorem 1. If we assume that any value bounded by 2256 only is unbounded,
and gas is unbounded, then whether a run of a contract encoded in EVM halts
on some input is undecidable.
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Our proof is by construction—we have an encoding of a Turing machine in
Solidity, which then compiles to EVM. Our Solidity code uses the uint data type
which is 256 bits for anything that may be unbounded, for example, the number
of states, the size of the alphabet and the tape.

Corollary 1. Detecting unchecked low-level calls in EVM is undecidable.

We can reduce the halting problem that underlies the proof for Theorem 1
to the complement of the problem of finding unchecked low-level calls, and then
appeal to the fact that a problem is undecidable if and only if its complement
is undecidable. We wrap every instruction that causes a smart contract in EVM
to stop running with a CALL instruction and a check of its return value. Thus,
the contract halts if and only if the return value from the CALL is checked. There
are only a few instructions in EVM that cause a contract to stop running, e.g.,
STOP and REVERT.

Theorem 2. Suppose the number of memory and storage locations allocated and
accessed by a smart contract C is at worst polynomial in the size of C and in
log g where g is the value of the gas parameter. Then the problem of determining
whether C terminates on some input is PSPACE-complete.

The proof for PSPACE-hardness follows from an encoding of a Linear-
Bounded Automaton (LBA) using our construction for a Turing machine to
which we refer in the Proof for Theorem 1, and the fact that the halting prob-
lem for LBAs is PSPACE-hard. To prove that the problem is in PSPACE, we
can construct a non-deterministic algorithm, denote it A, to decide the prob-
lem such that A allocates at worst polynomial space only. We then appeal to
Savitch’s theorem that NPSPACE = PSPACE [29]. A simply allocates the
maximum space that may be needed and runs the smart contract on the input.
For any uninitialized or unknown value, e.g., the return from a CALL to an exter-
nal contract, A chooses a return value non-deterministically. We know, from our
assumptions, that the space A must allocate is at worst polynomial in the size
of the input.

We need the “ log” qualification for the input gas g for the reason that g may
be encoded, for example, in binary, in which case, under the assumption that
each instruction consumes constant gas, the contract C may run, on some input,
for time Θ(g), and therefore may allocate space as much as Θ(g), where Θ(·)
represents a tight asymptotic bound.

Corollary 2. Determining whether an EVM contract has an unchecked low-
level call under the finitizing assumptions of Theorem 2 is PSPACE-complete.

Similar to the proof for Corollary 1, we appeal to the fact that a problem is
PSPACE-complete if and only if its complement is PSPACE-complete.
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4 Reduction

From Corollary 2 in the previous section, we have a sufficient condition for our
problem to be PSPACE-complete, and therefore, reduction to model checking
that is complete for PSPACE is an appropriate approach. This is exactly what
we do. Our implementation encodes the model checking problem in SMV [3], but
more abstractly, the output of our reduction is a Kripke structure [17]. To us, a
state is uniquely determined by the value of several variables that we associate
with a state. We then define state-transitions between those states, some of which
are non-deterministic. The variables are for the basic components of the state
of an EVM: (1) The stack, memory and storage of the EVM, (2) the current
stack-head, (3) the next instruction to be executed, and, (4) the gas remaining.

Program Counter. To keep track of the instructions, we have a variable which
we call operationName, which is an enumeration of every instruction that appears
in the EVM code that is input, annotated with its byte location. For example,
suppose we have the EVM code 6005600401. This corresponds to:

[ 0 ] PUSH1 0 x05
[ 2 ] PUSH1 0 x04
[ 4 ] ADD

Then, our reduction would introduce:

operationName : { begin , PUSH1_0 , PUSH1_2 , ADD_4 , end } ;

The begin and end are keywords we introduce to delimit the sequence of instruc-
tions. The state-transitions of the instructions would be the following (in SMV
syntax, the value of the variable in the next state is shown after the colon, “:”):

next ( operationName ) := case
operationName = begin : PUSH1_0 ;
operationName = PUSH1_0 : PUSH1_2 ;
operationName = PUSH1_2 : ADD_4 ;
operationName = ADD_4 : end ;
TRUE : operationName ;

esac ;

Unless we have a JUMP or JUMPI instruction, our program counter increments
sequentially, i.e., by the number of bytes the previous instruction + operands
consume. We maintain also an operationArray[ ], which identifies an operand, if
any, in the EVM code for any operation. In the above example of two pushes and
then an add, the argument to each of the two pushes is in the EVM code, and the
argument to the add is not. Consequently, we would initialize and never change
our operationArray[ ] as follows (0udx... is the SMV syntax for an unsigned
x-bit value):
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operationArray [ 0 ] := 0 ud8_5 ;
operationArray [ 2 ] := 0 ud8_4 ;

Stack, Memory and Storage. For each of the stack, memory and storage, we
maintain arrays. For the stack we maintain also a stack_head. We also exercise
a design choice on the size of each entry in the stack. While we can certainly set
those to 256-bit, for most smart contracts we observe in the benchmarks, this is
too large. We can estimate the size we need via a simple static analysis for the
PUSH instructions, and other instructions such as ADD and MUL that increase the
size of a stack-entry. In EVM code, the push instructions are PUSH1,. . . ,PUSH32,
where PUSHx means x bytes are pushed. For memory and storage, the situation
is different. There are two memory-store instructions, MSTORE, which stores 256
bits, and MSTORE8, which stores 1 byte—we find only the former in the datasets
we have adopted [9]. There is only one storage-store instruction, SSTORE, which
stores 256 bits. However, the value stored in memory and storage comes from
the stack. Therefore, we again rely on our estimate of the maximum size stored
on the stack for the sizes to be stored in memory and storage. Also, with the
stack, in EVM, the maximum number of entries is 1024. However, this is again
an upper-bound that is often loose. A count of the number of PUSH instructions
gives us a tighter upper-bound on the number of possible entries in the stack. We
may need to account for the possibility that the same PUSH instruction may be
executed more than once. This depends on the specific property we are checking
for. For unchecked low-level calls, we know that we need to account for at most
a constant number of executions of a PUSH instruction.

stack : array 0 . . 9 of unsigned word [ 1 6 ] ;
stack_head : 0 . . 9 ;
memory : array 0 . . 3 of unsigned word [ 1 6 ] ;
memory_offsets : array 0 . . 3 of unsigned word [ 1 6 ] ;
storage : array 0 . . 4 of unsigned word [ 1 6 ] ;
storage_keys : array 0 . . 4 of unsigned word [ 1 6 ] ;

The memory_offsets and storage_keys are needed to identify to exactly which
memory and storage locations a corresponding instruction refers. Consider, as
an example, the following EVM code.

[ 0 ] PUSH1 0 x80
[ 2 ] PUSH1 0 x40
[ 4 ] MSTORE

The MSTORE instruction takes two arguments, both off the stack: an offset or
location within memory, and the value to be stored. In the above example, the
offset is 0x40 and the value to be stored is 0x80. We would store the offset in some
index, call it i, of memory_offsets[ ], and ensure that the value in memory[i] is
the value stored at that offset. We discuss below under “Instructions that need
more than one transition” as to the manner in which we handle the MSTORE, SSTORE
and their corresponding load instructions via state-transitions in our model.
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The stack[ ] array changes based on (i) the particular instruction, and (ii)
the current value of the stack_head. Given the quirks of the SMV syntax, we need
to enumerate every possible next-state value of each entry of the stack. Thus, if
our stack[ ] was specified to be of 10 entries, indexed 0...9 as we show above,
then, we would have a next(stack[i]) case statement for every i = 0, . . . , 9. For
example:

next ( stack [ 6 ] ) := case
. . .
operationName = PUSH1_2 & stack_head = 6 : operationArray [ 2 ] ;
operationName = DUP2_4 & stack_head = 6 : stack [ 4 ] ;
. . .

To explain the above, we first clarify that our stack grows downwards, i.e., as we
push more items onto the stack, the value of stack_head increases. Also, the value
of stack_head is the next entry in the stack; thus, for example, if stack_head is
6, then the top of at the stack is at 5, and we initialize stack_head to 0. Thus,
in the above snippet, the only way the value in stack[6] can change in a state-
transition is if the current value of stack_head is 6. If the instruction is PUSH1,
then we get the value to be stored in stack[6] from our EVM code, which in
turn is in our operationArray[ ] (see above for a discussion of this variable).
If the instruction is DUP2, we need to make a copy of the value from one below
the current head of the stack, i.e., stack[4], and store that in stack[6]—DUPx
pushes a copy of the value that is at depth x in the stack, where x = 1 refers to
the top of the stack, x = 2 one below the top and so on.

The stack_head also changes based on the instruction and the current value
of stack_head. As we say above, the stack grows downwards, i.e., we increment
the stack_head as items are added to the stack and decrement it as items are
popped. The only other detail is that in our implementation, our stack is circular,
and every change to the stack_head is performed modulo its maximum size. This
has enabled us to quickly experiment with small stack-sizes albeit while risking
correctness, specifically, false negatives.

next ( stack_head ) := case
operationName = CALL_0 : max (0 , stack_head + 4) mod 10 ;
operationName = SWAP4_1 : stack_head ;
operationName = POP_2 : max (0 , stack_head + 9) mod 10 ;
. . .

In the above example, the maximum size of the stack has been set to 10, with
the items indexed 0, . . . , 9. The CALL instruction pops 7 items off the stack and
pushes 1, for a net of 6 items popped. Consequently, we update the stack head
to stack_head + 4 mod 10. The SWAPx instruction swaps item at depth x + 1
on the stack with the item at the top; it does not change stack_head. The POP
instruction decrements stack_head by 1.

Instructions that Need One Transition Only. We observe that for most instruc-
tions in EVM, we require one state-transition in our model only. The simplest
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examples are those involving basic arithmetic, such as ADD and MUL which are
supported directly in SMV. For example:

next ( stack [ 2 ] ) := case
. . .
operationName = MUL_28 & stack_head = 4 : ( stack [ 2 ] ∗ stack [ 3 ] ) ;
. . .

next ( stack_head ) := case
. . .
operationName = MUL_28 : max (0 , stack_head + 9) mod 10 ;
. . .

The above shows that if our instruction is MUL, then our stack decreases by a net of
1—MUL pops two items off the stack, multiplies them and pushes the result. Thus,
if our current stack_head is 4, we multiply stack_head[2] and stack_head[3] and
store the result in stack[2].

There are also numerous other examples of instructions that require one state-
transition only in our model. For example, the CALL instruction is crucial for us
in our empirical validation on unchecked low-level calls (see Sect. 5). For our pur-
poses, modeling CALL is somewhat surprisingly straightforward. The instruction
causes another contract to be called with optional arguments. If we return from
the other contract, we get a return value. From our standpoint, CALL causes a
net decrement of 6 to the stack, and the return value that is stored on the top of
stack is chosen non-deterministically, because we do not know what value will be
returned. In the example above, we have shown the manner in which stack_head
changes with a CALL. The following shows the change to an entry in the stack.

next ( stack [ 1 ] ) := case
operationName = CALL_23 & stack_head = 8 : CALL_23_return_value ;
. . .

The variable CALL_23_return_value is declared but never assigned a value; the
model checker non-deterministically chooses a value for it.

Instructions that Need More than One Transition. For the other instructions,
we require more than one transition in our model. Consequently, we need to
be careful that any termination condition we specify to the model checker does
not match an “intermediate” state because such as state would not exist in the
EVM. Two examples of such instructions are JUMP (unconditional jump) and
JUMPI (conditional jump). We adopt the mnemonic “_DUMMY_” to refer to the
intermediate state. Below, we discuss JUMP; JUMPI is realized similarly. The only
valid destination for a jump instruction is a byte that has the opcode JUMPDEST.
Consequently, in our reduction, we only need to check to which JUMPDEST a par-
ticular JUMP or JUMPI seeks to jump in a particular instance. Suppose we have
a JUMP instruction in the EVM code at byte #7, and a JUMPDEST at byte #12.
Then, our operationName would be declared as:

operationName : { . . . , JUMP_7 , JUMP_7_DUMMY , . . . , JUMPDEST_12 , . . . } ;
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For each JUMPDEST_x, we introduce a boolean variable jump_destination_is_x. Its
value is initialized and changes as follows (as before, we assume that our stack
has maximum size 10, indexed 0, . . . , 9):

init ( jump_destination_is_12 ) := FALSE ;
. . .
next ( jump_destination_is_12 ) := case
. . .
operationName = JUMP_7 & stack_head = 6 & stack [ 5 ] = 0 ud16_12 : ←↩

TRUE ;
. . .

That is, we set the value of jump_destination_is_12 to true if and only if the
current operationName is a JUMP, and the value at the head of the stack is the
same as the byte number of this JUMPDEST. The reason is that in EVM, JUMP’s
operand, which is the destination of the jump, is the value at the top of the stack.
Note also that no two jump_destination_is_x variables can be simultaneously
true. If the instruction is JUMPI instead, we would check also whether the value
immediately below the top of stack, i.e., stack[4] in our above example, is > 0,
because that is exactly where the condition for the JUMPI resides. We can then
carry out the state-transition that effects the changes to operationName to the
appropriate JUMPDEST. That is, we effect one state-transition to setup the correct
destination for the jump (and check the condition, in the case of JUMPI), and a
next state-transition to correctly update the operationName, i.e., our version of
the program counter.

next ( operationName ) := case
. . .
operationName = JUMP_7 : JUMP_7_DUMMY ;
operationName = JUMP_7_DUMMY & jump_destination_is_12 : JUMPDEST_12 ;
operationName = JUMP_7_DUMMY & jump_destination_is_317 : JUMPDEST_317 ;
. . .

For MSTORE and SSTORE, we use “_DUMMY_” variables for a similar reason that
we need to setup the location at which we store. The only difference between
MSTORE and SSTORE is that the former stores a value at at offset within memory
while the latter’s storage space is indexed by a key, often computed by exercising
a cryptographic hash function, Keccak-256 or SHA-3. Corresponding to the hash
function, EVM has an instruction, byte value 0x20, opcode KECCAK256 [33]. The
computation of this hash value has itself been identified in some prior work as
a source of difficulty in verifying smart contracts [12]—owever, we observe that
while we could certainly implement either of those hash functions in SMV, we
have simplified the work by realizing the Adler-32 checksum instead [20]. From
our standpoint, there is no consequence except ease of implementation.

Gas. We capture gas in a variable, and use the various values on consumption
of gas that are specified for EVM [33].
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4.1 Unchecked Low-Level Calls

An unchecked low-level call is an invocation of a function of another contract
from this contract. If and when that call eventually returns, a return value is
pushed onto the stack of this contract. A contract is vulnerable if and only if
there exists an instance of execution in which that return value is not checked. In
Solidity, there are a number of ways to call another contract, e.g., call(), send()
and staticcall(). In EVM code, there is one way only: the CALL instruction.
Also, in Solidity, there are several different ways of checking the return value from
such a call; e.g., using an if statement or by invoking the require() convenience
function. In EVM code, the check is achieved using the ISZERO instruction. We
adopt the algorithm in Fig. 2 to find unchecked low-level calls.

Fig. 2. Our algorithm for finding unchecked low-level calls.

In trim_contract(), we first find each instance of the CALL instruction. We
then scan forward in the EVM code from that instruction till we hit an instruc-
tion that we consider terminating from the standpoint of our trimming: JUMP,
JUMPI, STOP, RETURN, REVERT or another CALL. We expect there to be at least one
ISZERO before we hit one of these instructions; if not, we report that the contract
is vulnerable in Line (4) of the above algorithm. If we proceed past Line (4) for
a particular snippet s, we know that in s, the CALL is followed by at least one
ISZERO. Corresponding to each ISZERO in a snippet s, we ask whether it checks
the return value from the CALL. Assume that we have an ISZERO in byte # 12 and
another in byte # 35 of the snippet. We first generate a random value, 59061 in
the example below. We then ask whether there exists a reachable state in which
the top of the stack contains that value when we hit any ISZERO instruction that
follows the CALL in the snippet. In the example below, the maximum stack-size
is 10, with the entries indexed 0, . . . , 9.

LTLSPEC G ! (
( CALL_0_return_value = 0 ud16_59061 & stack_head = 1 & stack [ 0 ] = ←↩

CALL_0_return_value & operationName = ISZERO_12 ) |
( CALL_0_return_value = 0 ud16_59061 & stack_head = 1 & stack [ 0 ] = ←↩

CALL_0_return_value & operationName = ISZERO_35 ) |
( CALL_0_return_value = 0 ud16_59061 & stack_head = 2 & stack [ 1 ] = ←↩

CALL_0_return_value & operationName = ISZERO_12 ) |
. . .



Finding Unchecked Low-Level Calls with Zero False Positives and Negatives 317

CALL_x_return_value is a variable we declare and allow the model checker to
assign non-deterministically. If the model checker finds a counter example to the
above LTLSPEC, then that is evidence that some instance of ISZERO that follows
the CALL in the snippet s checks the return value from the CALL, and therefore no
vulnerability exists. Otherwise, we know and report that a vulnerability exists.
We recognize that there is a small probability of a false negative here because
it is possible that the top of the stack takes the random value we generate,
59061 in the above example, not because it corresponds to the return value from
the CALL, but on account of some other computations. We can simply repeat to
exponentially decrease this probability.

5 Empirical Validation

A model-checker that can take specifications in SMV as input is nuXmv [3],
and that is indeed what we have used. We have employed it in bounded model-
checking more, where we infer the bound from the size of each contract snippet
we check. For our empirical validation, we use the curated and “wild” datasets
of Durieux et al. [8]. Their curated dataset comprises smart contracts written
in Solidity classified into the 10 categories of DASP [23]. One of these classes is
unchecked low-level calls. Each contract in the curated set is labelled where the
vulnerability exists. For example, the contract in Fig. 1 from Sect. 1 suffers from
an unchecked low-level call in the line winner.send(winAmount).

When one considers the smart contracts from the entire curated set, we know
that at least one contract in every file within the unchecked_low_level_calls sub-
set contains the vulnerability. But, there may also be contracts in the curated
set outside of that subset that suffer from the unchecked low-level calls vulnera-
bility. Consequently, we organize our discussions below as follows. We first focus
on files in the unchecked_low_level_calls subset of the curated set. As every one
of those files contains the vulnerability, we cannot report any false positives. The
question is whether we report any false negatives. We then consider the remain-
der of the files from the entire curated set. We report the manner in which our
approach performs on them; in this case, both false positives and negatives are
possible. Finally, we discuss our assessment on the “wild” dataset.

Fig. 3. Table with statistics and our empirical results.
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The table in Fig. 3 reports statistics on the datasets and our results. The first
row of the table reports the number of smart contract files in each of the three
datasets. The second row reports the number of files we assessed empirically
against our implementation: it was all the files from the curated set, and 100
files chosen randomly from the “wild” set. The third row reports the total number
of contracts in the Solidity code in each dataset, and the fourth row reports the
total number of CALL instructions in the EVM code across all the contracts in
the files we assessed. Thus, as we say in the table in the fourth row, we assessed
more than 1000 contract snippets in the algorithm we discuss above. The fifth
row, “# we determine vulnerable”, is the number of those instances of the CALL
instruction that we deem to be vulnerable. The final two rows reports the number
of false positives and negatives, which are both zero. Our unit of measurement
for the number of false positives and negatives is at the granularity of a file.

Comparison to Other Tools. The work of Durieux et al. [8] allows us to com-
pare our results with prior tools. Their work reports “Vulnerabilities identified
per category by each tool,” (Table 5 in that work) from which we get a lower-
bound on the number of false negatives for those tools. We observe that for
unchecked low-level calls, every tool they studied suffers from a high number of
false negatives—the best performer, Mythril [22], was able to detect only 5 of
the total 12 instances of vulnerabilities. Our work is on a later, larger version
of the dataset used in Durieux et al. [8] and we achieve zero false positives and
negatives on the larger dataset.

Other Vulnerabilities. While the above results suggest that for unchecked low-
level calls, our approach is highly effective, a natural question is whether we can
extend it to address other commonly occurring classes of vulnerabilities in smart
contracts. We think that the answer to this question is ‘yes’. For example, it is
possible for us to adopt the reduction from Sect. 4 with a different algorithm and
LTL property than the ones from Sect. 4.1 to address reentrancy [23]. We leave
this for future work.

6 Conclusions and Future Work

We have taken a different mindset than existing work towards checking for secu-
rity vulnerabilities in smart contracts. Rather than trying to check for several
different kinds of such vulnerabilities and as a consequence, building a tool that
suffers high numbers of false positive and negatives as has been observed for
such tools, we validate the hypothesis that if we focus on a class of commonly
occurring vulnerabilities only, we can build a tool that suffers zero false positives
and negatives for real-world smart contracts. The class which is our focus is as
computationally hard as any other class we may want to check for. Our empirical
results on a publicly available benchmark are highly promising—our tool suffers
zero false positives and negatives.
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Some future work is to extend our reduction to be able to detect other classes
of vulnerabilities that are of particular interest in the context of smart con-
tracts, such as reentrancy and front-running [23]. There is also the question as
to whether we can detect new classes of vulnerabilities that are not members of
known, commonly occurring classes. More broadly, there is the question of iden-
tifying characteristics unique to smart contracts from the standpoint of security
vulnerabilities in them.
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Abstract. Multiple opportunities lie at the intersection of multi-robot
systems and distributed ledger technologies (DLTs). In this work, we
investigate the potential of new DLT solutions such as IOTA, for detect-
ing anomalies and byzantine agents in multi-robot systems in a decen-
tralized manner. Traditional blockchain approaches are not applica-
ble to real-world networked and decentralized robotic systems where
connectivity conditions are not ideal. To address this, we leverage
recent advances in partition-tolerant and byzantine-tolerant collabora-
tive decision-making processes with IOTA smart contracts. We show how
our work in vision-based anomaly and change detection can be applied
to detecting byzantine agents within multiple robots operating in the
same environment. We show that IOTA smart contracts add a low com-
putational overhead while allowing to build trust within the multi-robot
system. The proposed approach effectively enables byzantine robot detec-
tion based on the comparison of images submitted by the different robots
and detection of anomalies and changes between them.

Keywords: Distributed ledger technologies · Blockchain · Deep
learning · Anomaly detection · Change detection · Multi-robot
systems · Computer vision · IOTA · Smart Contracts · Distributed
Robotic Systems

1 Introduction

In recent years, byzantine agent detection has become an important aspect of dis-
tributed autonomous systems [6,10,29]. Indeed, with the growth and increasing
ubiquity of autonomous robots, security and safety issues for systems deployed
in the real world have attracted an ever-growing attention in both industrial
and academic areas [18,19]. As robotic systems are deployed in larger numbers,
single autonomous robots have been replaced by fleets of multi-robot systems
that need to coordinate and collaborate. Many multi-robot applications, includ-
ing security monitoring, public safety [32], industrial applications [23,24], and
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detected
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objects at different �mes 
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/ disparity between the robots.

Operational environment

Fig. 1. Conceptual illustration of the proposed vision-based byzantine agent detection
approach with IOTA smart contracts.

Internet of Things (IoT) systems [16], are at risk of being manipulated through
the injection of fabricated or noisy data, or the performance of a large system
might significantly decrease because of a single malicious or byzantine actor.
Consequently, byzantine robots could potentially lead to a failure of the entire
multi-robot operation. Therefore, it is important to be able to detect and neu-
tralize the actions of byzantine agents, particularly if operating in environments
together with humans.

In multi-robot systems, vision-based perception often plays a major role in
use cases involving safety, surveillance, and environment monitoring. Vision-
based approaches to detect changes or anomalies in the environment can poten-
tially be used to also detect differences between sensing data gathered by different
robots operating in a common environment. A majority of visual anomaly detec-
tion problems are focused on a specific class of images and attempt to identify
pixel-level anomalies in them. They mostly require training their deep learn-
ing (DL)-based models using large amount of normal data [5,30,31]. However,
the detection of anomalies based on visual data in more general and potentially
unknown environments easily becomes a challenging task, especially in the con-
text of mobile robotic applications.

Novel approaches in the literature with potential to address the identifica-
tion of byzantine robots in multi-robot systems are blockchain-based solutions
through smart contracts. Blockchain technology was originally developed for the
purposes of financial transactions [17], but it has also been utilized as a dis-
tributed computing framework for applications in general, e.g., within the Inter-
net of Things (IoT) domain, as well as in multi-robot systems. A distributed sys-
tem integrating blockchain technology is a priori capable of delivering a trusted
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and decentralized system between independent and untrusted agents. In the case
of autonomous robots, this allows for decentralized collaborative decision making
without the need for a third-party central organization. By doing so, a consis-
tent global state makes the whole system resilient and fault-tolerant against
byzantine robots.

IOTA smart contracts, designed for IoT devices, are one of the promising
distributed ledger technology (DLT) solutions that can be used in multi-robot
systems. In our previous work [10], we have presented a general partition-tolerant
and byzantine-tolerant framework built on top of IOTA smart contracts and inte-
grated to ROS 2. By leveraging this framework, all non-byzantine robots could
reach a consensus about which robot is byzantine in a decentralized manner.

Blockchains or other distributed ledger technologies (DLTs) have potential
to be an innovative solution to vision applications. However, to the best of our
knowledge, no studies have been conducted on this topic within the context of
multi-robot systems. In this study, we present a framework to detect byzan-
tine robot(s) in a secure network and operating in a common environment by
analyzing the RGB images which are captured by each robot. In the proposed
method we use our previous study [25], presenting a general framework to detect
anomalies and changes between images, to compare in pairs images gathered by
different robots. In this case, an anomaly could be something that has been
moved or removed from the environment or something that does not belong
there, as well as potentially altered or fabricated data.

Our objective is to study what are the implications of integrating more com-
plex byzantine agent detection approaches (e.g., based on vision data) with
blockchain smart contracts, from the perspective of usability, computational
requirements and other potential system-level aspects to consider. This paper
therefore integrates a vision-based approach for anomaly and change detection
in autonomous inspection robots together with IOTA smart contracts, as illus-
trated by Fig. 1. The result is a decentralized solution to anomaly detection that
can be applied to byzantine agent detection within multi-robot systems. The
blockchain serves as a tool for storing agent locations and image hashes, while
smart contracts calculate where and when to perform the anomaly and change
detection once enough data has been acquired. The DL model itself runs on a
trusted server, owing to the impossibility of integrating such complex compu-
tation (deep neural networks) within a smart contract, and therefore limiting
the decentralization of the solution. However, this is a first step towards a fully
distributed implementation where multiple nodes will be able to validate the
output of the DL models. In summary, the main contributions of this work are
the following:

i) The design and implementation of a blockchain-based approach to byzantine
agent detection using IOTA smart contract and vision sensors;

ii) the extension of our previous work in anomaly and change detection for
autonomous inspection robots to comparing data from multiple robots oper-
ating in the same environment towards byzantine agent detection; and
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iii) the integration of the DL models with IOTA smart contracts that trigger
data comparisons after tracking the position of robots and the location of
gathered data.

The rest of the manuscript is structured as follows. Section 2 discusses
related research on blockchain technology in robotic systems, and the prob-
lem of anomaly detection in multi-robot systems. A general introduction on the
background is given in Sect. 3, and a description of our methodological approach
is provided in Sect. 4. Section 5 presents the results, and Sect. 6 summarizes the
work and points to future directions.

2 Related Work

Generally, byzantine and fault detection in robotics can be divided into two
major groups: self-monitoring and group-monitoring anomaly detection. Sev-
eral studies proposed the self-monitoring approach, in which each robot detects
anomalies independently. A framework for detecting mechanical faults and sen-
sor faults in wheeled robots was presented in [33]. Tingting et al [3]. Proposed
an unsupervised anomaly detection model using a sliding-window convolutional
variational autoencoder in terms of time series effect. However, swarm-level
anomaly detection methods analyze the collaboration between robots and the
data collected from the entire swarm [15].

Many studies have addressed byzantine robot detection in multi-robot mis-
sions using blockchain technology. In [28] a blockchain-based approach was
explored for swarm robotics systems with byzantine robots. The authors utilized
Ethereum-based decentralized smart contracts to detect and remove the byzen-
tine swarm members. Their approach was evaluated using a collective decision-
making scenario in which robots must agree on the most frequent tile color in
an environment. In another work [6], a blockchain was used as a secure com-
munication tool in Byzantine Follow The Leader (BFTL) missions. Through
their approach, leader robots guide follower robots to specific destinations under
the threat of Byzantine robots misdirecting them. In addition, some research
conducted to implement blockchain protocols into secure communication multi-
agent systems with unmanned aerial vehicles [1,9].

The immutability of blockchain makes it a secure solution for detecting
anomalous behaviors and attacks in various systems with chains of informa-
tion blocks, such as industrial control systems [8], electricity consumption [11],
and health systems [2]. The authors in [12] implemented smart contracts to store
robot information and compute them to detect anomalies, which were simulated
internal failure, in machinery and register them in the blockchain. Golomb et
al. [7] introduced a collaborative anomaly detection model for a large network of
IoT devices by leveraging blockchain technology in conjunction with extensible
Markov model.

A number of recent studies have focused on detecting visual anomalies
within specific image classes, such as railway images [31], road datasets [26], and
industrial production images [22]. In a recent visual-based blockchain task [21],
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the technology of blockchain was used to provide decentralized communication
between robots so they could find their way back home using common visual
landmarks. In [13], external parties, Oracle, analyze captured images to deter-
mine how many balls need to be picked by UR3 arm. With this information,
smart contracts can securely control robots, ensuring that no one can change
the logic once it is on the blockchain. In another study [14], the authors pro-
posed an approach for securing the robot’s workspace and controlling its action
using smart contracts and 3D image analysis.

3 Background

Through this section, we provide a general overview of our previous works about
the proposed visual anomaly detection framework and the distributed ledger
technology solution for multi-agent systems.

3.1 Deep Feature Extraction and Matching

Matching and extracting feature points are critical steps when a different envi-
ronmental condition, such as lighting and viewpoints, affects image comparison
and matching. SuperPoint is a fully convolutional neural network self-supervised
feature point extraction. It uses a basic detector called MagicPoint that is pre-
trained on a synthetically generated dataset consisting of simple shapes, along
with homographic adaptation for more training samples from each image. There-
fore, it can detect interest points more sensitively than traditional corner detec-
tors [4].

After the feature extraction process, various methods can be used to take key
points and their descriptors in image pairs and match them with corresponding
points. SuperGlue is a feature point matching method based on graph neural
networks that show better performance for points extracted by the SuperPoint
model. The method is based on two layers, a graph neural network, and an opti-
mal matching layer [27]. Using a differentiable Sinkhorn algorithm, matchable
points are efficiently paired, and non-matchable points are rejected.

3.2 IOTA Smart Contracts

As a subset of the wider DLT domain, blockchain systems have grown in pop-
ularity in a variety of use cases. Through smart contracts, specific tasks can be
executed when certain conditions are met in distributed applications. The most
commonly used blockchain platform for swarm robotics is Ethereum, which uses
Turing-complete smart contracts written in Solidity [29]. Ethereum’s intrinsic
scalability is the main limitation due to its classical single-chain structure. The
Tangle [20], a directed acyclic graph (DAG)-based DLT, was introduced to solve
some of the fundamental weaknesses in classic blockchain systems. IOTA DLT
uses the Tangle as its underlying structure, where transactions are the primary
data structures. A graph-based ledger rather than a linear chain, which is the
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Fig. 2. High-level overview of the proposed system architecture. In the current imple-
mentation, a trusted processing cloud performs the vision-based anomaly detection. In
the future, this workload can be distributed and validated through the smart contracts,
but will still run off-chain.

concept behind Tangles, would make it more flexible in terms of network parti-
tioning. Multi-robot systems relying on IOTA are therefore unique from a DLT
perspective.

As part of ensuring the Tangle’s robustness and security, the IOTA founda-
tion has a centralized coordinator that confirms valid transactions. The second
version of IOTA, Shimmer, was launched in order to achieve full decentralization.
In this work, we use the Go implementation of Shimmer called GoShimmer. As
the data structure in the Tangle is graph-based, the implementation of IOTA’s
smart contract mechanism was challenging. As a solution, the IOTA foundation
introduces the IOTA Smart Contract Platform (ISCP) as a second layer on top
of the Tangle. In this second layer, Wasp, which is the implementation of ISCP
in Go, creates a chain.

4 Methodology

Based on the proposed framework for using IOTA smart contracts with ROS 2
in [10] for a multi-robot system, we propose the system depicted in Fig. 2. Every
robot in this system and the processing cloud runs an instance of GoShimmer
and Wasp nodes to form the IOTA network and enable running smart contracts.
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For simplicity in this proof of concept, the proposed system is not supporting
partition tolerance, but according to our earlier framework this can be done
easily. All the Wasp nodes create a single chain and deploy the smart contract
on it. The smart contract’s scheme is shown in 1.1. The processing cloud is a
trusted server to perform the operations which needs high computation power
that can not be deployed on the smart contract.

Every robot in the system publishes its position and images captured by
the camera. Since the publishing rate of the position and images are different
we use a synchronization node in ROS 2 which checks the timestamp of images
and positions and associates a position for each image because the positions
are published at a higher rate. Every image is sent to the storage unit of the
processing cloud. Then the hash of the image, and the position are submitted to
the submitPair function of the smart contract.

The smart contract is mainly responsible to find the pairs of images to be
compared and determining which robot is behaving maliciously based on the
comparison results. We define intersections for data comparison as the locations
where at least 3f + 1 robot have visited and where images are available with at
least a certain overlapping viewpoint (calculated based on position and orien-
tation of the robots). The value f is the number of byzantine robots that our
method can tolerate. The schema of the smart contract for IOTA is show in
the Listing 1.1. The Pair is a struct defined to store the hash of an image, its
position, and orientation. Every robot uses the submitPair method to store the
images. This function then calls the findIntersections function.

To find the intersections, the findIntersections function divides the map
into overlapping 2d × 2d cells. The amount of overlap is d among the adjacent
cells. In this way every image will be assigned to four adjacent cells based on the
location of image. After associating every image to the cells, inside each cell an
exhaustive search is performed to find a set of 3f + 1 images each from different
robot that has each pair of them has maximum distance of d and maximum
orientation difference of δ. By using this method we can make sure that any set
of images that have maximum distance of d and maximum orientation difference
of δ will not be missed and it is computationally faster than searching over all the
locations since it is related to number of cells instead of number of locations. In
each cell, at most one intersection is selected. This also prevents the byzantine
robot to compromise from submitting several correct images and one altered
image with same position.

The set of images found by findIntersections function is stored in the sets
state variable of the smart contract. On the other hand, the processing cloud
polls the smart contract by getIntersection functions. The cloud retrieves the
set. Based on the hash of images in the set, corresponding images are extracted
from the storage unit. Then every two pair of the images are passed to Visual
Anomaly Detection module. The result of this module is a binary value indicating
if the two images have any difference of not. The cloud submits this results by
submitComparison function to the smart contract.
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Listing 1.1. Smart Contract Schema.

name : Vis ionByzContract
d e s c r i p t i o n : Vis ion based byzant ine de t e c t i on smart cont rac t
events : {}
s t r u c t s :

Pair :
// Hash o f the image and i t s p o s i t i o n

CompResult :
// Inc lude s two robot IDs and t h e i r s co r e

typede f s : {}
s t a t e :

s c o r e s : Int8 [ ] // Score o f each robot
s t a t e : Bool [ ] // I nd i c a t e s i f every robot i s

byzant ine or not
i n t e r s e c t i o n s : Pair [ ]
c e l l s : Po s i t i on [ ]

funcs :
i n i t :

params :
f : Int32
n : Int32

submitPair :
params :

pa i r : Pair
submitComparison :

params :
r e s : CompResult

f i n d I n t e r s e c t i o n s :
a c c e s s : s e l f
params : {}

views :
g e t I n t e r s e c t i o n :

r e s u l t s :
p a i r s : Pair [ ]

getRobotState :
r e s u l t s :

s t a t e : Bool

The smart contract keeps a score for each robot based on the results of com-
parisons. A robot’s score is incremented by one if the cloud finds a difference
in the comparison. If we suppose that robots pass by sufficient amount of inter-
sections, the smart contract can detect the byzantine robot based on the scores.
If the robot’s score is bigger than the average of scores by a certain threshold,
the robot can be marked as byzantine. This decision also stored in the smart
contract and can be used for further applications.
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4.1 Visual Anomaly Detection Module

In our last study [25], we proposed a general framework to detect regions that
have changed in pair images as pixel-based visual anomalies. To detect anomalies
in an unknown environment without training, we applied pre-trained deep learn-
ing models for extraction, matching, and segmentation. The performance and
final results of SuperPoint and SuperGlue are influenced by confidence parame-
ters such as keypoint detection and matching confidence thresholds. We applied
a few-shot calibration procedure based on the coefficient of variation of matched
keypoints to find the optimum matching and extracting thresholds.

In order to find overlap areas, we apply masks to both images based on
matched interest points. Then, we segment not matched points using the Mask-
RCNN instance segmentation method. As the segmentation model is not trained
for all objects, we use DBSCAN clustering algorithm to group the remaining not-
matched points belonging to new foreign objects. The proposed system architec-
ture for visual anomaly processing is illustrated in Fig. 2 in the processing clould
unit. When a change is detected in either image of an image pair, the processing
cloud returns True for both suspicious images, otherwise it returns False. With
this, we measure compliance or disparity between pairs of images, and allows us
to build a measure of trust within the system.

5 Experimental Results

This section discusses the results of the byzantine robot detection experiment
with ground robots that was conducted to evaluate the functionality and effec-
tiveness of the proposed framework.

5.1 Experiment Setup

Hardware. The employed multi-robot system in this paper consists of four ground
TurtleBot4 Lite robots built on top of the iRobot Create 3 mobile base with
a Luxonis OAK-D-Lite stereo camera. For localization, we utilize an external
motion capture system with four Optitrack PrimeX 22 cameras and robots move
in the area defined by the motion capture system forming a square of approxi-
mately 48 m2. In this study, we placed several objects from a variety of classes
of the COCO dataset in the environment, along with some unknown objects and
some with unclear textures.

Software. The Turtlebot4 robots run ROS 2 Galactic under Ubuntu 20.04 and
publish camera images at 1 Hz. Localization is running in ROS 1 Noetic with
a 120 Hz publishing rate. Data is forwarded from ROS 1 to ROS 2 with a the
ros1 bridge package and the data from the two topics synchronized for saving
image locations. Each robot explores the environment following a predefined
trajectory and publishes its topics to the trusted storage unit and through the
smart contract interface. Figure 3 illustrates the trajectory of the robots during
the experiment.
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Fig. 3. Trajectories of the different robots during the experiments. The yellow circles
show the locations that the smart contract computes for data comparisons. (Color
figure online)

The trusted processing cloud is represented in the experiments by a computer
with an Intel Core i7-11800H processor and 64 GB of memory. Robots and the
processing unit are running Wasp v0.2.5 and GoShimmer v0.7.4 nodes and they
are all connected to the same wireless network. The smart contract schema
illustrated in Listing 1.1 is implemented in the Go programming language.

5.2 Smart Contract

In this experiment, we choose f = 1 to tolerate at most one byzantine robot. To
find an intersection 3f+1 = 4 robot should therefore visit the same location with
similar orientation to allow for enough overlapping pixel area in the images. In
the smart contract we set d = 0.5m and δ = 0.4 rad to define an intersection. In
Fig. 3, we illustrate the path traversed by each robot. The smart contract outputs
17 intersection sets. All points in these sets are marked by black triangles in the
figure. The CPU utilization time is illustrated in Fig. 4, measured by the Linux
perf tool.

Calibration. The image storage section chooses a few image pairs of the oper-
ational environment with the linear shift to calculate matching and extracting
thresholds in order to calibrate the SuperPoint + SuperGlue model. The opti-
mum matching threshold is Δ = 0.35, and the best keypoint extracting threshold
is λ = 0.001. In both cases the selected value differs from the default value of
Δ = 0.2 and λ = 0.005.
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Fig. 4. Analysis of the CPU utilization time of the submitPair method measured with
the Linux perf tool. The graph demonstrates a low performance impact induced by the
blockchain integration.

Anomalous Object Identification. We now describe experiments we conducted
with the ground robots to demonstrate the effectiveness of the proposed byzan-
tine agent detection process based on the results of visual anomaly detection.

Figure 5 illustrates the result of processing a set of images meeting the
requirements in terms of relative position and orientation. These comparisons
are requested by the smart contract. A two-by-two analysis is conducted for
images from the four robots. As can be seen in the figure, the proposed model
identifies three anomalies related to robot number 1, and one related to robot
number 4, over a total of six comparisons.

Figure 6 shows a series of images received from a byzantine robot and a
normal robot in different places. In inspection or monitoring applications, the
anomaly detected during the visual processing stage could be an object which is
removed or added in the time elapsing between the visits of the different robots
to that location. Alternatively, the same approach serves to identify altered or
manipulated data from potentially malicious agents. Our method is robust to
different classes, so it is capable of clustering non-matched points when they
cannot be segmented by the Mask-RCNN model based on the predefined set of
known objects. There main limitations are, however, with some new texture-less
objects that cannot be detected because of the lack of enough interest points to
match.

In Fig. 6 Robot 1 is the byzantine robot. The graph G = (V,E) in each row
illustrates the comparisons between each pair of images. Vertices of the graph
represents each robot, and edges represents the result of the comparison between
the images from the corresponding vertices. Red edges indicate that there is an
anomaly detected in the comparisons. For every set score of a robot is calculated
by summing the number of red edges connected to its vertex. For example in
the first row, the score of Robot 1 is 3 and the score of Robot 3 is 1. Figure 7
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Fig. 5. Comparison of pair images related to the required locations by IOTA smart
contract. The first two columns represent images submitted by robots. After feature
extraction and clustering, the final results represent different robot pairs.

(a) Byzantine Robot (b) Normal Robot (c) Pixel_level anomaly
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Fig. 6. The image submitted by the byzantine robot (a) and the image submitted by a
honest robot (b). In column (c) the anomalies detected by the visual anomaly detection
module are marked in red. And column (d) illustrates how this comparisons effect the
score of each robot. (Color figure online)
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Fig. 7. Accumulated score of each robot over time and the threshold determining the
byzantine robot. Through the mission, Robot 1 is deemed byzantine having too high
disparity score.

illustrates the accumulated score of each robot over the time. The threshold is
defined 30% bigger than the average of all scores.

In summary, our method is able to effectively identify anomalies or changes
and build a measure of trust (through measuring similarities and disparities
between images submitted by different robots) within the system. Even though
this proof of concept relies on a central trusted server for the actual data com-
parisons, the smart contracts deciding what data is to be compared run in a
decentralized manner, and the results are available through the system with
the smart contract interface. The types of anomalies or changes identified do
not necessarily imply malicious or byzantine behaviour, but rather flag robots
that gather data that differs more from the rest of the fleet. In a practical sce-
nario, a human operator would analyze the data whenever a robot is flagged as
potentially byzantine.

6 Conclusion

This paper presents a solution to byzantine agent detection using IOTA smart
contracts. In comparison with the state-of-the-art, with solutions that are mostly
based on the Ethereum blockchain, the IOTA-based approach presented is theo-
retically more scalable, has lower computational impact and can be implemented
to be partition tolerant. Additionally, we show the integration of more complex
data comparison using deep learning and a vision-based approach to byzantine
agent detection. Our results show that the blockchain layer adds negligible com-
putational overhead, while the anomaly detection algorithm allows for building a
measure of trust among the robots in the system. Our system effectively detects
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a potentially byzantine robot based on the disparity of its data when compared
to the data gathered by other robots. In future works, we aim at fully decentral-
izing the proposed system by adding incentives for robots or other nodes in the
blockchain to run the deep learning inference models, so that their result can
also be validated even when part of the data processing occurs off-chain.
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Abstract. Money transfer is indispensable in our daily lives. For provid-
ing the services, financial institutions bear great costs for verifying cus-
tomers’ identity and behaviors, so called KYC (Know Your Customer)
costs. This paper proposes a comprehensive transaction scheme to reduce
the KYC costs, by sharing customers’ information among multiple finan-
cial service providers. Once a trusted service provider identifies a user
using an image of his/her physical ID such as passports and residence
certificates, the provider issues a digital certificate of the user’s public
key. When the user opens another account at different providers, the
providers can identify the user with the certificate without proceeding
the KYC step. The security analysis shows that the proposed transac-
tion scheme is resistant even to harsh attacks in a network represented
by Man-in-the-Middle (MITM) attacks, as long as the user’s physical
ID is tied to his/her public key appropriately. The performance analysis
shows that the proposed scheme is applicable in terms of computation
time and storage space.

Keywords: Public key infrastructure · Transaction signature · Digital
identity

1 Introduction

Money transfer service is indispensable in our daily lives and also for economic
growth. Meanwhile, for providing secure transfer services, financial institutions
must meet the high-level security requirements. KYC (Know Your Customer)
is the mandatory process of verifying the customer’s identity at opening an
account and during the service use over time, while the cost is high. According
to a Thomson Reuters survey [24], the average cost for a bank to meet the KYC
compliance is 60 million U.S. dollars a year, and some banks spend up to 500
million U.S. dollars annually.

This paper then proposes a comprehensive transaction scheme to reduce the
KYC costs. Under the proposed scheme, service providers can share the users’
identity information with stronger security and also verify the traceability of the
transaction data in the long run. The underlying idea of the proposed scheme
is that a provider issues a digital certificate of a user’s public key. Different
providers can confirm the user’s identity, only by verifying the validity of the
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certificate. Also, the traceability of a transaction data can be attained by its
multi-signature between a sender and a receiver. As a result, it leads for providers
to reduce their KYC costs.

The contribution of this paper is summarized as follows:

– We newly provide a transaction scheme, sharing individuals’ public key as
their identity information. A trusted host service provider issues each user’s
public key certificate after confirming his/her physical ID. When the user
opens another account, providers only need to verify the certificate issued
by the host provider. This mechanism reduces KYC costs for each provider,
possibly resulting in low transaction fee.

– Under the proposed scheme, a transaction is multi-signed by the sender
and the receiver, and stored in the host provider’s database with the multi-
signature. The signed ledger is called as Transaction Signature-based Ledger
(TS-L). As a result, the traceability of the transaction data can be assured
by its signature verification.

– The security analysis shows that the proposed mechanism is resistant to
attacks in a network communication such as Man-in-the-Middle (MITM)
attacks, as long as the user’s physical ID is tied to his/her generated key
pair appropriately. Particularly in remittance, under satisfying the condition,
even if losing a secret key, unintended transactions due to its leakage can be
traced and canceled with a rationale.

– The performance analysis shows that the scheme is easily applicable in terms
of signing and verifying time.

The next section describes the architecture of the proposed scheme. After
Sect. 3 presents its security analysis, Sect. 4 offers the performance analysis.
Section then 5 provides related works. Lastly, Sect. 6 provides a conclusion.

2 System Architecture

This section describes the transaction scheme on the Transaction Signature-
based Ledger (TS-L). A transaction indicates a money transfer between accounts.
Also, as a premise, when each user digitally signs, it is assumed that the user
possesses a secret key and a public key. The proposed scheme relies on FIDO2
(Fast Identity Online) protocol [1] for creating keys and signing in the user’s
device.

2.1 Related Parties

As shown in Fig. 1, exhibiting the transaction execution process, there are seven
roles: a sender, a receiver, a trusted service provider, an inquirer, a conventional
bank, a Time Stamping Authority (TSA), and a Certificate Authority (CA).
Hereafter, “a user” indicates an entity who registers for the service, including
the sender, the receiver and the inquirer. The user can represent either one
individual or one organization. The following describe the parties respectively.
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Fig. 1. Overview of the transaction execution process

Sender: An entity who registers for the transaction service, opens the Transac-
tion Signature-based account (TS account), and sends money to a receiver.

Receiver: An entity who registers for the service, opens the TS account, and
receives some money from the sender.

Trusted Service Provider: An entity who provides the transaction service,
and manages the users’ TS accounts. The trusted service provider generates a
pair of secret and public keys, and the certificate of the provider’s public key is
issued by a CA. The provider is “trusted” in terms of verifying transaction sig-
natures and managing databases appropriately. Specifically, the provider notifies
administrative authorities of the money transfer business and establishes his/her
trust. In a case that the sender and the receiver have opened their accounts under
different providers, multiple providers will be involved in the transaction. Here,
all of the providers are assumed to be trusted, for example, without considering a
case of a collusion with unauthorized recipients to take money from a legitimate
sender.

Inquirer: An entity who registers for the service and refers to a user’s transac-
tion records. It can be the data owner himself/herself or someone authorized by
the data owner.

Conventional Bank: An entity who manages some users’ deposits, when this
transaction service is about to start. The first step to initiate the transaction
service is to inflow money, from existing bank accounts to TS accounts. For this
transfer operation, the conventional bank also registers for the service, generating
a pair of secret and public keys. Then, the bank as a sender and a user who
migrates his/her bank account into his/her TS account, as a receiver, conduct
the transaction procedure in the same as a transaction between individual users.
When the conventional bank switches to a TS account-based system, the trusted
service provider is identical to this conventional bank.

Time Stamping Authority (TSA): An entity who issues timestamps to the
users’ public keys. A time information affixed to each transaction is also assumed
to be conveyed from the TSA to the provider.

Certificate Authority (CA): A trusted party who issues digital certificates
for public keys.
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Fig. 2. Service registration protocol Fig. 3. Transaction execution protocol
under identical provider

2.2 Protocol Design

Under the transaction service based on the TS-L, the six operations are prepared.
The following subsections explain them.

1) Service Registration: First of all, a provider is assumed to hold a pair
of secret and public keys (skP , pkP ). A certificate for the provider’s public key
(CertP ) is issued by a CA. Also, assume that a channel between the provider
and a user is based on a Transport Layer Security (TSL) communication. Any
certificate used for the communication is separated from the provider’ certificate
(CertP ) and the user’s certificate created in the following registration process.
As shown in Fig. 2, at the beginning, user i generates a pair of secret and public
keys (ski0, pki0). The secret key is stored in a secure area in the user’s device.
The user then prepares his/her physical ID information and takes its photo, con-
verting the physical ID into the digital information. The user also takes his/her
profile photo. These digital information for the identity proofing are denoted as
Physical ID in this model. The method to obtain the Physical ID relies on the
digital identity guidelines by NIST [11]. For an individual, the Physical ID is
for example, passport, residence certificate and driver’s license. For an organiza-
tion as the user, it will be some legal documents. One novelty in the proposed
scheme is that the user here creates a signature (σi0) for the Physical ID and
his/her public key (pki0). The signing process is based on the FIDO protocol,
and assumes that a credential such as biometric information is input to the
device. The matching of the credential is confirmed in the device, and the signa-
ture is created. The signing on the image of the physical IDs is possible because
the image information and the signing process can be handled simultaneously
on a device. Note that since the current FIDO protocol does not cover this
scheme, for more specific mechanism for signing the image in the device, fur-
ther analysis is expected. These information (pki0, Physical ID, σi0) are then
sent to the provider. If the provider confirms the Physical ID by image verifi-
cation processing, first creates the user’s account ID (Account ID). Specifically,
the provider here stores the user’s personal information such as his/her address
and birthday from the physical ID information, linking them to the Account ID.
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Fig. 4. Transaction execution protocol under different providers

Afterwards, the provider signs the user’s public key (pki0) with the provider’s
secret key (skP ), outputting the signature (σPi0). This signature is the certificate
of the user’s public key (pki0) issued by the provider. The provider then asks its
long-time signature to the TSA. The process relies on the long-term signature
standard offered by ISO (International Organization for Standardization) [16].
The long-term signature (σ′′

Pi0) is obtained using the TSA’s secret key (skT ).
As a result, the provider stores {Account ID, pki0, σPi0} with its long-term sig-
nature in the user’s public key database, and notifies the user of Account ID,
σPi0 and CertP . Here, the user’s public key registration is completed and the
TS account is opened. The set of {Account ID, pki0, σPi0, CertP } can be used
for identity proofing for different providers from this time on. Hereafter, “a host
provider” for a user indicates the provider who issues the certificate for the user
and records the user’s public key updates.

2) Transaction Execution: As a premise, the proposed system does not pro-
vide operation of deleting or modifying once recorded transaction data, but only
appending operation. The deletion or modification purpose is achieved in can-
celling operation described in the following (2.2.3.Transaction Cancellation).

As shown in Fig. 3, consider a case where a sender i transfers money
to a receiver j. Both of them are assumed to have opened the TS account
under the same provider. After the provider receives a transaction request
from the sender i, the provider obtains the time information (time1) from
the TSA and sends it to the sender. The sender then creates a transac-
tion, i.e., TX1 = {i′ Account ID, j′ Account ID,Amount}. The sender signs the
TX1 using his/her secret key (ski0), outputting the signature (σ1i). After the
provider receives the information (time1, TX1, σ1i, pki0), first the provider con-
firms whether the transfer amount (TX1 Amount) is less than the balance of
the i’s TS account (Bi). If it is satisfied, the provider sends the information
to the receiver. The receiver confirms the content of the transaction and signs
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TX1 with his/her secret key (skj0), creating the multi-signature (σ1ij). The
provider verifies the multi-signature with the sender’s and receiver’s public keys
(pki0, pkj0), referring their account IDs. If it is successful, the transaction record
{time1, TX1, σ1ij} is uploaded on the transaction database of the sender’s and
the receiver’s account. At this time, their balance (Bi,Bj) are also updated. This
is the whole process for transaction execution under one provider.

On the other hand, when the sender and receiver have opened the TS account
under different providers, additional steps are required. Assume that a chan-
nel between the providers relies on a TSL communication. The server certifi-
cates used for the communication are separated from the providers’ certificates
for signing users’ public key (CertPi, CertPj). As shown in Fig. 4, after the
sender i’s provider receives the transaction information from the sender i ((*)
in Fig. 4), this time the provider sends the information (time1, TX1, σ1i, pki0) to
the receiver j’s provider, adding the validity information about the sender’s pub-
lic key {i′sAccount ID, pki0, σPi0, CertPi}. The j’s provider then confirms the
validity of the i’s provider’s public key (pkPi) by using its certificate (CertPi).
If it is successful, next the j’s provider verifies the signature (σPi0) with that i’s
provider’s public key (pkPi). If it is also successful, the j’s provider stores the i’s
public key (pki0) during this session. The receiver then confirms the transaction
TX1, and creates the multi-signature (σ1ij). The j’s provider verifies it using the
sender’s and receiver’s public key (pki0, pkj0). The sender’s public key is the one
stored in the previous step. If it is successful, the j’s provider inserts the transac-
tion data {time1, TX1, σ1ij} on the j’s transaction database. Afterwards, the i’s
provider conducts the same procedure as the j’s provider did. When all the verifi-
cation are completed, the transaction data {time1, TX1, σ1ij} is recorded on the
i’s transaction database Here, the execution process is completed. Although we
have shown the two cases regarding whether the sender’s and receiver’s providers
are identical or not, the mechanism does not vary. The transaction is signed with
the sender’s and receiver’s secret keys, and the provider verifies and records it.
Under the different providers’ case, the additional step is only for the provider
to confirm the validity of the user’s public key by using the valid host provider’s
public key.

In the practical use, the first step to activate this system is to transfer money
from the conventional bank account to the TS account. The conventional bank
is now assumed to be different from the provider, therefore the bank registers for
the service and generates the bank’s secret and public key. When user i transfers
money from the user’s bank account to the user’s TS account, he/she sends a
transfer request to the bank via the provider. According to the request, the
bank creates the transaction TXB = {i′s bank Account ID, i′s TS Account ID,
Amount}. The bank signs the TXB with its secret key, creating the signature.
When confirming the transfer (TXB), the user signs with his/her secret key,
creating the multi-signature. The multi-signature is verified with the bank’s key
and user’s public key by the provider. If it is successful, the money transfer
(TXB) is executed. The money Amount is subtracted from the i’s bank account
in the conventional bank system, and the Amount is added to the TS account,
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Fig. 5. Implementations of the TS account Fig. 6. Inquiry protocol

with the balance updated. Even when the provider is the conventional bank itself,
and the bank migrates the existing system to the TS accounts-based system,
the same procedure is conducted. In that case, the bank verifies the transaction
which is multi-signed by the bank itself and the user. Figure 5 illustrates example
cases to implement the TS accounts. Under (i), the conventional banks take the
money transfer service. Under (ii), user i opens a TS account under a provider,
totally holding two accounts, an account under the bank A and the TS account.
On the other hand, the bank B migrates to the TS-based system, and the user j
remains his/her asset under the bank B, while all of the records are stored with
the transaction signatures.

3) Transaction Cancellation: If, for some reason, unintended transactions are
executed, cancellation is possible by newly creating offset transactions. For exam-
ple, when cancelling the transaction TX1 = {i′sAccount ID, j′s Account ID,
$10}, the offset transaction TX ′

1 = {j′sAccount ID, i′sAccount ID, $10} is exe-
cuted. Although the execution procedure is completely identical between the
TX1 and the TX ′

1, when cancelling related to past transaction records, evidence
is required. It is that the past transaction (TX1) was definitely executed at a
certain point.

The provider saves the transaction in the form of {time1, TX1, σ1ij}, includ-
ing the time information (time1). Additionally, the provider records the history
of the user’s public keys. From the sender’s (receiver’s) account ID and the trans-
action time (time1), the provider identifies the i’s public key at that time as a
certain public key (pki0). The validity of the user’s public key is assured by the
provider’s signature (σPi0). Here, the signature is supported by the validity of
the provider’s public key (pkP ), while the provider’s public key is supported by
the certificate issued by the CA (CertP ). Furthermore, since all the users’ public
keys are stored with archive-stamps and the long-term signatures are updated
by the TSA, it is possible to prove the existence of the user’s public key for
a long time into the future. As a result, using the pointed valid user’s public
key (pki0), the fact of the transaction (TX1) is confirmed, which is described as
(1/⊥) ← Verify(time1||TX1, σ1ij , pki0). If it is successful, then the fact is pre-
sented that the sender was consent to the transaction (TX1) at the time (time1).
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The link between the TS account ID and the person in real is tied in the reg-
istration process using the physical ID, therefore, the individual’s commitment
for transactions can be investigated. Moreover, even if the sender’s balance at
the cancellation time is not enough, the offset amount can be charged with the
rationale. In this way, it is shown that the proposed scheme satisfies traceability,
accountability and non-repudiation.

4) Records Inquiry: Two types of users can refer the records in the database:
the data owner himself/herself, or someone else authorized by the data owner.
Referring to Fig. 6, consider that an inquirer k, different from the data owner
i, inquires about the i’s records. The inquirer request for the transaction of the
data owner at a certain time (time1) is described as TXR = {k′sAccount ID, i′s
Account ID, time1}. The inquirer signs the request with the inquirer’s secret key
(skk0), creating the signature (σRk). The information (TXR, σRk, pkk0) is sent
to the data owner via the provider. When confirming the request, the data owner
creates the multi-signature (σRki). The provider verifies it with the inquirer’s and
data owner’s public key (pkk0, pki0). If it is successful, the provider retrieves the
requested record {time1, TX1, σ1ij} from the data owner’s transaction database,
and sends it to the inquirer.

Under the case that the inquirer and the data owner are not identical, regis-
tering under different providers, then the providers exchange information about
the validity of the inquirer’s and data owner’s public key one another. This is
completely the same as it in the transaction execution process in Sect. 2.2. More-
over, when the inquirer is identical to the data owner, a single-signature with
the inquirer’s secret key is created, instead of a multi-signature.

5) User Side’s Key Refreshing: The critical issue of the TS-L scheme is that
an attacker obtains a legitimate user’s secret key and uploads a false transac-
tion. Note that there is a recovery option by cancellation in case of the leak
as described in 2.2.3. When the user notices his/her secret key leakage, he/she
conducts this refreshing process at first, and then cancels the unintended trans-
actions. Moreover, as a precaution, it is recommended for each user to refresh
the key pair periodically. Here, also in terms of compliance, it is desirable that
customer information be kept inspected periodically in addition to the moment
of opening accounts. This key exchange is assumed to be done with strict veri-
fication of identity, thereby, it is considered that continuous monitoring can be
conducted with this. Furthermore, particularly if the user is a company rather
than an individual and some periodic legal documents are additionally required,
then the submissions can be signed by the host provider and shared with dif-
ferent providers. As for the process, based on Fig. 2 in the registration phase in
Sect. 2.2.1, the user generates a new key pair (ski1, pki1), and creates a signature
(σi1), given by σi1 ← Sign(pki1||Account ID||Physical ID, ski1). Here, also the
user’s account ID (Account ID) is added in signing. After the set of the infor-
mation (pki1, Account ID, Physical ID, σi1) is sent to the provider, the same
procedure as the registration phase is conducted. Finally, the user’s new public
key (pki1) is registered and the set of its certificate and the provider’s public
key certificate (σPi1, CertP ) is sent to the user. The updated public key (pki1)
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is also delivered from the host provider or the user himself/herself to different
providers.

6) Provider Side’s Public Key Database Validating: The host provider
stores the history of the users’ public keys with the long-term signatures, so that
the transaction traceability, accountability and non-repudiation are satisfied, as
described in cancellation process in 2.2.3. Here, the certificates in the archive
timestamps attached to all public keys expire at some point in time, requiring
to update them. The providers then ask the TSA to renew all the certificates at
the expiration time. A new certificate is attached and a new signature is created,
and they are stored affixed to each public key information. The storage size for
the public key updates is provided in Sect. 4.

2.3 Identity Proof Sharing and Paths for Reducing KYC Costs

In addition to the purpose of ensuring the transaction traceability, the user’s
public key information dedicates to share his/her identity information among
different service providers. Once a trusted host provider confirms user i’s identity
using his/her physical ID, then the information {Account ID, pki, σPi0, CertP }
can be shared. When the user opens another TS account under a different
provider, the provider first checks the validity of the host provider’s public key
(pkP ) using its certificate (CertP ). Afterwards, the provider verifies the signa-
ture (σPi0) using the confirmed host provider’s public key (pkP ), described as
(1/⊥) ← Verify(Account ID||pki0, σPi0, pkP ). Note that the validity period of
the provider’s public key (pkP ) is longer than the validity period of the user’s
public key (pki0), recommending each user to refresh his/her key as a precaution
for its loss and also for periodical monitoring checks. In this way, the user’s pub-
lic key information can be shared among different providers based on the trust to
the host provider. This leads to save the different providers’ KYC costs. When
the different provider from the host provider starts the service, the legitimacy of
the registration request is verified, only by verifying the user’s public key and an
affixed signature on the request. Unlike the other conventional authentication
methods such as passwords, the different providers can verify requests directly
with a public key as a credential.

3 Security Analysis

The security goal of the TS-L is to achieve data integrity in the sense that the
transaction is intended for the sender and the receiver of the money. This section
describes the possible vulnerabilities to break the integrity and the correspond-
ing countermeasure. We consider four places: a channel between a user and a
provider, the user side, the provider side, and a channel between the providers.

1) Channel between the User and the Service Provider: While the chan-
nel between the user and the provider implements the TSL communication, there
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is a possibility of MITM (Man-in-the-Middle) attacks, in which an attacker posi-
tioned between two communicating parties intercepts or alters data traveling
between them [6,11]. The attacker replaces an original server certificate with a
modified certificate. If the user neglects a warning notification from a browser
and inputs the required information for remittances, then the attacker can exe-
cute fraudulent money transfers using the legitimate user’s account. Under the
proposed scheme, transaction signatures are created in the user’s device. There-
fore, even if the attacker rewrites the transaction contents on the communication
channel, the provider can detect the tampering in verifying the signature. This
is the primary advantage of using transaction signatures. The signing is com-
pleted in the user’s device with a credential such as biometric information and
the credential is kept in the device, enabling to be resistant to the attacks arising
in a network. Multi-signatures are used not only in transaction execution but
also in inquiry. This is for the purpose of maintaining the message integrity of
all the requests in the network. Since all networks are insecure, regardless of
whether it is inside or outside an organization network, data is signed within
individual devices and sent to a recipient. In other words, the zero trust [25] is
assumed here. Since the transaction signatures inherently contributes to secu-
rity in these attacks in the network, some methods were proposed. For example,
IBM Zurich Research Laboratory invented a token-based transaction signature
for online banking [34]. However, as a whole, these specialized devices take costs
to prepare, becoming an obstacle to implement them [9]. A feature of the pro-
posed method is that it assumes authentication with familiar devices such as
smartphones and PCs, without preparing additional devices, dedicating for the
provider’s efficiency.

2) User Side: In the current FIDO authentication scheme, a mis-binding attack
has been pointed out [12,14]. In a registration phase, attackers register their
own device linking a legitimate user name, indicating that the attackers’ public
key is registered to the application provider. Communication within modules
in a device is not authenticated for one another, allowing malware to perform
unauthorized operations. For this attack, the proposed method requires the sig-
nature information of the physical ID at the registration. Therefore, unless the
attacker obtains the image of the legitimate physical ID, the provider detects
the fraud, and the attacker fails to register by impersonating the legitimate user.
Ultimately, under the assumption that providers are trusted, the most serious
problem is that the image of the physical ID is forged by the attacker. If the
image of the digitized physical ID of the sender is forged and the receiver’s phys-
ical ID is correctly submitted, it can be canceled by the cancellation process.
However, if the digitized physical IDs for both the sender and the receiver are
forged and the attacker’s public keys are registered to the host provider, then the
fraudulent transaction cannot be canceled, although it would be difficult for the
attacker to succeed it. When the fraudulent transaction amount is converted to
cash, the legitimate sender would lose the money. In order to prevent this phys-
ical ID forgery attack, it is recommended, for example, to improve the accuracy
of image verification.
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The following attacks might be successful. However, ultimately cancellations
work for the attacks, as long as the linkage between a physical ID and a public key
for the receiver is appropriately tied. A straightforward attack is that credentials
used for signing such as biometric information and PIN codes, are stolen. How-
ever, even if these credentials are forged, fraudulent requests can be cancelled
if the linkage between a public key and a physical ID is properly linked. Under
MITB (Man-in-the-Browser) attacks, a malware infects the web browser. An
attacker eavesdrops and alters the transaction content between the web browser
and the web server, and executes unintended requests. Zbot is a representative
malware, first identified in 2007 [33]. While the MITB attack is basically difficult
to be observed and unsolvable, the proposed transaction scheme is resistant to
this MITB attack. The current FIDO protocol defines the software module to
create the signature called authenticator. The transaction signature is created
in that authenticator, then the required signed information is passed from it to
the browser. Therefore, even if a fraudulent transaction is created in a malicious
browser, the legitimate signature cannot be created in the legitimate authenti-
cator, enabling to be detected in the provider’s signature verification. However,
once if several parts in the device are infected with malware, unintended trans-
actions can be successfully verified by providers. Under a clickjacking attack,
a malicious software presents a false display and executes unintended transac-
tion operation [13,15,23]. In this case, the legitimate user signs the fraudulent
transaction with his/her own secret key, without being aware of it. The provider
then approves the transaction. Note that the false transaction can be cancelled
later. Specifically, a parallel session attack in software modules within a device
supports the successful attack. Under the parallel session attack, a malicious
software module exists between legitimate modules [12,14]. The attacker sends
a request again and obtains random values generated for each session, leading
the successful attack. A DoS (Denial of Service attack) attack is another possible
attack [12]. A malicious software present in the device can halt transaction exe-
cutions. Although these malware are difficult to be implemented, improvements
in the protocol are expected. For example, it is recommended to authenticate
each software module in the user’s device for each session.

3) Provider Side: For appropriate transaction executions, the provider has
mainly four roles under assuming that the provider is trusted. First, the provider
surely confirms the authenticity of a person in real with his/her physical ID in
the registration phase. The requirement of the physical ID in the account opening
process will determine the level of security of the service. Second, when execut-
ing transactions, the provider properly verifies the transaction signature sent
by the user and records it on the database. The provider prepares the control
devices in a secure place, as well as appropriate allocation of its security man-
agers within an organization. Third, the provider properly manages databases,
i.e., the account information database, the transaction database, and the pub-
lic key database. Against malfunction, cyber attacks, and natural disaster, the
databases are located in multiple places, and hold both online and offline back-
up options for one another. Note that it does not imply that each user has the
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Table 1. Parameters for Performance Analysis

Notation Description Benchmark

TR The average period for refreshing a user’s key pair -

TE The average validity period of certificates for 10 [years] [10]

long-term signatures (CertT )

TTX The average frequency for executing a transaction -

T Arbitrary time -

npk The number of bits for a public key (pk) 96 [bytes] [4]

nsig The number of bits for a signature (σ) 48 [bytes] [4]

nid The number of bits for an account ID 80 [bits] [32]

ntime The number of bits for a time information (time) 48 [bits] [2]

nTX The number of bits for a transaction (TX) -

ncer The number of bits for a certificate (Cert) 1500 [bytes] [19]

databases, rather each host provider is responsible for the users in charge. For
efficient resource management, the provider can deposit all of the data to a cloud,
by encrypting with the provider’s encryption key if it needs. Current cloud ser-
vices have these security options [18]. Lastly, the provider keeps the provider’s
secret key securely. The secret key is used for signing the user’s public key infor-
mation. Originally, public key certificates are issued by CAs under strict security,
while in the proposed framework, each provider takes its role for the users. The
provider is therefore, assumed to own a HSM (Hardware Security Module). It is
a hardware that securely stores keys and computes digital signatures. Similar to
the conventional requirements for financial industries and government agencies,
it is assumed to satisfy the requirements of FIPS 140-3 level 3, defined by FIPS
(Federal Information Processing Standard) [8].

4) Channel between the Providers: The communication between the trusted
providers is based on the TLS communication. They confirm the trust by verify-
ing the public key certificates for one another. Furthermore, the host provider’s
registration requirements reflect to the following provider’s trust, when the
providers share the identity proofing with the user’s public key. Therefore, each
provider checks the other provider’s requirements, so that they can attain their
desired security level.

4 Performance Analysis

This section presents a computational evaluation for the TS-L. As a multi-
signature schemes, BLS signature [3,5] is implemented. Its signature size is 48
bytes, indicating the BLS signature attains smaller in size [35]. Under the pro-
posed scheme, all of the data is signed and stored with the signature. Prioritizing
the storage size of the provider to manage the information, the BLS signature is
here adopted. The public key size is 96 bytes referred to [4]. SHA-256 is assumed
for the hash function. The execution time is measured on Apple M1 CPU with
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Table 2. storage size of the transaction database for a user

Frequency Data Size Time-span

TTX nTX 10 years 50 years 90 years

5 times per a day 128 [B] 4 [MB] 18 [MB] 32 [MB]

1 [MB] 18 [GB] 91 [GB] 164 [GB]

once per a month 128 [B] 23 [KB] 115 [KB] 207 [KB]

1 [MB] 120 [MB] 600 [MB] 1080 [MB]

Fig. 7. Computation time for signing
and verifying [second]

Fig. 8. Storage size of a user’s public
key database at time T [byte]

8 GB memory, and PBC library is used. The results are the average of the 100
times simulations. Table 1 summarizes the parameters for the model.

The user side’s cost is considered as the signing time in uploading transactions
(data items) or in requesting an inquiry. Figure 7 shows the computation time for
them given a data size. Since it does not take much time to create an aggregate
signature, the difference between Sign and Multisign is small. In executing a
transaction, the transaction data size can be around 128 or 256 bytes, implying
to take approximately 0.003 s. The result shows that the signing operation of
each user is light for regular data size.

For the service provider, we analyze the verification time for signatures, the
storage size of transactions (data items), and the storage size of users’ pub-
lic keys. Figure 7 shows the computation time for the verifying operation for a
single-signature and for a multi-signature. Similar to the signing cost, the verifi-
cation time is around 0.003 s and starts increasing from approximately 2 MB. For
more frequent transaction operations, the verification time is simply increasing.
However, the goal of the TS-L is to share KYC information, and it is assumed
that there exist multiple providers. Consequently, the transaction verification
will not be concentrated on one provider, resulting in a feasible verification time
for a provider.

The storage size of the transaction database at time T for a user is defined
as S(TX,T ) = T

TTX
· (nid + ntime + nTX + nsig). Table 2 describes the examples

of the storage size for a user. Even if frequent transactions are stored for a long
time, the storage size is feasible.
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The storage size of a user’s public keys managed by the provider at time T

is describes as S(pk,T ) = TE
TR

· ( T
TE

· (nid + ntime + npk + 2nsig + ncer) +
(∑ T

TE
i=1 i

) ·
(ncer + nsig)

)
. The number of renewal time is simply determined by the average

validity period of certificates for long-term signatures (TE). At a renewal time,
the storage size for a new certificate and a signature is added by (ncer + nsig)
bits. Figure 8 describes the required size given a time. For example, when the
user refreshes his/her key once per a year, it takes approximately 300 KB in
50 years. Even if it is 100 years, the size is around 1 MB. In the case of less
frequent refreshing such as once per 2 years or 3 years, it requires much smaller.
Note that as for the computation time for validating the certificates on the
user’s public key, the TSA needs to update certificates on long-term signature
with signing by 10 years. Overall, the result shows that the public key updating
mechanism is easily applicable to the providers.

5 Related Literature

Role-based access control using digital certificates was described in multiple
works [7,29,30]. Digital certificates link to device IDs and they are used for
controlling access to network resources. Comparing with them, the proposed
scheme directly ties the digital certificate and the individuals’ identity.

Regarding signed data, some literature proposed methods to deposit signed
data in the cloud [17,28,32]. They assumed that the cloud is an untrustwor-
thy entity, therefore the data owners check its integrity by verifying the digital
signature on the retrieved data by themselves. In particular, [32] assumed finan-
cial and medical database, and adopts multi-signatures by multiple data owners.
Since the proposed method assumes the trusted provider, the signature is used
only to verify the validity of the data. As an extension, these methods will be
incorporated if individuals desire to verify the integrity by themselves. In the
other direction, under assuming a trusted verifier, the importance of determin-
ing database access policies based on signature verification was mentioned in
[31], while any specific method was not provided.

Transaction signatures have been implemented in a wide variety of
blockchain-based transaction schemes [21,22,27]. Particularly, Bitcoin [22] is
a well-know payment scheme. While both the TS-L and the blockchain-based
upload data after verifying the transaction signature, these systems do not
assume a trusted central administrator of the system. Since the proposed scheme
prioritizes the user authenticity tied to the physical person, over the other
information security properties such as confidentiality and privacy, the trusted
provider is assumed. For the other directions of blockchain, a permissioned
scheme with trusted participants was suggested [26]. As for database resources,
under the system, the database is shared among multiple network participants
in an attempt to prevent a single point of failure. On the other hand, under the
proposed scheme, the host provider who manages the user’s public key informa-
tion and issues certificates, is responsible for managing the databases, holding
backup functions. If it is inefficient to prepare the database resources on-premise,
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a cloud database can be chosen. The current cloud services can meet appropri-
ate security standards, taking measures to prevent failures. For data privacy,
the host provider can encrypt data and deposit it in the cloud. Regarding the
integrity of the database, it is an extension of the proposed scheme to detect
anomalies using a Merkle tree [20], as the blockchain scheme implements. How-
ever, the computational complexity needs to be examined. Overall, the proposed
method focuses more on the message integrity of transmission channels in a net-
work space, rather than the database integrity of start and end-points of the
communications.

6 Conclusion

This paper proposes a comprehensive transaction scheme to reduce the KYC
costs, by sharing customers’ information among multiple providers. For further
research, for example, improvements in detailed signature schemes to attain
lighter computation complexity or additional verification features are expected.
In addition, since the linkage between physical IDs and public keys is critical
under this scheme, further analysis on that point is necessary.
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Abstract. When using non-custodial cryptocurrency wallets such as
Exodus (Bitcoin), Metamask (Ethereum), and Keplr (Osmosis), the pri-
vate keys are directly stored on the user’s device. Using such a wallet
comes with the risk of losing all crypto assets when the device gets lost,
stolen, or breaks down irremediably. Fortunately, most non-custodial
wallets offer a way to recover the private keys by the mean of a “recov-
ery phrase” also known as a “mnemonic seed phrase”. That phrase is
usually between 12 and 24 words and it is generated when the user cre-
ates the wallet. Indeed, this mnemonic phrase is a really sensitive piece
of information since anyone knowing that phrase can get full control of
the crypto assets held by the wallet. Usually, it is recommended to write
this passphrase down on a piece of paper and store it in a “safe place”.
However, storing a physical object is still not ideal since it can get stolen,
lost, or destroyed as well. In this paper, we propose a decentralized appli-
cation that can be used to back up mnemonic phrases and recover them
eventually using a simple email. This application is built on a privacy-
preserving blockchain to store the confidential passphrase and protect
the identity of its owner and the crypto assets holders.

Keywords: Blockchain · Smart Contracts · Decentralized
Applications · Privacy · Wallets · Cryptography Protocol

1 Introduction

In the world of cryptocurrency, a wallet provides users with an interface to
manage their crypto assets. Under the hood, those wallets store a set of private
keys and use them to sign transactions. There are two types of wallets: “custodial
wallets” in which the private keys are in the custody of a trusted third party
and “non-custodial wallets” in which the private keys are directly stored on
the user’s device whether it is a computer, a mobile phone or a dedicated USB
dongle. Using either of these types of wallets comes with inherent risks [1]. Using
custodial wallets comes with the risk of losing all crypto assets when the trusted
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G.-V. Jourdan et al. (Eds.): FPS 2022, LNCS 13877, pp. 355–370, 2023.
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entity goes bankrupt1 and non-custodial wallets come with the risk of losing all
crypto assets if the device gets lost, stolen, or irremediably breaks down.

Yet, non-custodial wallets (our focus here) such as Exodus (Bitcoin), Meta-
mask (Ethereum), and Keplr (Secret Network) offer a way to recover the private
keys through the mean of a “recovery phrase” also known as “mnemonic seed
phrase”. That phrase is usually between 12 and 24 words and it is generated
when the user creates the wallet. Here is an example of such a phrase:

witch fox practice feed shame open
despair creek road again ice least

That phrase is important as it is used to generate the same private keys on
demand (BIP39 standard [16]). It can be used as a backup or to import the
wallet into a new device. Indeed, this mnemonic phrase is a really sensitive piece
of information. Anyone who has access to this phrase would have full control
over the crypto assets as explained in the Metamask Wallet FAQ page:

“MetaMask requires that you store your Secret Recovery Phrase in a safe
place. It is the only way to recover your funds should your device crash
or your browser reset. We recommend you to write it down. The most
common method is to write your 12-word phrase on a piece of paper and
store it safely in a place where only you have access. Note: if you lose
your Secret Recovery Phrase, MetaMask can’t help you recover your wallet.
Never give your Secret Recovery Phrase or your private key(s) to anyone
or any site, unless you want them to have full control over your funds.”

As written above, users are not supposed to remember that phrase like a pass-
word but instead write it down on a piece of paper and store it in a “safe place”.
However, storing physical objects is still not ideal since they can get stolen, lost, or
destroyed as well. As a consequence, users do not always follow such a recommen-
dation and put themselves at risk as studied in [19]. So, as an alternative, could we
design a simple application that would take custody of that passphrase and would
allow users to recover it based on some sort of authentication? Intuitively, that
application could be something similar to a password manager but such a solution
requires 1) that the service provider is trustworthy and 2) that the whole applica-
tion is secured [10]. Moreover, a password manager is a centralized solution that
goes against the idea of decentralized applications [4,5].

In this paper, we propose a decentralized application that can be used to
back up mnemonic phrases protected with a new type of crypto asset, that we
call a Passphrase Lock, that will be distributed to other users. When it is time
to recover these mnemonic keys, the user can unlock the passphrase using a
simple email. This application is built on a privacy-preserving blockchain [21] to
store the confidential passphrase and protect the address of the Passphrase Lock
holders. To better explain our idea, we will go through 3 iterations each more

1 As popularized by the mantra from Andreas Antonopoulos: “Not Your Keys, not
Your Coins”.
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secure than the previous one. In the first iteration (Sect. 3), we aim at capturing
the user experience but its overall design is rather naive and not secure. The
attacker can retrieve the passphrase by stealing the user’s wallet that was used
for backing up the passphrase or by breaching the user’s email. We fix those two
shortcomings in the second iteration by introducing the concept of Passphrase
Lock and by adding a second layer of encryption to ensure perfect forward secrecy.
Finally, in the third iteration (Sect. 5), we improve the reliability by distributing
the Passphrase Lock to multiple users and recovering the passphrase with only
a subset of these users.

2 Background

Our Mnemonic Backup System is a decentralized application developed and
deployed on a privacy-preserving blockchain called Secret Network [21]. Secret
Network Smart Contracts enable storing and processing of private data directly
on the blockchain. It relies on the Intel SGX (Software Guard Extension) Trusted
Execution Environment (a.k.a Confidential Computing) [11] to prevent nodes
from reading private data directly from memory during execution. To make sure
that nodes protect data during transit, processing, and at rest on the blockchain,
each node joining the network has to go through a bootstrap process as explained
in [14]:

“Before the genesis of a new chain, there must be a bootstrap node to gen-
erate network-wide secrets that will empower all the privacy features of
the Secret Network chain. When the first node joined the Secret Network,
it went through a three-step process. First, the enclave of the bootstrap
node generated a remote attestation proof to prove the TEE is genuine.
Next, the node generated a random 256-bit number known as the con-
sensus seed. The consensus seed is the most critical part of the Secret
Network encryption schema as all other keys and therefore functionality
of the protocol are contingent upon secure distribution of this originally
generated consensus seed. Using HKDF-SHA256 the consensus seed, in
combination with other context-relevant data, derived private keys for the
process of registering a new node, I/O encryption, and state encryption.
New nodes also use HKDF-SHA256 for key derivation using the origi-
nal seed or second-generation seeds. Next, the consensus seed is sealed to
the disk of the bootstrap node. Finally, the remote attestation proof, the
public key for the consensus seed exchange, and the public key for the con-
sensus I/O exchange are all published to the Secret Network genesis.json.
Curve25519 is the elliptic curve used for asymmetric key generation and
ECDH (x25519) is used for deriving symmetric encryption keys which are
used to encrypt data with AES-128-SIV.”
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In the remaining of the paper, we assume that an attacker cannot retrieve
data during transport and execution without having the user’s private key that
was used to encrypt those messages. Moreover, we assume that the attacker
cannot decrypt the data stored on the blockchain without getting the node con-
sensus seed sealed with the Intel SGX. That said, it is good to acknowledge
that several attacks against Intel SGX have been published in the past few years
[3,7,13,15] but those vulnerabilities have been mitigated by Secret Network.

3 Iteration 1: The User Experience

Alice is a blockchain user that holds crypto assets in her wallet. She would like
to have an online backup of her wallet’s passphrase in case her device gets lost,
stolen, or breaks down irremediably. When that doomsday comes, she would
like to recover her passphrase using her email. In our first iteration, the user
experience is rather simple:

– When Alice wants to back up a passphrase, she visits our Mnemonic
Backup website and enters her email. After submitting her information, our
application sends her an email with a confirmation code that she must copy
onto the webpage along with her passphrase to finalize the backup process.

– When Alice wants to recover a passphrase, she visits our Mnemonic
Backup website and enters her email. Our application sends her an email with
a verification code that she must copy onto the webpage before getting her
passphrase back.

This user experience is similar to existing security mechanisms used in tra-
ditional web applications where we must make sure that the user is the legiti-
mate owner of the email address used for signing up, signing in (with two-factor
authentication enabled), or resetting a password.

3.1 Architecture

For this first iteration, we implement our Mnemonic Backup System as a smart
contract on the Secret Network that records the passphrase when backing up and
restores that passphrase when recovering. However, our secret contract cannot
send emails by itself, so we are pairing it with an off-chain Mailer Backend that
sends emails to users. So, there are three entities in our system:

– The Frontend Client is the javascript code running in Alice’s web browser
that allows to back up and recover passphrases.

– The Backup Contract is the smart contract that stores users’ email and
passphrases. The Backup Contract is stored on the blockchain and is executed
by one of the Secret Network nodes. The Frontend Client interacts with the
Backup Contract by sending messages to one of the Secret Network nodes
directly.
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Fig. 1. Iteration 1 - Backup

– The Mailer Backend is the off-chain server that sends confirma-
tion/verification codes to users by email. For security reasons, the mailer
backend never handles the passphrase. The passphrase is always sent back
and forth between Frontend Client (running in the browser) and the Backup
Contract (running on the Secret Network)

3.2 The Protocol

For backup (see Fig. 1), the goal is to verify Alice’s email address to eventually
store her passphrase.

1. When Alice wants to back up her passphrase, she creates a throwaway wal-
let (different than the one she wants to back up), provision it, and visits
the backup page of the Mnemonic Backup Website. Then, she enters her
email and presses the submit button. A script running inside the webpage,
called Frontend Client, is executed. The Frontend Client sends a transac-
tion BackupRequest(email) to the Secret Network where a node executes the
request using the Backup Contract code.

2. The Backup Contract generates a transaction id tid, a random confirmation
code n, stores the record (tid, email, n) in the backup dataset, and returns
the transaction id to Alice.

3. The Frontend Client forwards the transaction id to the Mailer Backend.
4. The Mailer Backend queries the Backup Contract using that transaction id.
5. The Backup Contract returns the email and confirmation code n associated

to the transaction id.
6. The Mailer Backend sends the confirmation code to Alice by email.
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Fig. 2. Iteration 1 - Recovery

7. Alice opens her email and copies and pastes the confirmation code into her
browser, and enters her passphrase pp. The Frontend Client sends a transac-
tion BackupConfirm(email, pp, n) to the Backup Contract.

8. The Backup Contract verifies the code and stores the record (email, pp) in
the passphrase dataset.

For recovery (see Fig. 2), the goal is to verify Alice’s email address to even-
tually, send her passphrase back.

1. When Alice wants to recover her passphrase, she creates yet another throw-
away wallet (different than the ones she used for backup), provision it,
visits the recovery page of the Mnemonic Backup Website and enter her
email. The Frontend Client (running in the browser) sends a transaction
RecoverRequest(email) to the Backup Contract (running on the Secret Net-
work).

2. The Backup Contract generates a transaction id tid, a random confirmation
code, stores the record (tid, email, n) in the recover dataset, and returns the
transaction id to Alice.

3. The Frontend Client forwards the transaction id to the Mailer Backend.
4. The Mailer Backend queries the Backup Contract using that transaction id.
5. The Backup Contract returns the email and confirmation code n associated

to the transaction id.
6. The Mailer Backend sends the confirmation code to Alice by email.
7. Alice opens her email and copies and pastes that verification code into her

browser. The Frontend Client sends a query RecoverConfirm(email, n) to the
Backup Contract.
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8. The Backup Contract verifies the verification code, retrieves the correspond-
ing record from the passphrase dataset, and returns the passphrase.

3.3 Security Analysis

There are two main security concerns in this first design. First, if the attacker
breaches into Alice’s mailbox or the Mailer Backend directly, he could retrieve
the confirmation code. During the backup phase, the attacker could use the
confirmation code to upload an arbitrary passphrase for Alice. This is a problem
if Alice recovers what she believes is her original passphrase but another that
the attacker can access. Then, any new asset that Alice puts in her wallet can
be stolen by the attacker from now. During the recovery phase, it is even worst
since the attacker could trigger and use the verification code to query the Backup
Contract directly and get the passphrase back.

Secondly, if the attacker steals any of the private keys that Alice used for
backing up or recovering her passphrase, he could recover the passphrase from
the messages. As mentioned earlier, it is recommended that Alice use distinct
throwaway wallets when backing up or recovering her passphrase. However, if
the attacker steals any of these wallets afterward, he could decrypt the messages
stored on the blockchain and recover Alice’s passphrase. Said differently, the
problem is that our protocol does not ensure the cryptographic property of
perfect forward secrecy [8].

4 Iteration 2: Security Hardening

Our first iteration captures the right user experience but fails in terms of secu-
rity. Two main security threats need to be addressed: 1) prevent the attacker
from taking advantage of having access to emails and 2) prevent the attacker
from recovering passphrases from compromised wallets. We are solving those
two problems by introducing a second authentication factor and a second-layer
of encryption.

4.1 A Passphrase Lock as a Second Authentication Factor

The first security problem is an authentication problem. Relying solely on emails
to authenticate Alice is insecure if we assume that the attacker could breach
Alice’s mailbox, or worse, into the Mailer Backend directly. One way to prevent
that is to add a second authentication factor, but this time, we want to rely
on the blockchain directly. The idea is for Alice to create a crypto asset called
a Passphrase Lock during backup and transfer that asset to her friend Charlie
that will hold that lock. When doomsday comes, Alice should first ask Charlie
to transfer the Passphrase Lock back to her before recovering the passphrase.
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This Passphrase Lock is designed as a crypto asset that Charlie holds in his
wallet before eventually transferring it back to Alice’s recovery wallet when she
needs it. This Passphrase Lock is similar to the concept of NFT [20] but different
in its conception. First, Charlie cannot retrieve Alice’s passphrase even if he
holds that lock. Moreover, Charlie cannot transfer that crypto asset arbitrarily
either. He can only transfer it back to its original owner, Alice, or to any other
designated owner approved by Alice.

Going back to our original problem, we assume that the attacker can breach
Alice’s email. However, he would not be able to recover the passphrase with-
out retrieving the Passphrase Lock in his wallet first. In addition, the attacker
would not even know who holds Alice’s Passphrase Lock since that information
is encrypted in the Backup Contract. This is similar to the concept of confiden-
tial ownership introduced by Secret Network NFTs in which the owner’s address
is confidential contrary to other blockchain NFTs.

4.2 A Second-Layer Encryption for Perfect Forward Secrecy

The second security problem comes from the fact that messages sent back and
forth between the Frontend Client and the Backup Contract are stored on the
blockchain permanently. Unfortunately, these messages can be decrypted after-
ward by anyone holding the private key that was used to send those messages.
This problem can be fixed by adding a second layer of encryption by establishing
a session key between the Frontend Client and the Backup contract to encrypt
sensitive information sent back and forth. The idea is to use the Diffie-Hellman
Key Exchange protocol to agree on the session key without sharing it explicitly
and so preventing it from being stored on the blockchain. That session key is
meant to be forgotten as soon as the backup or recovery process is done.

The Diffie-Hellman Key Exchange protocol is a cryptography protocol that
allows two parties, usually named Alice and Bob, that have no prior knowl-
edge of each other, to securely agree on a shared key over an insecure channel
[6]. That channel is considered as insecure because we assume that an attacker
can eavesdrop on the communication and read all messages sent back and forth
between Alice and Bob2. In a nutshell, Alice generates an asymmetric key pair
(secA, pubA) and sends the public one to Bob over the in-secure channel. In prac-
tice, we use the Elliptic-curve Diffie-Hellman (abbreviated ECDH) that relies on
Elliptic-curve cryptography [2]. When Bob receives Alice’s public key, he will also
generate its own pair (secB , pubb) and send his public key back to Alice. Once
the public keys have been exchanged, Alice and Bob can combine the public key
with their private key to generate the same shared secret value s. Alice computes
s = ECDH(secA, pubA, pubB) and Bob computes the same shared secret value
s = ECDH(secB , pubB , pubA). The security of the protocol resides in the fact
that an attacker cannot compute that secret value s even if pubA and pubB are
known but not either secA or secB . In practice, this shared secret value is usually

2 We only consider message confidentiality here leaving aside authentication and mes-
sage integrity that is ensured by the Secret Network protocol.
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Fig. 3. Iteration 2 - Backup

not used as a cryptographic key directly. Instead, that shared value is given as
input of a key derivation function such as the HMAC-based extract-and-expand
key derivation function HKDF [9] that generates the same cryptographic key
based on the secret value.

4.3 The Protocol

In addition to the two security measures discussed above, we are also adding
additional security measures in both the backup and recovery protocols. First,
we check that the request message and the confirm message are sent by the wallet
address. Secondly, we limit the time between the request and confirm messages
by saving the block Id (denoted bid) after the request. Thus the time limit is
calculated based on the number of blocks that have been validated between the
request and confirm messages.

The new backup protocol shown in Fig. 3) goes as such:

1. When Alice wants to back up her passphrase, she creates yet a throwaway
wallet, provision it, visits the backup page of the Mnemonic Backup web-
site and enters her email. The Frontend Client generates an ECDH private
and public key pair (secA, pubA), a nonce nA, and sends the transaction
BackupRequest(email, pubA, nA) to Backup Contract.

2. The Backup Contract generates a transaction id tid, a new ECDH private
and public key pair (secB , pubB), a nonce nB , and returns those values
to the client. In addition, the contract calculates the ECDH secret s =
ECDH(secB , pubB , pubA), and derives the 128-bit AES symmetric key k using
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the standard password-based key derivation function HKDF and the concate-
nation of nA and nB as a salt k = HKDF(s, nA||nB). Finally, the contract gen-
erates a confirmation code n, and stores the record (tid, email, k, n,@A, bid)
in the backup dataset.

3. The Frontend Client calculates the ECDH secret s=ECDH(secA, pubA, pubB),
derives the AES symmetric key k using HKDF and the concatenation of nA

and nB as a salt k = HKDF(s, nA||nB). Then it forwards the transaction id
to the Mailer Backend.

4. The Mailer Backend queries the Backup Contract getBackup(tid).
5. The Backup Contract checks that the query comes from the Mailer Backend

wallet’s address, retrieves the record from the backup dataset, and checks
that the query has not expired based on the initial block id bid and the
current block id on the Secret Network. If not, it returns the email, and the
confirmation code n to the Mailer Backend.

6. The Mailer Backend sends an email to Alice with the confirmation code.
7. Alice opens her email and copies and pastes the confirmation code into

her browser, enters her passphrase pp and the address of Charlie @C that
will receive the Passphrase Lock. Finally, the Frontend Client encrypts the
passphrase and sends the transaction BackupConfirm(tid, n, Ek[pp,@C]) to the
Backup Contract.

8. The Backup Contract checks that 1) the message comes from the same address
as the request, 2) the query has not expired based on the initial block id bid,
and the current block id on the Secret Network and 3) that the confirma-
tion code corresponds to the one stored. Finally, the contract generates a
universally unique identifier, stores the record (uuid, email, pp,@C) in the
passphrase dataset, and returns the uuid back to Alice for the record.

When Alice wants to recover her passphrase, she creates a new throwaway
wallet and contacts her friend Charlie to transfer the Passphrase Lock back to
her new recovery wallet following the newly created transfer protocol shown
in Fig. 4):

1. Charlie visits the transfer page of the Mnemonic Backup website and selects
the Lock Passphrase to transfer (identified by its uuid), enters Alice’s new
wallet address @A and the password pwd. The Frontend Client generates
an ECDH private and public key pair (secA, pubA), a nonce nA, and sends
the transaction TransferRequest(uuid, pubA, nA) to the Backup Contract.

2. The Backup Contract retrieves the record (uuid, email, pp,@C) from the
passphrase dataset and checks that the Passphrase Lock owner C corre-
sponds to Charlie’s wallet address. Then, it generates a transaction id tid,
a new ECDH private and public key pair (secB , pubB), a nonce nB , and
returns those values to the client. In addition, the contract calculates the
ECDH secret s = ECDH(secB , pubB , pubA), and derives the 128-bit AES
symmetric key k using the standard password-based key derivation function
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Fig. 4. Iteration 2 - Transfer

HKDF and the concatenation of nA and nB as a salt k = HKDF(s, nA||nB).
Finally, the contract generates a confirmation code n, and stores the record
(tid, email, k, n,@A, bid) in the transfer dataset.

3. The Frontend Client calculates the ECDH secret s = ECDH
(secA, pubA, pubB), derives the AES symmetric key k using HKDF and the
concatenation of nA and nB as a salt k = HKDF(s, nA||nB). Then, it
encrypts the address of the new owner (Alice’s address @A here) and sends
the transaction TransferConfirm(tid, Ek[@A]) to the Backup Contract.

4. The Backup Contract checks that 1) the address use for the confirmation
is the same as originally recorded, 2) the query has not expired. If so, it
decrypts the owner’s address and updates the record in the backup dataset.

5. The Frontend Client forwards the transaction id to the Mailer Backend.
6. The Mailer Backend queries the Backup Contract getTransfer(tid).
7. The Backup Contract checks that the query comes from the Mailer Backend

wallet’s address, retrieves the record from the transfer dataset, and checks
that the query has not expired. If not, it returns the email, the confirmation
code n to the Mailer Backend.

8. The Mailer Backend sends an email to Alice with the confirmation code.
9. Alice opens her email and copies and pastes the confirmation code, goes to

the transfer approval page on the backup mnemonic website, and enters the
transfer code and the supposed address of the new owner (Alice’s address @A
here). The Frontend Client uses the confirmation code to calculate a message
authentication code h from the address h = HMACn(@A). Finally, the
Frontend Client sends the transaction TransferApprove(tid, h) to the Backup
Contract.
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Fig. 5. Iteration 2 - Recovery

10. The Backup Contract checks that the query has not expired. If not, it
checks the message authentication from the confirmation code and the
address stored in the transfer dataset. If there is a match, the passphrase
record (uuid, email, pp,@A) is updated by changing the ownership of the
Passphrase Lock to the new owner’s address.

Once the protocol is completed, Alice owns the Passphrase Lock in her new
wallet. Now she can use that wallet to recover her passphrase as shown in Fig. 5):

1. Alice visits the recovery page of the Mnemonic Backup website and she sees
all passphrase records for which she actually hold the lock. She selects the
passphrase record she wants to recover (identified by its uuid). The Frontend
Client generates an ECDH private and public key pair (secA, pubA), a nonce
nA, and sends the transaction RecoverRequest(uuid, pubA, nA) to the Backup
Contract.

2. The Backup Contract retrieves the record (uuid, email, pp,@C) from the
passphrase dataset and checks that the Passphrase Lock owner A corre-
sponds to Alice’s wallet address. If so, it generates a transaction id tid,
a new ECDH private and public key pair (secB , pubB), a nonce nB , and
returns those values to the client. In addition, the contract calculates the
ECDH secret s = ECDH(secB , pubB , pubA), and derives the 128-bit AES
symmetric key k using the standard password-based key derivation function
HKDF and the concatenation of nA and nB as a salt k = HKDF(s, nA||nB).
Finally, the contract generates a confirmation code n, and stores the record
(tid, k, pp, email, n,@A, bid) in the recover dataset.

3. The Frontend Client calculates the ECDH secret s = ECDH
(secA, pubA, pubB), derives the AES symmetric key k using HKDF and the
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concatenation of nA and nB as a salt k = HKDF(s, nA||nB). Then it forwards
the transaction id to the Mailer Backend.

4. The Mailer Backend queries the Backup Contract getRecover(tid).
5. The Backup Contract checks that the query comes from the Mailer Backend

wallet’s address, retrieves the record from the recover dataset, and checks
that the query has not expired. If not, it returns the email, the confirmation
code n to the Mailer Backend.

6. The Mailer Backend sends an email to Alice with the confirmation code.
7. Alice opens her email and copies and pastes the confirmation code into her

browser. The Frontend Client sends the transaction RecoverConfirm(tid, n) to
the Backup Contract.

8. The Backup Contract checks that 1) the message comes from the same address
as the request, 2) the query has not expired and 3) that the confirmation code
corresponds to the one stored. Finally, the contract encrypts the passphrase
with the key k, and returns it to the client.

Once the protocol is completed the Frontend Client decrypts the passphrase
and displays it to Alice.

4.4 Security Analysis

First, if the attacker can steal any of Alice’s private keys afterward, he cannot
decrypt the passphrase sent back and forth between the Frontend Client and the
Backup contract since the passphrase is always encrypted with the ECDH session
key in both the backup and the recovery protocols. In addition, the attacker
cannot know the address of Passphrase Lock owner since that information is
always encrypted as well.

Now, let’s assume the attacker has been able to breach Alice’s mailbox or the
Mailer Backend directly. During the backup, the attacker could get the confir-
mation code, however, he would not be able to upload an arbitrary passphrase
without knowing Alice’s private key. For recovery, the attacker cannot initiate the
recovery process without first holding the Passphrase Lock. Even if the attacker
holds the lock (if the attacker is Charlie for instance), he would not be able to
recover the passphrase without also compromising Alice’s email. Finally, it takes
both the Passphrase Lock owner and the original email owner to work together
to transfer the Lock Passphrase.

In the end, an attacker cannot retrieve the passphrase without obtaining the
lock first and compromising the victim’s email.

However, having a single individual holding Passphrase Lock introduces
another problem: what if that person does not or cannot return the Passphrase
Lock? The passphrase would be locked forever. We are improving this availability
issue in our next and final iteration.
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5 Iteration 3: Improving Availability

Having a unique friend holding Alice’s Passphrase Lock can be a problem if
that friend does not or cannot return it to her. A naive solution would be to
duplicate the Passphrase Lock and send it to multiple friends. This solution is
feasible but not ideal in terms of security since we are extending the attack
surface. The attacker can now target multiple people to regain one of these
Passphrase Lock. Instead, our idea is to split the passphrase into multiple parts
that we call Passphrase Lock Shares and send each friend one of these shares. To
recover the passphrase, not all shares are needed but a minimum of shares called
the threshold. This is ideal from the usability perspective since the user does not
have to collect all the shares back but only the minimum threshold required.
Moreover, this is perfect from the security perspective since any attacker who
can retrieve any number of shares less than the threshold will not be able to
start the recovery process. This approach is similar to threshold cryptosystem
such as Shamir’s Secret Sharing Scheme [18].

5.1 The Protocol

The protocol is very similar to the previous iteration with two modifications:

– At step 7 in the backup protocol, Alice must specify a threshold number t,
and provide the list of addresses that will receive one Passphrase Lock Share
each. Indeed, the threshold number should be smaller or equal to the number
of shareowners. The new backup protocol is shown in Fig. 6.

– At step 1 in the recovery protocol, the Backup Contract must check that
Alice’s wallet owns enough Passphrase Lock shares relatively to reach the
threshold.

6 Related Work

Users must keep the wallet’s mnemonic phrase safe because whoever gets access
to that can access all of the crypto assets held in the wallet. To the best of our
knowledge, there is only one significant proposal addressing the same issue. In
[17], Rezaeighaleh and al. propose using a second wallet for backup. They propose
a protocol based on Elliptic-Curve Diffie-Hellman to back up the private keys
of the first wallet into a second wallet. They recommend having that secondary
wallet be a “cold” wallet such as a hardware USB dongle or a smart card. This
approach is technically sound but again relies on storing a physical object in a
safe place which is hard in practice as shown in [19].
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Fig. 6. Iteration 3 - Backup

7 Conclusion and Future Work

In this paper, we propose a Decentralized Mnemonic Backup system that anyone
can use to give custody of any blockchain passphrase to a Secret Network smart
and protect it using a new type of crypto asset that we call a Passphrase Lock.
This Passphrase Lock is split into different shares and distributed to multiple
users. When comes the time to recover the passphrase, the user should collect a
subset of those shares to unlock the passphrase.

The key recovering system can be used outside of our Mnemonic Backup
system. It can be used for more advanced cryptographic protocols that involve
storing and managing secret keys on-chain with the option of recovering them
using an email. For instance, this can be used to encrypt files on the InterPlane-
tary File System (IPFS) [12] and manage the access using a Secret Contract that
would hold custody of the encryption key. Our system could be used to safely
generate and manage the encryption key on the Secret Network and possibly
have an email backup solution if such a feature is desired.
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Abstract. The Internet of Things (IoT) has become entrenched in many
users’ networks due to the utility these Internet-connected objects pro-
vide. But this does not mean that users should unconditionally trust IoT
devices on their networks. While several approaches exist for restricting
network connectivity of IoT devices, these proposals typically identify
legitimate traffic, and then permanently allow it to flow to or from the
device. In this paper, we argue that this permanent access control can
lead to privacy and security violations, and in many cases is not strictly
required. We present If-This-Then-Allow-That (IFTAT), a framework
that supports security policies that dynamically update network access
control rules based on the type of access that is required at any given
time. Device or environmental triggers such as motion sensors or mobile
phone applications initiate the process of adding firewall exceptions,
which are removed either automatically or after another trigger is acti-
vated. We describe a proof of concept implementation which shows how
IFTAT can restrict the network access of untrusted IoT devices with
little impact to the usability of these devices.

1 Introduction

Internet of Things (IoT) devices have been widely exploited by attackers to
carry out malicious activities against their users and the Internet at large [1,7,
11,14,21]. The exploitation of IoT devices also threatens user privacy, since IoT
devices often access and handle privacy-sensitive data such as audio or presence
information. While evidence suggests [19] that users are interested in knowing
what data their devices send over the network and why, users are often unaware
of this information due to the lack of security and privacy tools that provide it. To
mitigate the exploitation of IoT devices, prior research has proposed mechanisms
to narrow the scope of allowable IoT device network traffic, e.g., by restricting
allowable protocols or allowable source and destination ports and hosts [5,18,22].
Many proposed methods employ security policies to allow network traffic that
matches pre-defined rules, but few of these methods update the rules in response

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G.-V. Jourdan et al. (Eds.): FPS 2022, LNCS 13877, pp. 373–388, 2023.
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to contextually-relevant information. This means that a smart doorbell could
upload audio or video to the cloud even while the user is not using the doorbell’s
mobile app, or that a motion sensor could report motion activity even when an
alarm system is disarmed. We are thus motivated to rethink IoT network access
control: we aim to provide users with greater control of when their IoT devices
communicate over the network, and we do so by providing a means to mediate
network traffic based on contextual events that reflect users’ real-world usage
patterns.

We propose the If-This-Then-Allow-That (IFTAT) framework, which intro-
duces a new time-based dimension to network access control by allowing user-
defined policies to update traffic mediation rules in response to trigger events.
Trigger events can be generated by sources such as physical sensors, network traf-
fic signatures, or software running on a user’s device. User-defined policies specify
rules for allowing or denying network traffic to or from a target device (e.g., a
security camera, thermostat, doorbell, network-attached storage) in response to
the occurrence of a trigger event (e.g., motion detection, light switch turned on,
application launched on a user’s smartphone). For example, a thermostat might
only be allowed to communicate with a cloud service provider while there is a
human user in close physical proximity to the thermostat; or a surveillance cam-
era might only be allowed to stream video to the cloud while the owner of the
camera has the companion app running in the foreground on their smartphone.
IFTAT does not need to learn the network traffic patterns of IoT devices, but
IFTAT policies can optionally use such patterns to enable more granular rules
for allowing or denying network traffic. Figure 1 illustrates the timeline of events
when executing a policy that applies a traffic mediation rule (e.g., allow a secu-
rity camera to access the Internet) in response to a trigger event, followed by a
change or reversal of that rule (e.g., by denying the security camera access to
the Internet) in response to a subsequent trigger event.

Wait for a new trigger event to occur that will reverse or modify the changes just applied.

E5. Enforcement Detected

The device targeted by the policy
detected the change in network

access resulting from the changed
traffic mediation rules.

Time Elapsed

E1. Trigger Occurred

A trigger event has occurred in
the real world, for which a user-
defined policy requires a change

in traffic mediation rules

E2. Trigger Detected

The trigger device detected the
event and reported the

occurrence of the event.

E3. Policy Determined

The policy manager received the event
report, determined the required changes

to the traffic mediation rules, and sent
them to the policy enforcer.

E4. Policy Enforced

The policy enforcer applied the
required changes to the traffic

mediation rules.

Fig. 1. The timeline of events that occur while detecting a trigger event (blue), applying
a change in traffic mediation rules (green), and waiting for a new event to subsequently
reverse or modify the previous change in traffic mediation rules (red). (Color figure
online)

IFTAT is well-suited for protecting devices that have the characteristic of
predictably and consistently requiring network access in response to specific
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trigger events that can be detected by other devices on the network. IoT devices
in particular fit this general characteristic, since they are generally known to
have specialized features that can be implemented by predictable and repetitive
actions such as submitting sensor readings to a cloud service at a regular inter-
val [22]. However, our system may also complement traditional firewall rules to
reduce the attack surface on more general-purpose devices as well, particularly
those that provide services over the network such as network-attached storage.

The contributions of this paper are as follows.

1. We present IFTAT, a framework for time-based network access control derived
from user-defined trigger events.

2. We demonstrate the use and effectiveness of IFTAT on mainstream IoT
devices and hardware through a proof of concept implementation. We propose
and implement an initial set of trigger events.

3. We provide a discussion of how IFTAT defends against two distinct threat
models that we define.

The remainder of the paper is structured as follows. Sections 2 and 3 outline
the IFTAT security goals and system design, respectively. Section 4 discusses
related work. Section 5 discusses and categorizes trigger events that we propose
and that we identify from other work. Section 6 presents use cases that we imple-
ment with our instantiation of IFTAT using commodity hardware and software.
Section 7 discusses security considerations and potential focuses for standardiza-
tion effort, and Sect. 8 concludes.

2 Security Goals and Threat Model

IFTAT reduces the attack surface of IoT and other special-purpose devices by
reducing the times during which they have unrestricted network or Internet
access. This reduced network access is designed to serve as a defense against the
following two threat models.

T1: Large-Scale Opportunistic Exploitation. IoT devices are prone to
being targeted and exploited by large-scale operations. Large botnets have been
created via automated device scanning and exploitation, and leveraged for mali-
cious activities such as distributed denial of service (DDoS) attacks [1,7]. Resi-
dential proxies as a service leverage both volunteer users and compromised IoT
devices as proxies to funnnel customers’ traffic through residential Internet con-
nections to evade measures such as bot detection or geoblocking [11]. These
operations often exploit devices running firmware with unpatched vulnerabili-
ties. Confining the network access of devices to only periods when the access is
required would significantly narrow their window of exploitability (and, in the
event of device compromise, would reduce the time windows during which they
can be leveraged for malicious activities).

T2: Exfiltration of Privacy-Sensitive Data. IoT devices often handle
privacy-sensitive data such as audio or presence information. Restricting devices’
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network connectivity reduces the potential for the exfiltration of privacy-sensitive
data, whether due to exploitation as explained immediately above, device error
(e.g., due to misinterpreting the user’s intentions [13]), or the collection of track-
ing and usage data by device manufacturers [8].

3 System Design and Overview

The IFTAT framework specifies four device classes: untrusted devices, trigger
devices, policy enforcers, and a policy manager. Figure 2 illustrates how these
devices interact with each other: trigger devices report trigger events to the
policy manager, which in turn sends instructions to policy enforcers for how to
mediate network traffic to and from untrusted devices. IFTAT can function with
multiple trigger devices, untrusted devices, and policy enforcers on the same
network.

Trigger Device
E3E2

Event Reported

Policy Manager

Cloud Service

Enforcement
Commands Sent

Policy Enforcer

E4

External
Network

Untrusted Device

Policy Enforced

Fig. 2. Sequence of actions performed by each device following the occurrence of a
trigger event. Each line represents a network connection, and is labelled with an action
performed over that connection during events E2-E4 from Fig. 1. The dashed line at
the policy enforcer denotes a network bridge, and the dashed lines leading to the cloud
service denote an optional communication path used by some trigger devices.

3.1 Untrusted Devices

An untrusted device is a network-connected device designated by the user to
have its network access mediated by the occurrence of user-defined trigger events.
Untrusted devices may often be IoT devices, since they have simpler network
traffic patterns [22] and often handle privacy-sensitive data, which may moti-
vate users to ensure that such devices remain uncompromised [19]. Examples of
such IoT devices may include security cameras, voice assistants, and door locks.
General-purpose devices may also be designated as untrusted devices; e.g., a user
may wish to restrict network access to their network-attached storage (NAS)
device that performs backups of the user’s other devices; the user may wish to
allow network access to the NAS only in response to trigger events that indicate
that a backup will take place (e.g., the user launching a backup application).

3.2 Trigger Devices and Trigger Events

A trigger device detects trigger events and reports them to the policy manager.
Examples of trigger devices include special-purpose hardware devices such as
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motion sensors or light switches. A trigger device may also be a general-purpose
device, such as a smartphone running a program that reports user actions, or
a network traffic analysis device that reports the occurrence of device activities
(e.g., streaming video, updating firmware) on the network [17]. Examples of
trigger events are discussed further in Sect. 5. Depending on the context, a device
may be both an untrusted device and a trigger device; for example, a motion
sensor may report a trigger event to enable network connectivity for a light
switch, and the light switch may in turn report a trigger event to enable network
connectivity for a security camera.

Trigger events may have different delays between the events E1, E2, and E3
denoted in Fig. 1. The delay from E1 to E2 is the time elapsed between the event
occurring and the detection of the event by the trigger device. For example,
passive infrared (PIR) motion sensors typically report motion if it has been
detected continuously for a period of time such as two seconds. In contrast, the
opening of a mobile application can be detected virtually instantaneously when
the user taps on the application icon. The delay between E2 and E3 is the time
elapsed between the trigger device reporting an event and the policy manager
receiving the report. This delay can be near instantaneous if the trigger device
is on the local network and report events to the policy manager over the local
network; if the trigger device instead reports events to a cloud service provider,
additional delay will be introduced since the policy manager would need to poll
the cloud service provider at a regular interval to identify the occurrence of an
event. RTX-IFTTT [3] provides a technique to minimize this delay by sniffing
outgoing cloud API calls made by IoT devices on the local network, which would
eliminate the need for the policy manager to poll the cloud API.

3.3 Policy Enforcer

Policy enforcers mediate network access to and from untrusted devices. A pol-
icy enforcer may employ a packet filtering firewall to mediate access based on
attributes such as IP address, protocol, and port number. Alternatively, it may
employ an application-layer firewall, e.g., to mediate HTTP requests. Each pol-
icy enforcer receives instructions from a centralized policy manager for how to
enforce network access restrictions. The instructions received will be tailored to
the traffic mediation capabilities of the policy enforcer and the set of untrusted
devices that are connected to the network through the policy enforcer.

3.4 Policy Manager

The policy manager performs the following key functions:

Policy Creation and Storage. An interface and syntax is provided for the
creation of IFTAT policies. IFTAT policies define how to allow or block network
access to or from an untrusted device when a specified trigger event occurs.
Network access may be allowed or blocked either in whole or based on specified
network packet header attributes or traffic patterns that the policy enforcer is
capable of identifying.
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Trigger Event Report Collection. An interface is provided for trigger devices
to report that a trigger event has occurred. Trigger events can be reported by
either local or remote trigger devices. Local trigger devices report events via
a local interface such as USB, Bluetooth, Zigbee, or Z-Wave. Remote trigger
devices report events over a network interface either directly to the policy man-
ager or to a cloud service (e.g., over HTTPS) that the policy manager can poll
to determine when a trigger event occurs.

Untrusted Device Designation. The policy manager retrieves the list of
all devices connected to each policy enforcer, and provides an interface through
which the user designates the devices that are untrusted.

Policy Translation and Distribution. The policy manager must translate
IFTAT policies into instructions that can be enforced by the policy enforcer(s).
For example, IFTAT policies can be converted into packet filtering rules or
Software-Defined Networking (SDN) policies. When a trigger event report is
received, the policy manager (i) identifies traffic mediation actions correspond-
ing to any IFTAT policies triggered by the event; and (ii) sends the instructions
necessary for executing the actions to the corresponding policy enforcer(s).

4 Related Work

Many systems for mediating IoT traffic have been proposed; e.g., machine learn-
ing classifiers can identify and block anomalous or malicious traffic [10,15]; or
devices can be assigned network access policies based on general device cate-
gories [4] or specifications of intended network access patterns provided by device
manufacturers [9]. Here, we discuss three systems in related work that modify or
update their traffic mediation behaviour in response to events observed on the
network; i.e., systems that employ what we refer to as trigger devices in IFTAT.

Table 1 summarizes and compares these three systems on the basis of how
each of them implements functionality that falls within the responsibility of
IFTAT trigger devices, policy enforcers, and policy managers. These systems can
be implemented in IFTAT, since the framework allows for the implementation
of different types of trigger devices and policy enforcers.

LeakyPick [13] uses a microphone-equipped security device to passively listen
for selected “wake words” (e.g., “Alexa” or “Hey Google”) to be spoken by the user
nearby a smart voice assistant. The security device checks if the voice assistant
connects to the Internet without the wake word having been spoken; this is
intended to check whether the voice assistant is only active while the user intends
it to be. The authors suggest that this technique could also be used to deny
network access to the voice assistant unless the wake word is spoken.

HomeSnitch [17] classifies IoT device communication into actions (e.g.,
firmware update, video upload) using a classification algorithm on features
extracted from network traffic. A policy language is also proposed, which can
allow or deny specific device activities, or use a device activity as a condition to
allow or deny other traffic. Since supervised learning is used to train the classi-
fier on a manually-labelled dataset, it is proposed that a service provider would
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Table 1. Comparison of IoT network traffic mediation systems proposed in related
work. The systems are compared on the basis of how each system implements func-
tionality that falls within the responsibility of each device class defined in IFTAT. We
compare only systems that modify their traffic mediation behaviour in response to
detected trigger events. We later propose and implement additional examples of how
IFTAT device classes can be instantiated.

Related work Trigger device Policy enforcer Policy manager

LeakyPick† [13] Trigger event:
User-spoken wake
word Detection
method: Monitor
ambient sound with
microphone

WiFi access point for
untrusted devices
denies traffic by
default and forwards
traffic when signalled
by policy manager

Policy syntax:
Rule to permit
network access for
an untrusted device
when a specified
trigger is detected
Policy source:
User-specified

HomeSnitch
[17]

Trigger event:
Activity performed by
an IoT device
Detection method:
Identify activities
using a classifier
pre-trained on
network traffic
signatures

Network gateway that
receives OpenFlow
rules from policy
manager

Policy syntax:
Rule to permit an
untrusted device
activity when a
specified trigger is
detected
Policy source:
User-specified
rules; signatures
downloaded from
3rd party

SerenIoT [22] Trigger event:
Change in an IoT
device’s network
traffic patterns
Detection method:
Identify packet
signatures that were
not previously
observed

WiFi access point for
untrusted devices that
receives firewall rules
from policy manager

Policy syntax:
Packet signature to
define allowable
traffic for specified
device Policy
source:
Proof-of-work
blockchain; new
packet signatures
are submitted
when trigger is
detected

† LeakyPick does passive detection, but also suggests the option of active prevention.

be responsible for providing updated classifier models by collecting and labeling
data to periodically re-train the classifier.

SERENIoT [22] uses a public proof-of-work blockchain that can be queried to
retrieve the allowable network traffic signatures for a given IoT device. Nodes on
the blockchain, called Sentinels, submit summaries of observed device behaviours
that get added to the blockchain if the majority of nodes have also observed the
same behaviour. New behaviours resulting from firmware updates would thus
be observed by the majority of nodes and added to the blockchain, whereas
malicious behaviour resulting from device compromise would not. Sentinels allow
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any newly-connected device on the network to send and receive all traffic for a
one-minute period; this is used as a profiling phase to identify the device type if
possible and to determine its required network traffic.

5 Trigger Events Identified and Proposed

Table 2 lists examples of trigger events that can be used in IFTAT. We categorize
the examples by the source from which the trigger event is derived: (i) physi-
cal measurements; (ii) software-based determination that a condition has been
satisfied; or (iii) signature- or heuristic-based detection. We list both generic
techniques and techniques proposed in academic literature that are suitable for
use as trigger events.

deGraaf et al. [2] propose a cryptographic protocol that operates via port
knocking to authenticate users prior to allowing application traffic through the
firewall. VibLive [23] is a secure continuous liveness detection technique, using
a microphone and loudspeaker, to ensure the user is present when giving voice
commands. We also propose a technique that, to the best of our knowledge, has
not previously been used for access control decisions: detection of when a user
opens or closes a specific application on their smartphone. He et al. [6] conducted
a survey of techniques for using physical sensors to detect home contexts rele-
vant to security-related decisions, such as user presence, user identity, or home
emergencies—these techniques can also be used to define trigger events.

Table 2. Categorization of trigger events suitable for use in IFTAT.

Trigger source Trigger event Implementation

Physical Motion detected ‡
Door or window opened or closed —
Smoke detected, water detected, etc. —

Software Mobile application opened or closed ‡
User authenticated (e.g., to WiFi network) —
Timer expired ‡

Signature Phrase or word spoken by user [13]
Liveness detection [23]
Network traffic matched an activity signature [17,22]

‡ denotes trigger events implemented in this paper; — denotes trigger events listed as examples
but not implemented.

6 System Implementation

We implemented a proof-of-concept of IFTAT on a small test network to demon-
strate two use cases as follows.

UC1. A home owner wishes to deny network access to a smart doorbell except
for while a person is physically present in front of the device. This reduces the
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time that the device is allowed outgoing network connections to align with the
user’s intended usage of the device (e.g., for communicating with a person at
their front door). Human presence should be determined without relying on the
untrusted device, so we use a separate motion sensor for this task.

UC2. A business owner wishes to deny network access to a security camera
except for while an authorized user is using a mobile application to access the
camera feed. This prevents the device from being accessible to the Internet while
the user does not need to access it. The user’s smartphone serves as the trigger
device that reports when the user has launched the mobile app.

6.1 Hardware Overview

We use two Raspberry Pi 4 devices1: one of them running Home Assistant2 to
function as the policy manager, and the other running OpenWRT3 to function
as the policy enforcer. An Energizer Connect EOD1-1002-2002-SIL Smart Door-
bell and a ReoLink RLC-410-5MP security camera are designated as untrusted
devices. Two trigger devices are also implemented, an iPhone 12 Pro and a
AM312 PIR motion sensor running ESPHome4 firmware. Figure 3 depicts the
network connectivity between all devices. The policy enforcer has three network
interfaces (WAN, LAN, and WLAN) and performs routing, NAT, and packet
filtering.

Internet
WAN

Interface

OpenWRT
Firewall

(Policy Enforcer)

Home Assistant
(Policy Manager)

Ethernet

Ethernet

Ethernet

Network
Switch

ReoLink Security Camera
(Untrusted Device)

iPhone 12
(Trigger Device)

Cellular /
WiFi

Motion Sensor
(Trigger Device)

WiFi WiFi

Doorbell
(Untrusted Device)

Fig. 3. Connectivity diagram of devices in the proof-of-concept implementation. Each
device is labelled with its device class (untrusted device, trigger device, policy enforcer,
or policy manager).

Devices are assigned a static IP address to ensure that security policies are
applied to the correct untrusted devices. Alternative techniques can be used to
identify untrusted devices dynamically, e.g., via device fingerprinting [10,12,22].

1 https://www.raspberrypi.org/.
2 https://www.home-assistant.io/.
3 https://openwrt.org/.
4 https://esphome.io/.

https://www.raspberrypi.org/
https://www.home-assistant.io/
https://openwrt.org/
https://esphome.io/
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6.2 Policy Manager

We implement IFTAT policies in YAML using Home Assistant automation rules;
for each rule we specify a trigger event and a corresponding traffic mediation
action to be taken. Table 3 describes the policies we defined to implement UC1
and UC2.

Table 3. Description of IFTAT policies used to implement proposed use cases UC1
and UC2. The lettered suffixes distinguish between the two policies required for imple-
menting each use case.

Rule Trigger event Traffic mediation action

UC1a Motion detected near doorbell Allow outbound connections from the
doorbell to the Internet

UC1b Ten minutes elapsed since motion
detected near doorbell

Deny all outbound connections from
the doorbell to the Internet

UC2a User launched security camera mobile
app

Allow inbound connections from the
Internet to the security camera

UC2b Ten minutes elapsed since security
camera mobile app launched

Deny inbound connections from the
Internet to the security camera

The traffic mediation actions are taken by issuing a command over an SSH
connection to the policy enforcer. In a production-ready IFTAT implementation,
the policy manager would automatically translate each action into a series of
commands that the policy enforcer would understand. In our proof-of-concept
implementation, we manually create a shell script for each action that enables
or disables the iptables rules necessary to execute the action, e.g., allowing or
denying network access to the camera. A sample policy in YAML format to
implement UC2 is shown in Fig. 4.

To allow remote trigger devices to report trigger events, we use webhooks
on the policy manager. Each webhook is an HTTP URL with an embedded
bearer token to ensure that only authorized trigger devices (e.g., the iPhone)
can report trigger events. The webhook must be served over HTTPS to ensure
that the bearer token cannot be eavesdropped. Trigger devices within the local
network utilize Home Assistant’s ESPHome integration to monitor the motion
sensor’s state over the WiFi network.

6.3 Trigger Events

We implement three trigger events, which are detected as described below.

Mobile Application Opened. This event is reported by the iPhone using the
Shortcuts app. We create a shortcut that performs the following actions:

1. Send an HTTP POST request to the webhook exposed by the policy manager
(using the “Get contents of URL” action).
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Fig. 4. A sample security policy to implement UC2.

2. Launch the VLC App (using the “Open App” action).

The first action allows the phone to notify the policy manager that the user
intends to interact with the untrusted device (security camera) via the VLC
app. This trigger causes the policy manager to modify the active policy on the
policy enforcer to allow network access to the untrusted device. The second
action launches the application.

Motion Present. This event is reported by the motion sensor. Home Assistant
presents a binary state (i.e., “on” for motion present or “off” not present) for the
motion sensor, which we monitor for changes from the “off” to the “on” state to
determine when the event has occurred.

Timer Expired. This event was implemented in Home Assistant by configuring
a timer to expire 10min after either a Mobile application opened or Motion
present event is detected. Each of these two event types has its own timer, which
resets to 10min if a new event of that type is detected before the timer expires.

6.4 Policy Enforcer

Traffic mediation actions are implemented using iptables rules and the OpenWRT
UCI system. When blocking network access to a device, we ensure that any active
connections are terminated immediately by blocking all ESTABLISHED connec-
tions as well. The ReoLink security camera and Energizer Doorbell are configured
as untrusted devices and by default will have all network access denied unless
the Mobile application opened or Motion present events are detected.

Mediating traffic between devices on the same LAN requires using different
LAN segments (e.g., using separate VLANs) or using Software Defined Network-
ing as in HomeSnitch [17]. In the absence of such mechanisms, devices within
the same LAN segment can communicate with each other without restriction.

6.5 Performance Evaluation

The time delays between the events in Fig. 1 have practical implications for
creating IFTAT policies, since trigger events should be detected and the resulting
traffic mediation action should take effect before the untrusted device requires
network access. To evaluate the practicality of the policies we implemented, we
collected the following timestamps to compute the aforementioned delays:
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1. When the trigger event is detected by the trigger device
2. When the trigger event report is received by the policy manager
3. When the traffic mediation instructions are received by the policy enforcer
4. When the change in network access is detected by the untrusted device

All devices were synchronized with the same NTP server to ensure consistent
timestamps, and all delay calculations were averaged across ten runs. Figure 5
provides a timeline of events that includes the delays computed from the above
timestamps that were collected for the enforcement of UC1a. We draw compar-
isons below with delays observed for the other policies.

E5. Enforcement Detected

Time Elapsed

E1. Trigger Occured

E2. Trigger Detected

E3. Policy Determined

E4. Policy Enforced

312ms2.3s 253ms ~2.2s

Fig. 5. A timeline for enforcing security policies when a trigger is received for UC1a.

E1–E2. For UC1a, after motion occurs, there is a small delay before it is
detected by the motion sensor; this delay is sensor-dependent. As per the AM312
datasheet, our motion sensor has an activation delay of 2.3 s. For the remaining
three use cases (UC1b, UC2a, UC2b), this delay is negligible.

E2–E3. For UC1a and UC2a, this delay was ∼300 ms. This is the time taken
for Home Assistant to receive an external trigger and process the policy (e.g., see
Fig. 4) to determine the command to send to the policy enforcer. For UC1b and
UC2b, this delay is negligible since the timer trigger is implemented directly on
the policy manager.

E3–E4. All four policies from Table 3 consistently resulted in a delay of ∼250
ms; this is the time taken to establish an SSH connection to the policy enforcer
and execute the shell script to enforce the policy.

E4–E5. For UC1a, a delay of ∼2.2 s was measured before the Energizer mobile
app (which tracks the doorbell status through a cloud backend) would identify
the doorbell as online. In contrast, for UC2a, an RTSP connection could imme-
diately be opened from the mobile app to the camera upon the policy being
enforced, since the camera is accessed via a direct connection (i.e., the delay was
negligible). For both UC1b and UC2b, a cloud provider may cause additional
delay to identify the device as offline after failing to receive several consecutive
heartbeat messages. For UC1b, connectivity to the doorbell resulted in imme-
diate disconnection from the video stream, but the doorbell was not reported
offline by the mobile app for ∼2.5 s. In contrast, for UC2b, the camera was
immediately identified as offline by the mobile application.

Finally, we investigate the impact of the firewall rule table being updated each
time a trigger event report is received. To test whether network performance is
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impacted, we used iperf35 to send a fixed number of UDP packets at a rate of
75Mbps to the policy manager from outside the local network (i.e., through the
WAN interface of the policy enforcer, which is the LAN-to-WAN gateway in our
implementation). In a control test with no rule updates, the average measured
round-trip delay and jitter between the policy manager and the external test
device was 0.587 ms and 0.1106 ms, respectively; no packet loss occurred and
the TCP state table was preserved. To measure the impact of rule updates,
we run a shell script that updates the firewall rules by successively adding and
removing the rules for UC1 in a loop; we measured that the script executed 40
iterations of the loop per second, with each iteration taking ∼25 ms to complete.
We repeated the iperf3 test while the aforementioned shell script was running,
and observed an average round-trip delay and jitter of 0.589 ms and 0.1134 ms,
respectively; no packet loss occurred and the TCP state table was preserved.
We thus conclude that even under an unrealistically high rate of firewall rule
updates as described above, the impact on network performance is negligible.

7 Discussion

Herein we discuss how IFTAT can strengthen a network’s security and we discuss
avenues for standardization that would support the security objectives of IFTAT.

7.1 Security Considerations

We discuss how IFTAT can combat the spread and operation of IoT malware
(refer to T1) and the exfiltration of privacy-sensitive data (refer to T2). We also
discuss security considerations relating to the implementation of trigger devices.

Protecting Externally-Exposed Devices Against Compromise. This is
the primary threat targeted by UC2 with the ReoLink security camera. In
this use case, IFTAT ensures that the device is only externally accessible when
required by the user. Externally accessible devices are regularly targeted by
botnets via IP scanning, causing any online and vulnerable devices to be infected
by malware [1]. IFTAT reduces the likelihood of infection, as the device can only
be scanned for a short period of time following a valid trigger event.

While home Internet gateway devices typically block incoming connections
by default to all devices on the home network, they provide user interfaces to
open ports to target devices. IFTAT offers the alternative of only openings ports
on a temporary basis in response to trigger events that reflect a legitimate user’s
attempt to access the target devices. Moreover, IFTAT can leverage the following
additional measures to further enhance the security of UC2:

i. The inclusion of an IP address in an allow list, ensuring only the mobile device
which performed the trigger is able to access the camera, this reduces the risk
to the levels of protection applied to the web hook bearer token.

5 https://iperf.fr/.

https://iperf.fr/
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ii. Incoming traffic to the policy enforcer targeting the untrusted device could
be collected while the untrusted device has been denied network access. Using
this data, signatures can be created representing traffic patterns sent to the
untrusted device in the absence of trigger events. This signature can then be
used to block potentially malicious traffic when the device is later allowed
network access.

Preventing Leakage of Sensitive Information. This is the primary threat
targeted by UC1. IFTAT restricts the device’s outgoing network communication
to only the time periods that align with the user’s intended usage of the device.
This reduces unnecessary opportunities for leaking sensitive information to the
device manufacturer or third-party trackers [8], and prevents the device from
performing other outbound malicious activities [1,11]. However, devices which
are reliant the manufacturer’s cloud service may react differently to being con-
nected and disconnected from the Internet [16], e.g., by caching events locally and
sending them to the cloud when connectivity is restored. Techniques employed
by OConnor et al. [16,17] may be used to determine how devices behave when
they lose connectivity, and this can inform the creation of IFTAT policies.

Importance of Countermeasures Against Trigger Device Spoofing.
Should a trigger device be spoofed or compromised, it may be possible for an
attacker to artificially signal the occurrence of a trigger event to allow network
access to a target untrusted device. Thus, it is critical to secure the communi-
cation channel between the trigger devices and the policy manager. This can be
achieved by reporting trigger events to the policy manager over an encrypted
channel, e.g., a TLS connection, or over a channel that is inaccessible to untrusted
devices, e.g., Zigbee or USB. This limits the attack surface that could be used by
an attacker to compromise a trigger device and use it to allow network traffic to
an untrusted device at will. However, the security of these channels may not be
perfect, and the risk of trigger device spoofing remains present in Zigbee devices
as well [20], especially if an attacker has physical access to the environment.

7.2 Standardizing IFTAT

Manufacturer Usage Descriptions (MUD) [9] provides a policy language that
device manufacturers can use to define a profile of the network access (e.g.,
protocols, port numbers, destination IP addresses or hostnames) that the device
requires. A device’s MUD profile can then be used to restrict its network access
and reduce its attack surface. Since MUD profiles are provided by the device
manufacturer, they would be expected to be more accurate than network traffic
profiles that are learned via traffic analysis as is done in aaa related work [17,22]
discussed in Sect. 4. The primary obstacle in the use of MUD profiles is its
limited adoption thus far by device manufacturers. Should MUD be more widely
adopted, IFTAT can use them to enforce more granular policies: when a trigger
event occurs, an untrusted device could be allowed only the network access as
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defined by its MUD policy (instead of allowing unrestricted access), thereby
minimizing the attack surface of the device.

MUD could also be extended to support the concept of trigger devices. For
example, a device’s MUD profile could specify if certain types of network access
is required in response to external trigger events. For example, the MUD may
define the network access required by the device when a New firmware pub-
lished or Motion present event occurs. The former can be detected by polling
the manufacturer’s website to monitor for announcements that a new firmware
version has been released. The latter can be detected by allowing the user to
select a motion sensor device on the network to use as the trigger device.

8 Conclusion

IoT users deserve more control over the devices they own. To gain this control,
users must currently manage complex networking setups or manually add/re-
move firewall rules. Due to the dynamic nature of many IoT devices, this net-
work management requires constant supervision and adjustment to not interfere
with device functionality.

This paper presents IFTAT, a framework that gives users simple, granular,
time-restricted control over the network connectivity of untrusted devices on
their networks. Narrowing this connectivity time window substantially reduces
the amount of information that can be leaked, as well as the exposure win-
dow during which devices are vulnerable to attack or misuse. As demonstrated,
IFTAT can be deployed using existing IoT devices, hubs, and network infras-
tructure to create and manage policies, requiring no costly new equipment or
backend cloud services. We hope that IFTAT and future time-based access con-
trol systems based on our framework offer users peace of mind when bringing
new, potentially untrusted devices into their networks.
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Abstract. In the Internet of things (IoT), traffic often goes via mid-
dleboxes, such as brokers or virtual private network (VPN) gateways,
thereby increasing the trusted computing base (TCB) of IoT applica-
tions considerably. A remedy is offered by the application layer secu-
rity protocol Object Security for Constrained RESTful Environments
(OSCORE). It allows for basic middlebox functions without breaking
end-to-end security. With OSCORE, however, traffic is routed to IoT
devices largely unfiltered. This opens up avenues for remote denial-of-
sleep attacks where a remote attacker injects OSCORE messages so as to
cause IoT devices to consume more energy. The state-of-the-art defense
is to let a trusted middlebox perform authenticity, freshness, and per-
client rate limitation checks before forwarding OSCORE messages to IoT
devices, but this solution inflates the TCB and hence negates the idea
behind OSCORE. In this paper, we suggest filtering OSCORE messages
in a RISC-V-based trusted execution environment (TEE) running on
a middlebox that remains widely untrusted. To realize this approach,
we also put forward the tiny remote attestation protocol (TRAP), as
well as a Layer 2 integration that prevents attackers from bypassing our
TEE. Experimental results show our remote denial-of-sleep defense to be
lightweight enough for low-end IoT devices and to keep the TCB small.

1 Introduction

Object Security for Constrained RESTful Environments (OSCORE) is a secu-
rity protocol for the Constrained Application Protocol (CoAP), while CoAP
in turn is a RESTful application layer protocol for Internet of things (IoT)
devices [29,30]. The principle of OSCORE is to map a CoAP message to an
OSCORE message at the sender side and to restore the original CoAP message
at the receiver side. An OSCORE message is, again, a CoAP message. Unlike
IPsec or Datagram Transport Layer Security (DTLS), OSCORE operates at the
application layer and hence provides end-to-end security across CoAP proxies.

Unfortunately, OSCORE is vulnerable to remote denial-of-sleep attacks [7,
8,27,28]. Denial-of-sleep attacks generally aim to expend the typically limited
charge of IoT devices [31]. What distinguishes local from remote denial-of-sleep
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G.-V. Jourdan et al. (Eds.): FPS 2022, LNCS 13877, pp. 389–405, 2023.
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attacks is that remote ones are carried out via the Internet. As for OSCORE,
a remote attacker can just direct OSCORE messages to an IoT device. Though
an IoT device discards inauthentic and replayed OSCORE messages, this only
happens after having consumed energy for their reception and processing already.

A naive defense against remote denial-of-sleep attacks is to equip IoT devices
with a pertinent detection mechanism and to enter an energy-saving sleep mode
in the face of such attacks. We call this defense naive because, under remote
denial-of-sleep attacks, all OSCORE clients will be blocked, rather than just
malicious OSCORE clients. There are two approaches to avoid this denial-of-
service (DoS) vulnerability. One is to install a trusted middlebox that performs
authenticity, freshness, and per-client rate limitation checks before forwarding
messages to IoT devices [8,27,28]. Authenticity and freshness checking is done
for two reasons. For one thing, this filters out messages that do not originate from
an authorized client. For another, this enables attributing forwarded messages
to certain clients and thus rate-limiting compromised clients without affecting
benign clients. Altogether, middlebox-centered remote denial-of-sleep defenses
are effective, but their authenticity checking requires giving away end-to-end
keying material to a middlebox. As long as the middlebox remains uncompro-
mised, no issues occur. This is, however, a questionable assumption because such
a middlebox may run a large amount of code, typically a whole Linux operating
system (OS). Thus, the chance for a vulnerability is high. Another approach con-
sists in adding one-time passwords (OTPs) to Layer 7 headers [7,8]. These OTPs
are checked before parsing a message’s payload, thereby accelerating the rejec-
tion of unwanted messages. Yet, that approach only offers a partial mitigation
as the reception and partial parsing already consume energy.

The main contribution of this paper is to drastically relax the trust assump-
tions of the middlebox-centered approach. We achieve this by adapting the
middlebox-centered approach to perform the filtering in a trusted execution
environment (TEE). Consequently, unlike current middlebox-centered remote
denial-of-sleep defenses, ours tolerates the compromise of most of the middle-
box’s software, including its OS, its host apps, as well as tenanted TEEs.

Moving the filtering to a TEE raises two practical hurdles. First, to enable
the TEE to filter OSCORE messages without violating privacy, each IoT device
should (i) convince itself that the middlebox runs trusted software versions on
genuine hardware and (ii) establish a shared key with the TEE for sharing end-
to-end keying material confidentially. Both can be done at once through a remote
attestation [18]. However, the energy constraints of battery-powered IoT devices
mismatch the design choices of present remote attestation protocols. In particu-
lar, the Diffie-Hellman (DH)-based remote attestation protocols of the Keystone,
Sanctum, as well as Intel Software Guard Extensions (SGX) TEE technologies
all require energy-consuming signature operations and do not optimize their
communication overhead [11,18,19]. A second hurdle is to handle the situation
when an attacker compromises untrusted parts of the middlebox. It is then key
that the attacker cannot forward OSCORE messages without consent by the
TEE. Bypassing the TEE should also be impossible by injecting or replaying
OSCORE messages toward the to-be-protected IoT devices.
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As part of our main contribution - a middlebox-centered remote denial-of-
sleep defense with a significantly reduced trusted computing base (TCB) - we
overcome both practical hurdles outlined above briefly as follows:

– Regarding the first hurdle, we propose the tiny remote attestation protocol
(TRAP). TRAP builds on Fully Hashed Menezes-Qu-Vanstone with Con-
firmation (FHMQV-C) [25]. Switching from DH to FHMQV-C reduces the
number of involved signatures to one. Also, TRAP keeps the communication
overhead low, mainly by means of using CoAP as its transport protocol.

– Regarding the second hurdle, we integrate our remote denial-of-sleep defense
with an emerging countermeasure against a set of local denial-of-sleep attacks,
namely to embed OTPs in the Layer 2 headers of radio transmissions [9,13–
16,35]. These Layer 2 OTPs enable receivers to quickly cancel the reception
of unwanted radio transmissions, thereby avoiding energy loss. Through our
integration, IoT devices are also able to cancel the reception of OSCORE
messages that bypassed the TEE.

The rest of this paper is structured as follows. Section 2 completes our discus-
sion on related work. Section 3 elaborates on our remote denial-of-sleep defense.
Section 4 goes into implementation details. Section 5 gives an empirical evalua-
tion. Section 6 concludes and suggests directions for future work.

2 Related Work

Our remote denial-of-sleep defense is inspired by TEE-based deep packet inspec-
tion (DPI) engines first proposed by Schiff et al. [26]. Basically, a TEE-based
DPI engine operates as follows. A client C first initiates a remote attestation to
ensure that a middlebox runs trusted DPI code inside a TEE T . A by-product
of this remote attestation is a key K that C and T share. C then uses K to
securely send its end-to-end keying material to T , thus enabling T to fully
inspect packets from and to C. Unfortunately, however, all current TEE-based
DPI engines rest on Intel SGX, which is susceptible to side-channel attacks. The
known side-channel attacks against Intel SGX can broadly be classified into con-
trolled channel, cache, and transient execution attacks [3,22]. Though there are
meanwhile defenses against most of the known side-channel attacks against Intel
SGX [22,23], those defenses address attack-specific privacy leaks. Conversely,
our remote denial-of-sleep defense rests on the Keystone TEE technology, which
follows a principled approach to protect against side-channel attacks [19].

Like Keystone, many other TEE technologies also build on open instruction
set architectures (ISAs) so as to raise the confidence in their privacy preservation.
Early open ISA-based TEE technologies used the OpenSPARC ISA [5,20]. Newer
ones build on the more widespread RISC-V ISA [1,18,19,32,34]. Yet, three of
the existing RISC-V-based TEE technologies, namely Sanctum, TIMBER-V,
and SERVAS, require hardware modifications [18,32,34]. By contrast, Keystone
and MultiZone use the newly specified hardware interface for Physical Memory
Protection (PMP), thereby obviating hardware modifications [1,19].
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Fig. 1. Components and actors involved in our remote denial-of-sleep defense. Most of
the middlebox’s components are untrusted in our threat model.

As mentioned, two of the existing remote denial-of-sleep defenses follow the
approach of adding OTPs to Layer 7 headers and to check these OTPs before
parsing a message’s payload [7,8]. In the context of local denial-of-sleep attacks,
this concept was taken a step further by cancelling the reception of unwanted
radio transmissions already during reception [2,4,6,9,13–16,35]. The approach
there is to embed OTPs in Layer 1 or 2 headers and to check these OTPs during
reception. However, whereas Layer 1 OTPs remained at a conceptual stage, Layer
2 OTPs are meanwhile part of a fully functional medium access control (MAC)
layer, henceforth called HPI-MAC [13]. We use HPI-MAC for implementing our
idea of coupling a local and a remote denial-of-sleep defense together.

3 Design of Our Remote Denial-of-Sleep Defence

In this section, we first introduce the components and actors involved in our
remote denial-of-sleep defense. Subsequently, we define our threat model, detail
TRAP, explain the filtering itself, and lastly analyze possible attacks.

3.1 Components and Actors

The central component of our remote denial-of-sleep defense is the Filtering
TEE. It filters out unwanted OSCORE messages toward the to-be-protected
IoT devices. To do so, it confidentially gets access to end-to-end keying material
from the to-be-protected IoT devices. By virtue of building on the Keystone
TEE technology, neither a compromised OS, nor a compromised host app, nor a
compromised tenanted TEE can access the Filtering TEE’s data. Figure 1 shows
further components and actors involved in our remote denial-of-sleep defense:

– OSCORE clients communicate with IoT devices as per OSCORE. This com-
munication goes via our middlebox, which acts as a CoAP proxy. That
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is, OSCORE clients direct their OSCORE messages to the middlebox and
include a Proxy-Scheme option in each of their OSCORE messages.

– The middlebox itself has multiple subcomponents. The Keystone security
monitor (SM) enforces security boundaries through RISC-V PMP and man-
ages TEEs. The Keystone SM is loaded by a first-stage boot loader named
root of trust. The Linux OS uses the Keystone driver to interact with the Key-
stone SM. Besides, the Linux OS may host multiple apps. A mandatory host
app is the Filtering host app. It proxies OSCORE messages and also sends
CoAP messages on behalf of the Filtering TEE. Before proxying OSCORE
messages, however, the Filtering host app asks the Filtering TEE to inspect
them. The Filtering host app and TEE communicate via shared memory.
Like any Keystone TEE, the Filtering TEE comprises an enclave app (eapp)
and a Keystone runtime (RT). While eapps implement application logic, RTs
mediate with the Keystone SM and driver.

– The border router may run as another host app or be a separate device.
It mainly relays CoAP messages between the middlebox and neighboring
IoT devices. As part of our remote denial-of-sleep defense, the border router
also embeds a Filtering OTP in each radio transmission that imparts an
inbound OSCORE message. A Filtering OTP is generated with a pairwise
key between the Filtering TEE and the next hop IoT device. Inbound CoAP
messages without an OSCORE option, on the other hand, may carry TRAP
traffic and are to be forwarded by the border router without a Filtering OTP.
Those CoAP messages fall back on normal Layer 2 OTPs and hence require
rate-limiting at the receiver side. Likewise, normal OTPs are still to be used
for securing internal traffic, where rate-limiting at the receiver side is also
required to mitigate compromises of the border router and of IoT devices.

– A Filtering client mainly performs a remote attestation at startup. This is
to check whether the middlebox runs trusted versions of the Filtering TEE
and the Keystone SM on a genuine root of trust. A by-product of the remote
attestation is a pairwise key Ki,T between the initiating Filtering client i
and the Filtering TEE. Either side derives two keys from Ki,T . KOSCORE

i,T , on
the one hand, becomes an OSCORE Master Secret. The resulting OSCORE
session, in particular, serves for sharing end-to-end keying material confiden-
tially. KOTP

i,T , on the other hand, serves for generating Filtering OTPs.

3.2 Threat Model

We consider the threat of remote denial-of-sleep attacks against IoT devices.
To this purpose, the attacker may sniff, inject, modify, and block messages.
Additionally, the attacker may compromise OSCORE clients, untrusted parts of
the middlebox, the border router, as well as IoT devices. But, we do not aim to
protect compromised IoT devices from remote denial-of-sleep attacks anymore.
Local denial-of-sleep attacks must be mitigated by complementary measures.

As for the privacy preservation of the Filtering TEE, we inherit the threat
model of Keystone [19]. Keystone TEEs resist physical and side-channel attack-
ers. Physical attackers tamper with signals that leave the RISC-V processor
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Table 1. Notations

Symbol Meaning

PKR, SKR the static public/private key pair of the root of trust

PKi, SKi the static public/private key pair of Filtering client i

PKM , SKM the public/private key pair of the Keystone SM

PKC , SKC an ephemeral public/private key pair of a Filtering client

PKT , SKT an ephemeral public/private key pair of the Filtering TEE

KMIC
i,T ,Ki,T FHMQV-C keys of the Filtering client i and the Filtering TEE

KOSCORE
i,T a key derived from Ki,T for use by OSCORE

KOTP
i,T another key derived from Ki,T for generating Filtering OTPs

HMIC(key, data) a hash-based message integrity code (MIC) algorithm

package. Side-channel attackers may launch various side-channel attacks, namely
controlled, cache, and transient execution side-channel attacks. The prevention
of timing side-channel attacks, on the other hand, is at the responsibility of Key-
stone TEEs themselves. Depending on where the middlebox is being deployed,
some of Keystone’s protection mechanisms may be dispensable in favor of sav-
ing resources. For example, if physical access to the middlebox is restricted,
Keystone’s countermeasures against physical attackers can be disabled.

Further, while we protect the middlebox from DoS attacks, we do not aim
to maintain service when untrusted parts of the middlebox get compromised.

3.3 TRAP: Tiny Remote Attestation Protocol

The protocol participants are the Keystone SM, the Filtering host app, the Fil-
tering TEE, and an initiating Filtering client i. The goals of TRAP are (i) to
assure the Filtering client i that the middlebox runs trusted versions of the Fil-
tering TEE and the Keystone SM and (ii) to agree on the keys KOSCORE

i,T ,KOTP
i,T

with the Filtering TEE. TRAP assumes each Filtering client to know the static
public key PKR of the root of trust, the hash of the initial state of the Keystone
SM, and the hash of the initial state of the Filtering TEE. Also, it assumes the
Filtering TEE to know the static public key PKj of each Filtering client j. If
this pre-configured information changes, a software update is necessary. For a
summary of our notations, see Table 1. Figure 2 depicts the four phases of TRAP:

1 DoS Protection: The Filtering client initiates a remote attestation by
sending a CoAP request to the path “/kno” (short for knock). Yet, as serving a
remote attestation is resource-intensive, attackers may cause DoS by initiating
several remote attestations. Moreover, attackers may misuse the Filtering host
app for launching amplification attacks. The idea of amplification attacks con-
sists in sending initiation messages to a server in the name of a victim host, i.e.,
with a spoofed IP source address. If the server’s responses are longer than the ini-
tiation messages, an attacker can amplify his or her bandwidth. This may thus
enable DoS attacks. To prevent both these attack paths, TRAP incorporates
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Fig. 2. TRAP’s four phases, namely 1 DoS protection, 2 key agreement, 3 disclo-
sure & confirmation, and 4 keep-alive messages

the respective countermeasure of DTLS [24]. Specifically, the Filtering host app
maintains a secret value r that is regenerated at a regular time interval. When
the Filtering host app receives a kno request, the Filtering host app initially
challenges the initiator. The Filtering host app does so by returning a cookie
c = HMIC(r, a)‖t, where HMIC(key, data) is a hash-based message integrity code
(MIC) algorithm, a is the source IP address of the received kno request, t is the
current time interval, and ‖ denotes concatenation. By presenting the cookie in
the subsequent phase, the Filtering client proves that it can receive data on its
IP address.

2 Key Agreement: On reception of the kno response with the cookie
c, the Filtering client generates an ephemeral key pair (PKC , SKC). Next, the
Filtering client sends a CoAP request to the path “/reg” (short for register).
The payload of the reg request comprises PKC and the cookie c.

DH-based Scheme: If c is valid, the DH-based scheme of Keystone and Sanctum
would now proceed as follows. The Filtering TEE generates its ephemeral key
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pair (PKT , SKT ) and asks the Keystone SM to generate an attestation report.
In Keystone and Sanctum, an attestation report consists of an SM and a TEE
report. The SM report contains the public key PKM of the Keystone SM and
a signature. This signature is generated using the static private key SKR of
the root of trust and covers both PKM and a hash of the initial state of the
Keystone SM. Note that when the root of trust loads the Keystone SM, it also
generates the key pair (PKM , SKM ), creates the SM report, and finally erases
SKR from random-access memory (RAM). The TEE report contains PKT and
another signature. That signature is generated with SKM and covers PKT ,
PKC , as well as a hash of the initial state of the Filtering TEE. Before sending
the attestation report to the Filtering client, the Filtering TEE generates the DH
key Ki,T with PKT , SKT , and PKC . On reception of the attestation report, the
Filtering client verifies both contained signatures. If valid, the Filtering client
proceeds with generating Ki,T , too. Thus, the original DH-based scheme requires
two signatures and lacks client authentication. Client authentication requires the
client side to, e.g., sign PKC with PKi, but this entails another signature.

TRAP: TRAP’s FHMQV-C-based scheme reduces the number of signatures to
one despite adding client authentication [25]. While DH derives Ki,T only from
the ephemeral key pairs (PKC , SKC) and (PKT , SKT ), FHMQV-C addition-
ally entangles the long-term key pairs (PKi, SKi) and (PKM , SKM ). Another
change is that FHMQV-C generates two symmetric keys, namely the actual
FHMQV-C key Ki,T and the key KMIC

i,T for perfect forward secrecy. Concretely,
if PKC and c are valid, the Filtering TEE will ask the Keystone SM to generate
an attestation report. Like in Keystone and Sanctum, an attestation report con-
sists of an SM and a TEE report. We keep the SM report unmodified and only
adapt the TEE report. The TEE report contains PKT and a MIC. The MIC is
generated with the FHMQV-C key KMIC

i,T and authenticates PKM , PKT , as well
as a hash of the initial state of the Filtering TEE. Before sending the attestation
report to the Filtering client, the Filtering TEE derives KOSCORE

i,T and KOTP
i,T

from the actual FHMQV-C key Ki,T . On reception of the attestation report, the
Filtering client checks its contents and finally derives KOSCORE

i,T and KOTP
i,T , too.

3 Disclosure & Confirmation: The next interaction serves the dual
purpose of disclosing end-to-end keying material to the Filtering TEE and of
ensuring perfect forward secrecy. An exception is the border router, which does
not share any end-to-end keying material. The potentially empty disclosed key-
ing material is sent as a CoAP request to the path “/dis” (short for disclose).
To secure the dis request, TRAP uses KOSCORE

i,T as an OSCORE Master Secret.
Including HMIC(KMIC

i,T , PKC‖PKi) ensures perfect forward secrecy [25]. On
reception, the Filtering TEE unsecures the dis request as per OSCORE, checks
the FHMQV-C MIC, stores the end-to-end keying material (if any), and returns
a CoAP ACK that is secured by the just established OSCORE session.

4 Keep-Alive Messages: The forth phase accounts for reboots of the
middlebox. Note that if the Filtering client reboots, it will initiate another
remote attestation and a new OSCORE session begins. By contrast, if the mid-
dlebox rebooted, this would go unnoticed by Filtering clients. Hence, the Fil-
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tering client sends, in the absence of forwarded OSCORE messages from the
middlebox, CoAP requests to the path “/upd” (short for update). To secure upd
requests, TRAP uses the established OSCORE session. A fresh authentic CoAP
ACK signals that the middlebox is up. Otherwise, if an upd request remains
unacknowledged, the Filtering client will initiate a new remote attestation.

3.4 Filtering of Inbound OSCORE Messages

The Filtering TEE filters out inauthentic and replayed inbound OSCORE mes-
sages and rate-limits remaining ones on a per client basis. Checking the authen-
ticity of inbound OSCORE messages is possible since IoT devices disclose their
end-to-end keying material to the Filtering TEE after the remote attestation. To
detect replayed inbound OSCORE messages, the Filtering TEE keeps track of
the sequence numbers used in authentic inbound OSCORE messages. As for the
rate limitation, the Filtering TEE maintains per-IoT client leaky bucket counters
(LBCs) like in prior work [8,27]. The main motivation behind rate-limiting this
way is that the rate of forwarded inbound OSCORE messages may overshoot
temporarily, while a maximum rate is still enforced in the long term.

If an inbound OSCORE message passes authenticity, freshness, as well as
rate limitation checks, the Filtering TEE resecures it using the OSCORE session
that was established with the addressed IoT device during remote attestation.
This resecuring allows the addressed IoT device to ensure that the OSCORE
message actually passed through the Filtering TEE. Furthermore, this already
prevents remote denial-of-sleep attacks that depend on the middlebox to forward
OSCORE messages. Yet, it does not cater for an attacker who bypasses the
Filtering TEE by, e.g., injecting OSCORE messages on the path between the
middlebox and the border router. This is why we integrate with Layer 2 OTPs.

Consider that the border router plans a radio transmission that conveys an
inbound OSCORE message to a neighboring IoT device running Filtering client
j. Such a radio transmission is to be prefixed with an OTP that is generated
with an unusual key, namely the pairwise key KOTP

j,T between j and the Filtering
TEE. Since KOTP

j,T is unknown to the border router, it retrieves a ready-to-use
Filtering OTP from the Filtering TEE. To do so, the border router sends a CoAP
request to the path “/otp”. To secure this otp request, the border router uses its
OSCORE session with the Filtering TEE. The otp request’s payload contains
(i) the wake-up counter of the next hop IoT device at the scheduled time of
reception, (ii) the number of bytes of the radio frame, (iii) the MAC address
of the next hop IoT device, and (iv) the two final bytes of the MIC of the
inbound OSCORE message. While (i), (ii), and (iii) are inputs to the generation
of an OTP as per HPI-MAC [13,15], (iv) allows the Filtering TEE to relate otp
requests to relayed OSCORE messages, thereby enabling the Filtering TEE to
detect a compromised border router who illegitimately requests Filtering OTPs.
For signaling the use of a Filtering OTP rather than a normal OTP, we leverage
an unused flag in HPI-MAC’s header, allowing receivers to branch accordingly.
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3.5 Security Analysis

DoS Attacks: A basic threat to the middlebox are DoS attacks, where an
attacker either initiates several remote attestations or misuses the returned attes-
tation reports to amplify his or her bandwidth. Owing to TRAP’s cookie check,
Filtering clients must prove address ownership prior to any remote attestation.
This enables the Filtering host app to implement an IP-based rate limitation,
e.g., using LBCs along with a hash-based lookup table. Amplification attacks, on
the other hand, are complicated by the fact that they can only be launched from
functioning source IP addresses. In this regard, there are two possible pitfalls.
First, kno requests must at least be as long as kno responses so that the returned
cookies do not enable amplification attacks themselves. Second, cookies must be
invalidated by choosing a new value for the secret value r at regular intervals.
TRAP attaches the current time interval to cookies so that the Filtering host
app may choose to accept old cookies for a transition period.

Attacks on Key Agreement: FHMQV-C stands at the end of a series of
improvements to the famous MQV protocol [17]. Sarr et al. showed HMQV,
a more efficient version of MQV [12], to be vulnerable to impersonation and
man-in-the-middle attacks when certain session-specific information leaks [25].
As a countermeasure, Sarr et al. proposed FHMQV, which is based on revised
signature schemes [25]. FHMQV-C adds a confirmation message and MICs to
FHMQV so as to attain perfect forward secrecy. FHMQV-C’s confirmation mes-
sage contains HMIC(KMIC

i,T , PKC‖PKi), which TRAP includes in dis requests.
A preliminary to using FHMQV-C is to ensure the authenticity of the public
key PKM . TRAP does so by letting the root of trust generate the key pair
(PKM , SKM ), as well as letting the root of trust sign PKM with SKR. We
remark that a protocol verification of TRAP using a pertinent tool, such as
Tamarin, goes beyond the scope of this paper because adding support for MQV-
based protocols to such tools is a subject of current research itself [10].

Attacks on Privacy Preservation: To ensure IoT devices that their com-
munication is kept secret, their Filtering clients check if the Keystone SM and
Filtering TEE were loaded properly and agree on an OSCORE Master Secret
with the Filtering TEE. For this purpose, the root of trust hashes and signs the
initial state of the Keystone SM. Hence, Filtering clients need to know the hash
of the software version they trust. Further, as the signature also covers PKM ,
PKM can later serve to authenticate the hash of the initial state of the Filtering
TEE in TEE reports. Thus, Filtering clients need to know that hash, as well.

Remote Denial-of-Sleep Attacks: Suppose an uncompromised IoT device
with Filtering client i receives a radio frame and that the radio frame has the
flag that signals the use of a Filtering OTP set. Let l denote the number of
bits of a Filtering OTP. We argue that if the contained Filtering OTP does not
originate from the Filtering TEE, there is only a probability of 2−l that the radio
frame is going to be fully received. Observe that KOTP

i,T is required for generating
a Filtering OTP. Furthermore, KOTP

i,T is only known to the Filtering TEE and
the IoT device itself. Thus, the compromise of IoT clients, other IoT devices,



Reducing Trust Assumptions with OSCORE, RISC-V, and Layer 2 OTPs 399

untrusted parts of the middlebox, and the border router does not reveal KOTP
i,T .

This retains guessing and replay attacks. Replay attacks, however, do not work
out because a Filtering OTP is only accepted as valid at the intended wake up.

4 Implementation

As for the implementation, preliminary steps concerned the CoAP, crypto-
graphic, and OSCORE libraries. The CoAP library we opted for is libcoap,
across all components where CoAP is needed. Concerning the Filtering host app,
a minor complication was to cross-compile libcoap to RISC-V. By contrast, on
our CC2538-based target IoT devices [33], we run Contiki-NG, an OS libcoap
was not yet ported to. Our choice for Contiki-NG is motivated by the avail-
ability of an implementation of HPI-MAC for it [13]. As cryptographic library,
we use existing C implementations of P-256 and SHA-256 in the Keystone SM
and root of trust. On our CC2538-based target IoT devices, on the other hand,
we implemented these cryptographic primitives by ourselves so as to leverage
the hardware acceleration features of CC2538 chips. Finally, we implemented an
OSCORE library for use by Filtering TEEs, Filtering clients, and test IoT clients.
With these preliminary steps done, the implementation is rather straightforward
since libcoap is convenient for realizing standard CoAP interactions. The main
repository of our implementation is https://github.com/kkrentz/filtering-proxy.

5 Evaluation

Our empirical evaluation focuses on two probable concerns about the practicality
of our remote denial-of-sleep defense. On the one hand, low-end IoT devices
might be incapable of performing the involved elliptic curve cryptography (ECC)
or of handling the communication overhead. On the other hand, the increase of
the TCB might represent an unacceptable security trade-off. We shall conclude
that neither of these concerns applies to our remote denial-of-sleep defense.

5.1 Overhead of TRAP vs DH-Based Remote Attestation

To quantify the overhead of TRAP vs the original DH-based scheme with client
authentication, the following experiments were conducted. It was first measured
how long it takes a CC2538-based IoT device to perform the involved ECC. For
this, both remote attestation protocols were executed multiple times with and
without hardware acceleration for the cryptographic primitives P-256 and SHA-
256. During each protocol run, the durations for (i) generating (PKC , SKC),
including, in the case of the DH-based scheme, signing PKC , and (ii) checking
the attestation report, including key derivation were logged. Next, the sizes of the
CoAP messages that are exchanged during a remote attestation were determined
via Wireshark. The disclosed end-to-end keying material comprised 16 bytes.
Finally, the program memory and static RAM overhead of the Filtering client on

https://github.com/kkrentz/filtering-proxy
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Fig. 3. Compared to the original DH-based scheme with client authentication, TRAP
shortens the processing times noticeably. Enabling hardware acceleration for SHA-256
and P-256 further speeds up processing times.

a CC2538-based IoT device was measured. As a baseline, a Contiki-NG example
of an OSCORE-secured CoAP server was first compiled without our remote
denial-of-sleep defense enabled. Then, the example was compiled with our remote
denial-of-sleep defense enabled and eventually both binaries were analyzed. In
the same manner, the memory overhead of hardware-accelerated and software-
only ECC was determined. As software implementation, Micro-ECC was used.

Figure 3 shows the measured processing times. A first observation is that
enabling hardware acceleration for P-256 moves the bulk of the workload to
the Public Key hardware Accelerator (PKA) of the CC2538. The PKA oper-
ates in the background while the CPU can proceed with other threads in the
meantime. Since Contiki-NG has an event-driven kernel, this is highly beneficial.
Specifically, in Contiki-NG, long-running tasks have to be split up since event
handlers run to completion. Given that all involved cryptographic computations
take quite long, Micro-ECC can actually not be used “as is” in Contiki-NG.
Hardware-accelerated ECC circumvents this issue and, beyond that, acceler-
ates processing times significantly. A second observation is that TRAP shortens
the overall processing times due to FHMQV-C being more efficient. A third
observation is that the processing times are still far from negligible. Hence, one
should protect against attackers that provoke remote attestations, e.g., through
jamming upd messages. Possible mitigations include rate-limiting remote attes-
tations.

Figure 4 shows the sizes of the CoAP messages that are exchanged during a
remote attestation. The kno and dis requests and responses are all small enough
to fit in a single IEEE 802.15.4 frame, at least when using the 2.4-GHz IEEE
802.15.4 offset quadrature phase-shift keying (O-QPSK) physical layer (PHY)
like us. This is because this PHY has a maximum transmission unit of 127 bytes.
If an IPv6 packet does not fit within a single IEEE 802.15.4 frame, even after
compressing it, Contiki-NG automatically fragments it as per 6LoWPAN [21].
This actually happens during the reg interaction. That said, TRAP exchanges
much less data during the reg interaction due to obviating two signatures com-
pared to the original DH-based scheme with client authentication. Furthermore,
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Fig. 4. Sizes of the CoAP messages that are sent while executing TRAP and the
original DH-based scheme with client authentication. TRAP has a significantly reduced
communication overhead due to obviating two signatures.

in our implementation of both protocols, we use public key compression, which
saves 255 bits per transferred public key (3 in total). The otp interaction, on the
other hand, occurs between the more capable border router and the Filtering
TEE in order to retrieve a valid Filtering OTP for forwarding the dis response.
Thus, this interaction does not consume any charge of any IoT device anyway.

Figure 5 shows the static RAM and program memory consumption of the
Filtering client on CC2538-based IoT devices. As even the top version of the
CC2538 only offers 512 KB of program memory and 32 KB of RAM, these
figures are also important. The static RAM consumption of the Filtering client
turned out to be small. TRAP consumes more RAM since some keys need to
be kept in RAM for longer than in the original DH-based scheme. The program
memory consumption, on the other hand, is rather high, whereof the code for
ECC has a large share. That said, the program memory consumption is still
well manageable for CC2538-based IoT devices. TRAP consumes slightly more
program memory since the implementation of FHMQV-C is more complex.

5.2 Trusted Computing Base

Running additional code on the IoT devices, as well as trusting part of the
code that runs on the middlebox may intolerably increase the TCB. However,
as shown in Fig. 5b, the additional code that IoT devices must run is oversee-
able, even more so when ECC is required anyway. The TCB on the middlebox
comprises the root of trust, the Keystone SM, and the Filtering TEE. As for
the root of trust and the Keystone SM, Keystone is especially designed to keep
their software thin [19]. As for the Filtering TEE, the code sizes shown in Fig. 6
were determined using a tool of the RISC-V GNU Compiler Collection (GCC)
toolchain. We managed to decrease the TEE code by doing much of the CoAP
and OSCORE processing in the untrusted Filtering host app. A large part of the
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Fig. 5. Memory footprint of the Filtering client on CC2538-based IoT devices
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Fig. 6. Size of the trusted TEE code if compiled to 64-bit RISC-V

remaining TEE code implements the cryptographic primitives AES-128, SHA-
256, and P-256. In the case of TRAP, the Filtering TEE does not need a P-256
implementation since all ECC-related processing is then performed by the Key-
stone SM, which requires ECC anyway. Overall, the Filtering TEE has 17 KB
of application logic, which we deem an acceptable security trade-off.

6 Conclusions and Future Work

Remote denial-of-sleep attacks are easy to execute and incur severe repercussions
in safety-critical IoT applications. In safety-uncritical IoT applications, it is, at
least, desirable to prevent such attacks from the viewpoint of customer satisfac-
tion and quality-of-service guarantees. The state-of-the-art defense is to install
a fully trusted middlebox that filters out unwanted messages en-route. We have
drastically reduced the trust assumptions on such a middlebox via the Keystone
TEE technology. Notably, our solution does not depend on the middlebox to be
placed on the path between OSCORE clients and IoT devices anymore. This is
because it ultimately requires a Filtering OTP to wake up an IoT device and
Filtering OTPs are only issued by the Filtering TEE. Another useful side effect
is that it now suffices for an IoT device to establish an OSCORE session with the
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middlebox, rather than with every OSCORE client. A downside of our remote
denial-of-sleep defense is that it requires a remote attestation, which we have
addressed with the lightweight remote attestation protocol TRAP. For future
work, we will be interested in the implications on latencies and throughput.
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Abstract. Software updates are critical for ensuring systems remain
free of bugs and vulnerabilities while they are in service. While many
Internet of Things (IoT) devices are capable of outlasting desktops
and mobile phones, their software update practices are not yet well
understood, despite a large body of research aiming to create new
methodologies for keeping IoT devices up to date. This paper discusses
efforts towards characterizing the IoT software update landscape through
network-level analysis of IoT device traffic. Our results suggest that ven-
dors do not currently follow security best practices, and that software
update standards, while available, are not being deployed.
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1 Introduction

Consumer Internet of Things (IoT) devices have gained significant popularity in
recent years, resulting in a revolution of IoT devices used in many applications.
IoT devices are typically resource-constrained and require specialized operating
systems and software stacks depending on their application [5]. Due to the unique
resource constraints of IoT devices, device vendors have to either design their
software update infrastructure and supporting applications from scratch or use
an integrated third-party solution1 which has historically shown to be incon-
sistent and vulnerable [30]. Software update systems are well understood and
widely available on general-purpose computers and servers [4]; however, there
is very little insight and research into how these vendor-specific IoT software
update systems work due to a lack of standardization in the IoT space [6,31].
Our goal is to characterize how typical consumer IoT devices query for and
retrieve software updates, and evaluate the security of these techniques as used
by prominent IoT vendors.

A unique challenge for deployed IoT devices is their expected lifespan. Typical
personal computers have a relatively short lifespan compared to an IoT device,
which is expected to behave in an appliance-like fashion with minimal (if any)
downtime. Personal computers may get replaced in 5–10 years if the hardware
cannot keep up with current software demands. In contrast, an IoT device such
1 Such as Microsoft Azure IoT, or Amazon Web Services IoT.
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as a smart thermostat may be expected to run for decades before being replaced.
With the constant evolution of technology, device vendors have the additional
challenge of providing a secure implementation of their software on potentially
outdated hardware.

We hypothesize that suboptimal update intervals from IoT device vendors
may further weaken IoT update systems. For example, device libraries such as
the crucial OpenSSL library were analyzed during a study of 122 IoT device
firmware files, which revealed several vendors failed to patch OpenSSL in their
IoT devices after critical vulnerabilities were released [32]. Device vendors took
months to supply an updated system image with a patched OpenSSL version,
and one vendor took nearly 1,500 days to patch the critical vulnerability. Failing
to update critical libraries causes these devices to gain a larger attack surface that
could potentially be leveraged by bad actors to trick the device into downloading
malware [29] or to bypass security measures that are in place to prevent the
device from loading modified firmware [6,9].

In recent years there have been many proposals for secure software update
systems that are designed for IoT [7,11,32] and related cyber-physical sys-
tems [13,18]; however, there is no research (to our knowledge) aiming to
broadly understand the IoT software/firmware update landscape in consumer
IoT devices.

Our primary focus is identifying software updates being requested and taking
place. The benefits of this can be leveraged in various contexts: Network-level
update detection can be used as independent feedback to end users that their
devices are being updated regularly – an IoT device vendor may promise to pub-
lish security patches for their IoT devices, but not deliver on that promise [32].
In an enterprise context, administrators may want to apply the principle of least
privilege to fleets of IoT devices. Certain IoT devices do not need continuous
access to the open internet as most devices can function exclusively with LAN
connectivity to a central hub or other devices. The only edge case to this is
checking for updates and downloading them. If an active firewall can detect
update-related traffic from IoT devices, it can adjust rules to (1) allow the IoT
device to download an update from the internet, and (2) log the update instance.

The research contributions in this paper are:

– The first in-depth analysis of consumer IoT network traffic to identify software
update communications. We identified design patterns used in several IoT
devices and found vulnerabilities that could be exploited.

– A case study of software update schemes and practices that we identified
through our methodology. Devices featured in our case study distribute soft-
ware updates over HTTP with no tamper-resistant protection mechanisms
added on. One of the devices identified in the case study provides a happy
medium between update transparency and security.

– An event-based characterization of when IoT devices update. We contextual-
ize the various conditions that lead to an IoT device performing updates. For
example, power cycling an IoT on is highly likely to trigger an update check.
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2 Methodology

Our research objective is to understand and characterize how and when IoT
devices perform software updates. To accomplish this, we build a network traf-
fic analysis system that identifies and analyzes software update requests and
responses from IoT devices. We aim for the system to be vendor-agnostic, requir-
ing no a priori knowledge about the IoT vendor’s infrastructure or devices. The
system should also identify updates across multiple independent cloud vendors,
which are relied upon heavily in IoT.

To accomplish this, we analyze network traffic from a 2019 Internet Measure-
ments Conference (IMC) paper by Ren et al. [24] which actively captured traffic
from 81 IoT devices. These 81 devices were located in two geographic regions; 46
in the US, 35 in the UK, and 26 common devices across both regions. In total,
the dataset contains packet captures from 55 unique devices. Collected data was
harvested at network gateways, but no form of middle-person attack was done
on TLS traffic which precludes peering into an encrypted device communica-
tion. Therefore, in this paper, we rely exclusively on extractable HTTP traffic
for identifying software updates. Additionally, we harvest metadata from the
TLS handshakes to gain insight into the security of the secure communication
channels used by these devices.

2.1 Data Extraction

In total, the dataset of packet captures from Ren et al. is 13 GB in size, which
includes 37, 744 packet captures recorded by the automated test system and
611 unsupervised experiment packet captures, yielding a total of 38, 355 packet
captures. We do not separate traffic by geographic region as Ren et al. found
very negligible differences in region-specific traffic [24].

To identify network traffic related to software updates, we hypothesize that
update interactions between an IoT device and vendor cloud follow a structured
schema. If the schema is human-readable (e.g., JSON, XML, etc.) there will be
keywords contained inside indicating some update-related information, such as
a firmware version. We initially searched for a single keyword “update”, which
led us to build a corpus of update-related keywords: update, upgrade, firmware,
software, and download.

These keywords will be the basis we use for identifying update-related traffic;
however, manually searching through files will not scale to the number of devices
we have. Therefore, we developed a parallel network traffic processing pipeline
(see Fig. 1) that manages network traffic metadata and HTTP object extraction.
The pipeline design is compatible with distributed data processing frameworks
such as Apache Spark, and works on the dataset as follows:

Metadata Extraction: We extract metadata representing the packet capture.
This includes the specific sub-dataset, region, experiment type (e.g., power on,
interact with the device, etc.), and device name. The extracted metadata is saved
to a metadata database and used for later steps in the pipeline.
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Fig. 1. Our data extraction pipeline: starting with the IoT packet capture dataset,
we extract metadata for each packet capture to represent a given packet capture as
a unit of work. We process each packet capture in parallel, extracting HTTP objects
to the local filesystem, TLS Handshakes, and update-related metadata. All extracted
metadata is stored relationally in a metadata database for further analysis, and HTTP
objects are stored on the local filesystem.

Parallelization: We parallelize the extraction of metadata and HTTP objects
on a per-packet capture basis. The parallelization is done by assigning each
packet capture to a worker node, and the worker node performs the following
steps on each packet capture individually. In practice a parallelization approach
is not needed; however, passive analysis of a large amount of packet captures
warrants the speedup gains of parallelization.

HTTP Object Extraction: We extract all HTTP payloads from a given packet
capture. The HTTP payload data is of particular interest as it provides us insight
into any files transferred along with any web service interactions.

TLS Handshake Extraction: We then extract TLS client and server hello
data using a modified version of pyshark2. Our modified version of pyshark
supports extracting an extended set of TLS handshake metadata, including the
ciphers advertised in the TLS client hello and server hello handshake. In total,
we return a list containing every TLS handshake, including the TLS version,
TLS handshake type, and a list of cipher suites. The TLS cipher suite data is
used to determine if devices are adequately securing communication channels
against TLS-related attacks.

Keyword Extraction: For each of the extracted HTTP objects, we scan for the
aforementioned update-related keywords by performing a case-insensitive search
for all of the keywords. A keyword occurrence flags a packet capture related to a
software update. Counts of keyword occurrences are saved to the metadata DB
for future analysis.
2 https://github.com/KimiNewt/pyshark.

https://github.com/KimiNewt/pyshark
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The data-extraction pipeline operates per packet capture in parallel. On a
test VM with 24 virtual processors, 64 GB of RAM, and a solid-state drive, we
were able to run the extraction pipeline on 38, 355 packet captures in over 60 min,
with approximately 10 packet captures processed per second. Without a parallel
approach, our extraction pipeline would have taken over 24 h to complete.

2.2 Data Analysis

Using the metadata that corresponds to the packet capture, we can perform
extended analysis on the packet capture that had been flagged as having update-
related traffic. After identification of these packet captures, we inspect the HTTP
response data to look for any update endpoints or update artifacts. Ideally, we
should find no update-related artifacts in HTTP responses, as this would imply
these files are transmitted over an insecure channel.

Device vendors should be protecting their firmware from being tampered with
regardless of the transfer protocol being used: if a vendor uses only TLS to secure
their updates in transit, the compromise of a single cryptographic key is the only
requirement to jeopardize the integrity of the vendor’s update system [26].

Analyzing IoT update interactions by raw traffic can be misleading as it does
not consider the context that triggers a device to update, only that the device
checked for an update. To further characterize update interaction, we look at
event-related information to provide more context to the various conditions that
cause IoT devices to update. All the packets captured from the Ren et al. study
are labeled with various event-related information such as power events, app
interaction, or idle events. Therefore, we analyze these crucial pieces of context
to correlate events to update activity. For example, if an IoT device checks for
an update when powered on, an adaptive firewall can use temporal data of an
IoT device’s network connectivity to provide more context to classify if an IoT
device may be requesting and applying a software update.

Finally, we extract and analyze all TLS handshake data from all the packet
captures (independent of update keyword traffic) to assess the overall strength of
the communication channels in use. Our methodology only allows us to perform
extended analysis on unencrypted traffic; however, if IoT devices send all of their
traffic over an encrypted medium, it is a reasonable assumption that the devices
will also perform firmware updates over these encrypted connections. If the TLS
implementation on the IoT device is outdated or insecure will undermine the
overall security of the IoT device, including the software update system. Whether
TLS is explicitly or implicitly chosen for a design, using TLS is a design choice
for IoT update systems.

To interpret the set of cipher suites advertised between clients and servers, we
converted the cipher suite’s hexadecimal value to the IANA cipher suite name
by leveraging a cipher suite information API [25] which aggregates all IANA
cipher suites along with IANA cipher suite security classifications. Cipher suites
are then categorized into four buckets: insecure, weak, secure, and recommended.
Insecure cipher suites have easily exploitable security flaws and thus should never
be used, while weak cipher suites may have proof-of-concept vulnerabilities that
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are more difficult to exploit in practice. The classes of secure and recommended
cipher suites have no known vulnerabilities, and all recommended cipher suites
are a subset of secure cipher suites. The only differentiating factor is that rec-
ommended cipher suites support Perfect Forward Secrecy (PFS).

3 Results

In this section, we discuss our results in identifying update-related traffic. At
the network level, software updates are difficult to detect if the update com-
munications are taking place over an encrypted connection. TLS offloading may
be an option in non-IoT contexts; however, attempting TLS offloading on IoT
devices will require physically tampering with the device which may cause erratic
behavior [24].

Our HTTP object extraction pipeline extracted HTTP objects from 5,766 of
38,356 packet captures, which is 15% of the packet captures in the dataset. In
other words, 85% of packet captures use some form of encryption, or a protocol
other than HTTP. We extracted HTTP data for 35 out of 55 devices3, which is
63% of devices. Originally, Ren et al. attempted to measure encryption adoption
with slightly different results: no device had more than 75% unencrypted traf-
fic [24]. The key difference in our results is we focus on extractable HTTP objects,
whereas Ren et al. attempted to guess if certain UDP traffic was encrypted or
not by measuring byte entropy, which only concludes if certain packets are likely
encrypted [24].

In the following sections, we describe our results for identifying software
update keywords, characterizing software updates based on device interaction,
and our TLS results. These results are summarized as follows:

– Section 3.1: Out of the 35 devices that did not encrypt all traffic, 9 (25%)
checked for available software updates transparently.

– Section 3.2: Update-related traffic is correlated to power and idle events, but
a small percentage of devices checked periodically (some as often as once per
hour).

– Section 3.3: Update endpoints (where software update files are hosted) for
devices in our set exist primarily in 3rd party cloud service platforms, or
on content delivery networks (CDNs), which makes DNS-based identification
difficult.

– Section 3.4: TLS is pervasively used in IoT communications, possibly includ-
ing update-related traffic. Devices that only use TLS for communication could
be vulnerable to key compromise if there are no additional protections in
place [26].

– Section 3.4: The majority of our devices use secure TLS cipher suites which
would not make them vulnerable to TLS downgrade attacks; however, there
are devices that support vulnerable TLS cipher suites, which jeopardizes any
update communications made through TLS.

3 Originally, Ren et al. had 81 devices with 26 common devices between regions, thus
55 unique devices.
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3.1 Update Keywords Results

Fig. 2. Our results for update keywords by device and interaction event.

We successfully extracted several HTTP interactions between IoT devices and
web services related to software updates. Our most prominent keyword is update
with 1,351 occurrences among extracted HTTP objects, firmware with 639
occurrences, software with 89, and download appearing only 8 times.

The specific devices and the corresponding keywords they matched are shown
in Fig. 2b. The heatmap shows the number of occurrences of the keywords in the
rows for the devices in the columns, where a darker blue indicates more occur-
rences. We observed that certain devices exchange update-related information
much more often than others, such as the Wemo plug and Phillips hub.

The Wemo plug device had the most occurrences of keywords, which means
the Wemo plug was polling the most frequently for updates; however, this does
not imply there may be a software update in progress. For example, the Wemo
Plug exchanges firmware information in nearly every request which contributes
to the high amount of keyword detection; however, we did not find any proof
that the Wemo plug performed an update during the capture period. There is
an update web service offered by the Wemo plug, which we discuss in detail in
Sect. 4.3. By contrast, the Apple TV only has a single occurrence of exchanging
update-related keywords, and we found that the Apple TV downloaded system
firmware over HTTP, which would imply that the Apple TV installed the afore-
mentioned firmware, which we discuss in Sect. 4.2. This contrast shows that our
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Fig. 3. Count of TLS cipher usage on a per-device basis. Each bar is represented by
insecure, weak, secure, and recommended cipher suites.

heuristic does not guarantee a device is performing an update, but it is enough
to detect traffic that might be update related.

Aside from being able to detect firmware downloads in real-time, an unex-
pected result from our heuristic was it picks up current updates and firmware
versions in 7 of the 9 devices. This is because these 7 devices report their firmware
version as an HTTP request, or as part of a service discovery response. This is
valuable information for both defensive and offensive applications. A potential
application for this in defensive security is an active firewall appliance that can
scan IoT devices and fetch firmware versions from them, if a CVE is released for
that particular firmware the firewall can automatically quarantine the affected
devices. This assumes that the firmware version is accurately reported, which
may not be the case for malicious devices. For offensive security applications, an
attacker could perform reconnaissance by identifying vulnerable firmware ver-
sions of devices that actively advertise these versions.

3.2 Update Events Results

Our results for event-related update activity are shown in Fig. 2a. The heatmap
shows the number of update keyword occurrences in the rows for the interaction
event in the columns, where a lighter color indicates more occurrences. Due to
the granularity of the experiments from Ren et al., Android-related events (e.g.,
taking a photo, controlling a device from an app, etc.) and Alexa interactions
(e.g., invoking Alexa, changing color, etc.) were merged into two respective cat-
egories. Aside from these events, all 9 of the IoT devices in Fig. 2b exchange
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update-related keywords on power events, and even more on idle events. Exam-
ples of update traffic events include devices reporting their firmware version to
an update service, then receiving an update response in return.

When idle, we found some IoT devices that exchange update-related traffic
between one another. This is out of the ordinary, as independent IoT devices
should not be issuing or exchanging update commands to one another when idle
– these communications should only occur between the device and the vendor’s
update platform. We investigated these inter-device occurrences and found that
as part of service discovery protocols (e.g., SSDP, UPnP) there is an exchange
of firmware information. Certain devices even advertise endpoints for invoking
update behavior manually which is ripe for exploit by bad actors or rogue IoT
devices. Section 4.3 for more information regarding these endpoints.

Other than power and idle events, Alexa interaction events contribute the
most to our heatmap. Alexa devices do not exchange detectable update-related
traffic; however, the Philips hub exchanged update-related information when
being controlled by Alexa. Additionally, the Roku TV, Samsung TV, and Wemo
plug exchanged update-related data when controlled remotely by Android inter-
action events. We believe there is no correlation between these interactions and
update traffic: these devices exchange the same information when not being
controlled by Alexa or Android.

3.3 Observed Update Design Patterns

We analyzed the extracted HTTP interactions flagged as being update-related
to attempt characterizing common designs or behaviors between device ven-
dors. Unfortunately, no common architecture or strategy was used between the
9 devices we identified. The heterogeneity of the designs and schemas involved
provide great motivation for standardized update system designs, such as RFC
9019 and RFC 9124 [14,15]. While there is no common schema among differ-
ent device vendors, we noticed some common patterns among certain device
manufacturers.

No Security: The D-Link movement sensor, Amcrest camera, and Wemo fetch
firmware update metadata from a web service that returns a complete URL
for downloading the firmware image. What is concerning about this is there is
no tamper-protection in place for any of these devices. To make matters worse,
both of these devices fetch data from public S3 bucket endpoints over HTTP. We
examined firmware images served through these endpoints and found no forms
of tamper-protection such as checksums, digital signatures, etc. built into the
firmware.

Out-of-Band Security: While insecure device update schemes are certainly
concerning, there are update techniques that allow authentication and integrity
verification even over HTTP. The Apple TV exchanged all update-related traf-
fic over HTTP, including web service interactions for downloading the firmware
and related metadata. What sets the Apple TV apart is it exchanges digital
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signatures and certificates over HTTP to validate the responses. Apple’s design
provides a happy medium of ensuring the integrity (assuming the signatures and
certificates are validated) of the update through cryptographic means while giv-
ing us insight into specific details that can be leveraged by a network appliance,
such as specific firmware and information assuming that the network appliance
can parse the XML schema Apple uses.

Full TLS: The remaining devices encrypted all cloud-destined communications
using TLS. It is reasonable to expect that, if implemented, a software update
mechanism would also use one of the available TLS channels. While communica-
tion encryption is advantageous for security and privacy, we believe transparency
in software update implementations (perhaps implemented with an out-of-band
scheme as described above) can be beneficial for providing transparency and
security, as we described in Sect. 1. Additionally, we note that exclusive reliance
on TLS for software updates is known to be insufficient in protecting against
many update-specific attacks [26].

3.4 Cipher Suite Results

We see a larger amount of devices with extractable TLS cipher suites, which is
expected as many IoT devices use TLS as a means of interacting with the web ser-
vices they depend on. In Fig. 3 we observe there were a total of 16 insecure cipher
suites used between IoT devices. All 16 cipher suites have significant vulnerabil-
ities that when combined with a downgrade attack could allow an attacker to
perform a machine-in-the-middle (MITM) attack; however, among the 24 devices
that advertise insecure cipher suites, we estimate 4 of them would be vulnera-
ble to a downgrade attack. This is because the secure and recommended cipher
suites would take precedence over the weak and insecure cipher suites, and the
cipher suites contained in secure and recommended classes contain measures to
prevent downgrade attacks.

We have only discussed the TLS cipher suites in the context of IoT devices. To
see these results in perspective to other applications that require secure commu-
nication, we searched for a dataset of TLS cipher suite support in web browsers.
While we did not find a comprehensive dataset that summarized recent browsers,
we did find a service that provides us with what our browser supports [22]. Using
this service, we found modern browsers (Firefox 94, Chromium 96) support far
fewer cipher suites with none of them being insecure – although roughly half
of the cipher suites supported were deemed to be “weak”. This can be used to
offset the large amount of IoT devices that also offer large amounts of “weak”
cipher suites, as these may only be present for backward compatibility. In this
context, the weak cipher suites used by IoT devices do not strictly increase the
attack surface as compared to modern web browsers; however, insecure cipher
suites when not using TLS 1.3 do increase the attack surface.
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3.5 Limitations

We found 11 devices that did not have extractable HTTP data or extractable
TLS data. By manually inspecting packet captures we found several devices
that stream data over UDP, which is a consistent finding with the Ren et al.
study [24]. The data was not meaningful, as it was either encoded using some
vendor-specific encoding or a stream of application-specific data (e.g., a video
stream) that can not easily be deciphered. While these edge cases are technically
possible to extract, it is challenging to do so at scale given the wide breadth of
devices and a large amount of packet captures.

A limitation of our study is TLS encrypted traffic, which is consistent with
other large scale IoT analysis papers [20,21]. A potential workaround for TLS-
encrypted edge cases is an alternative heuristic: for example, another approach
that is agnostic to the protocol in use is to look at response sizes. If a device
exchanges a large amount of data in a short burst, assuming that this burst of
traffic is abnormal for the device based on regulapproach is not ideal as there is
no way to verify if traffic is update-related – this only identifies large bursts of
abnormal traffic. Furthermore, even if we could deduce that encrypted traffic is a
device update, there is no meaningful extractable information from an encrypted
payload such as firmware version which is crucial to our motivation for detecting
IoT software updates.

Another potential heuristic is to analyze traffic patterns temporally.
O’Connor et al. developed a simple yet effective methodology for classifying
various IoT subsystems without any form of decrypting or inspecting packet
payloads, instead opting to analyze traffic frequency and size over a long period
of time [19]. This temporal approach proved effective for identifying IoT device
telemetry, and in an active measurement context, O’Connor et al. were able to
derive various attacks based on a temporal analysis of IoT device traffic. While
this approach is novel, it is not ideal for a large-scale passive analysis of traffic.

Regarding the keyword-based analysis, our heuristic which associates terms
such as “firmware” and “software” to update-related events can produce false
positives. For example, some devices report a current firmware version to a web
service contained as an HTTP payload. While this is not an update request, our
pipeline will flag it as such and require manual removal. Future work will inves-
tigate the use of additional heuristics to improve the accuracy of identification
of updates without requiring manual verification. Adding checks for outbound
traffic, inbound traffic, and schema verification would greatly assist in avoiding
false positives.

4 Case Studies

In this section, we discuss our findings by analyzing select update practices and
firmware files that we extracted through our methodology. First, we look at the
firmware update interactions from the D-Link Camera, which we use to illustrate
harmful practices that undermine the device’s security. We then contrast this
approach with the firmware update interactions we observed against the Apple
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TV, which combines several distinct tamper-resistant mechanisms with update
transparency. Finally, we conclude our case studies with a vulnerable WeMo
update service, that allows for unsigned code to be uploaded from an arbitrary
source.

4.1 D-Link Camera Firmware

The D-Link camera is an example of the No Security pattern, as it exchanged
firmware update information through HTTP. Based on the identified traffic, we
extracted a firmware update endpoint and also a firmware image. The firmware
update endpoint is a web service that accepts a device model and returns an
XML response containing firmware metadata information along with a URL to
the latest firmware download. We were able to download the latest firmware
image as it is being hosted by a static file store which does not require any prior
authorization. The firmware update endpoint does not return any checksum or
signature to validate that the firmware image was not tampered with. Using the
binwalk utility4 we analyzed the firmware image and found the following:

1. A µImage header, indicating that the OS is Linux built for a MIPS CPU.
This is likely a boot loader for the next item

2. LZMA compressed data, likely the kernel image to be executed by (1)
3. A SquashFS filesystem, which is the root filesystem

The image header indicates that the OS is a Linux Kernel from roughly 2014
(6 years old at the time of writing). Looking at the kernel image (2) we extracted
the image version, which is Kernel version 2.6.31 released in 2009 [27]. While
we did not find any notable CVEs for this particular version (2.6.31 ) of the
kernel [10], we did find CVEs for the parent minor version (2.6 ) which allow
for arbitrary code execution through multiple buffer overflows [16]. It is likely
after 2014 the device reached the end of its “service life”, thus D-Link stopped
updating it. This is unfortunately a fairly common occurrence amongst IoT
devices [23].

Theoretically speaking, the D-Link camera is vulnerable to MITM attacks as
shown in Fig. 4b: the communication between (1) the update service and (2) the
image repository is unauthenticated and does not have any integrity protection.
For (1), an on-path attacker can intercept traffic between the IoT device and
the vendor’s cloud. In this case, the message responded by the vendor’s cloud
contains the full URL to the firmware image being hosted on an S3 bucket (also
on HTTP). A second MITM attack (2) could occur if an attacker intercepts
HTTP traffic between the IoT device and the S3 bucket. With this in mind,
it is highly likely an attacker can leverage (1) to give the D-Link camera the
URL of a different S3 bucket hosted on the “malicious cloud instance” which
would then serve the modified firmware. An attacker could build and distribute
modified firmware trivially, as the original firmware file is not signed digitally or
otherwise clearly authenticated.
4 https://github.com/ReFirmLabs/binwalk.

https://github.com/ReFirmLabs/binwalk


418 C. Bradley and D. Barrera

4.2 Apple TV Firmware

Fig. 4. Our results for update keywords by device and interaction event.

In a contrast to the D-Link camera, the Apple TV’s update behavior combines
security and transparency, making it an instance of the Out-of-Band Security
pattern. The complete update flow of the Apple TV is shown in Fig. 4a. Similar
to the D-Link Camera update metadata is exchanged over HTTP; however, there
are several additional measures to harden communications against attackers.

The Apple TV first connects to a central update repository over HTTP.
Although the connection for update metadata happens over HTTP, we found
the API response contains a certificate and signature field, which is used to
validate the responses integrity [3]. We found the certificate was issued by the
“Apple iPhone Certification Authority”, with a common name of “Asset Mani-
fest Signing”. This suggests that the certificate is purpose-made specifically for
signing these update manifest responses. Unfortunately, the certificate expired
in 2018, and the API response indicated updates from as recently as 2020.

Downloading the update files also takes place over HTTP. To protect against
tampering there is an additional field containing a validation measurement for
the update file. If the update file is downloaded and does not match the mea-
surement, the update is invalid and rejected. This behavior is consistent with
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Apple’s platform security documentation which details the measures taken to
secure device updates [3].

Using the Apple Repository response, we reconstructed the firmware down-
load URL and acquired the firmware image for the Apple TV. When unpacked,
the firmware contains a file tree for distributing software updates. Without hav-
ing the source code to the software responsible for performing updates on Apple
devices, we are unable to determine how exactly the update is performed; how-
ever, combining an analysis of the directory tree with prior reverse engineering
efforts [12] along with Apple’s platform security documentation [3] gives us good
insight into how the update is performed past this point.

After the AppleTV validates the update payload, the AppleTV must per-
form remote attestation with the Apple Updates Authorization server to fetch
keys that are required to perform the update. According to our packet cap-
tures, this communication takes place over HTTPS (as pictured in Fig. 4a), so
we do not have concrete knowledge of what exactly is being exchanged. Accord-
ing to Apple’s platform security documentation, cryptographic measurements of
the bootloader (iBoot), kernel, operating system image, and exclusive chip ID
(ECID) are sent to the update authorization server [3]. The server validates all
the measurements sent by the device, and if they are valid, the update server
returns the signature for the software, an anti-replay value, and the device’s
ECID [3].

4.3 WeMo Update Service

The Belkin WeMo plug largely communicates using Simple Service Discovery
Protocol (SSDP), which is a protocol used to advertise services and consume
them in a standardized way [1]. SSDP uses HTTP as its underlying communi-
cation protocol, therefore all SSDP activity was captured by our passive analy-
sis. We observed amongst the various device management services listed is one
for firmware updates. The firmware update service advertised various methods
for firmware management, one of particular interest is the “UpdateFirmware”
method, which accepts various parameters describing the new firmware – one
such parameter allows for an unsigned image to be uploaded, which has been
historically shown to be exploitable [8,17]. An attacker could have a local or
remote firmware repository and upload a modified firmware image to the device.
Due to the lack of authentication and authorization on this SSDP endpoint, this
is an instance of the No Security pattern.

We cannot test the viability of uploading arbitrary firmware to the WeMo
update service as we are passively analyzing packet captures; however, previous
efforts aimed at exploiting this update endpoint have proven to be successful,
leading to arbitrary firmware uploads to the WeMo device [8]. An attacker could
have a local (or remote) firmware repository, and upload a modified firmware
image to the WeMo device. The only difference between the exploit used in the
D-Link camera and the WeMo plug is the attacker has the ability to trigger
device update behavior by interacting with an endpoint, whereas the D-Link
camera has no such functionality.
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5 Related Work

To our knowledge, this is the first work attempting to analyze and characterize
how consumer IoT devices perform software updates at the network level. There
have been recent works focusing on the different network-level analysis of IoT
devices: Prakash et al. analyze the update practices of IoT vendors by tracking
software versions listed in the user-agent header included in HTTP requests made
by IoT devices [21]. The conclusions found by Parakash et al. do not characterize
and analyze how IoT update systems work, rather, they conclude that IoT device
vendors are slow to update their devices when new vulnerabilities are found.

We identified pervasive use of TLS, which precludes the identification of
update-related traffic without additional data analysis. Related work here
includes Alrawi et al., who provide an excellent SoK of the overall security of
home IoT devices by systematizing the current state (as of 2019) of IoT vul-
nerability literature and then evaluating 45 devices, a subset of the security
evaluation involves looking at various encryption qualities that would make the
device vulnerable [2]. More recently in 2021, Paracha et al. performed a deep
dive into IoT TLS usage patterns which ultimately found 11/32 IoT devices
are vulnerable to interception attacks [20]. If IoT devices are relying on TLS to
secure communications to backend APIs and endpoints for software updates, any
vulnerabilities in the TLS transport layer will undermine the overall soundness
of how these devices perform updates.

An encouraging finding is the high amounts of TLS usage among devices;
however, there is a caveat to this high TLS usage: it is only one line of defense.
If a private key is compromised, this could jeopardize the integrity of update-
related services if there are no additional lines of defense. Samuel et al. present
a novel design for an updated system that allows for key compromise in update
systems [26].

Due to the previously discussed challenges, there are several opportunities
to explore and innovate IoT software update designs. Related work in this space
consists of proposed designs for IoT update systems relating to firmware updates
and library management. Zandberg et al. present a prototype for a firmware
update system on IoT devices by leveraging various open-source libraries and
standards [31]. Zandberg et al. leverage SUIT, a new IETF standard that pro-
vides encrypted firmware update files with encryption keys provided by hybrid
public-key encryption [28]. The SUIT standard appears as if it may not work
on resource-constrained IoT devices, but Zandberg et al. have their reference
implementation built on IoT devices with less than 32 KB of RAM and 128 KB
of storage [31].

6 Conclusion

Using a passive measurements approach and a dataset from one of the largest IoT
information exposure studies to date [24] we identified and characterized several
design patterns used by IoT devices to perform updates. There is no common
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schema or design pattern behind various update systems, which provides addi-
tional motivation for standardizing IoT software updates [15]. Additionally, we
characterized events related to when an IoT device may update, which is useful
for building data-driven models for real-time update identification. In our anal-
ysis of update systems, we found vulnerable devices that provide no mechanisms
for securing firmware updates. We observed that many devices use encrypted
connections to secure communications: 60% of devices support insecure TLS
cipher suites, while 10% of devices are vulnerable to downgrade attacks.

In the future, more comprehensive studies can follow by performing active
measurements during software updates. This can reveal more IoT update end-
points, allow us to develop more accurate heuristics for identifying when a device
is updating, and therefore gain a better understanding of these walled gardens.
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Abstract. The rapid development of network function virtualization (NFV) tech-
nology on a large scale and the explosive growth of network traffic in enterprises
has made it necessary to move to the paradigm of middlebox services (MB) in the
cloud. Intrusion detection system (IDS) is one of these middlebox services that
needs to be deployed in the cloud. However, with the growth of network attacks,
redirecting enterprise traffic to external middleboxes inevitably raises new con-
cerns related to packet content security and unauthorized access to the ruleset
used for detection. To address these concerns, many research efforts targeted
the design and development of IDS that operate over encrypted traffic (secure
IDS) by looking for ways to make matching possible over encrypted data (aka
secure/encrypted pattern matching) without any leakage while maintaining the
same level of efficiency. However, most of the existing designs are communica-
tion inefficient and too slow to be deployed to support 5G network traffic that
requires high throughput. Furthermore, the majority of real network traffic is
legitimate and needs to be filtered quickly. Therefore, in order to improve the
inspection delay, we propose in this paper a fast and efficient secure IDS that per-
forms detection over encrypted network traffic based on the Searchable Encryp-
tion (SE) class of methods using a two-layer architecture in which the first layer
is used to quickly filter out the majority of legitimate traffic and the second layer
is used to further inspect only unfiltered malicious traffic. We implemented our
solution and a recent powerful secure IDS and showed how our approach provides
better results and outperforms it.

Keywords: Secure middlebox · Searchable encryption · Intrusion detection ·
Homomorphic encryption · Signature-Based detection · Secure pattern matching

1 Introduction

Several enterprises have transformed their network services into middleboxes (e.g., fire-
walls, network address translators, load balancers, and deep packet inspection) through
the large-scale adoption of network functions virtualization, which facilitates the real-
ization, deployment, and management of advanced network functions as well as cost
reduction. But due to the increase of network traffic and the rapid evolution of cloud
services, these companies have started to outsource their middleboxes to the cloud.
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Despite the benefits of cloud services, this transformation brings new constraints in
terms of security and privacy of enterprise data, as its traffic is redirected to an untrusted
environment. In this work, we aim to implement an IDS in the form of a middlebox
deployed on the cloud for packets inspection without revealing confidential data.

According to Poh et al., 2021 [6], many companies use a simple approach called
MitM (Man-in-the-Middle) to inspect their traffic on a third party. The idea is to encrypt
the content of the traffic before sending it to the cloud, and then decrypt it on the MB in
order to perform the inspection. However, this approach can easily lead to eavesdrop-
ping attacks. With this traditional way of outsourcing IDS, cloud servers could have
access to all the rules and packets in the MB. Exploiting the packets can provide sensi-
tive data about the company’s infrastructure and exploiting the rules can allow attackers
to escape the inspection.

To address these issues, a class of methods called searchable encryption (SE) is
proposed. It allows to inspect the packets of encrypted traffic against encrypted rules
directly, so that the packets and the rules remain protected. The objective of this work
is to build signature-based intrusion detection system by protecting both the signatures
and the packets.

1.1 Limitations of Prior Works

A recent work in the SE class called SHVE+ proposed by Lai et al., 2021 [4] used the
SHVE scheme to inspect encrypted packets against encrypted rules directly in a differ-
ent way to avoid tokenisation in order to enable encrypted pattern matching with con-
stant and moderate communication overhead. To speed up the process, they designed
encrypted SHVE filters (secure filter system) to further reduce the number of accesses
to SHVE+ during the matching process. However, the number of vectors in these fil-
ters is very large, which makes them very expensive to traverse, affecting the overall
performance of the system. In addition, according to Ren et al., 2020 [7], 99% of the
real network traffic is legitimate that should be filtered quickly without passing through
thousands of SHVE filter vectors. Therefore, such filtering cannot filter packets quickly.

Another recent work called EV-DPI [7] proposed a scheme with two-layer, one is a
TFS (token filtering server) and the other is an RMS (rules matching server). The first
layer filters out quickly the most of legitimate packets using an encoded token filter
(ETF), which is a Bloom filter containing all the encoded keywords extracted from the
DPI rules. The second layer performs exact rules matching using SHVE scheme [3]
to inspect only malicious traffic. However, the RMS splits patterns that contain multi-
ple words which require a tokenisation of the packets. Such tokenisation introduces a
considerable communication overhead which makes these types of designs are commu-
nication inefficient since traffic content must be transformed into variable size tokens.
As a result, long latency is introduced, which is not acceptable in most networked appli-
cations [4].

1.2 Our Contributions

To tackle the above limitations, in this paper, we aim to propose our scheme where we
combined the advantages of the previous two systems to build our fast and efficient
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secure IDS without any data leakage. We achieve this goal by using a completely sepa-
rate two-layer architecture inspired by the scheme of Ren et al., 2020 [7] and we use the
same fast filtering layer as in the TFS in a different way to quickly filter the majority of
the traffic. For the second layer, we used the SHVE+ pattern matching system of Lai et
al., 2021 [4]. Our contributions can be summarized as follows:

– In order to improve the performance of the scheme proposed by Lai et al., 2021
[4] for attacks detection over encrypted traffic, we have modified the scheme to a
completely separate two-layer architecture: the “Fast filtering” layer and the “Exact
pattern matching” layer. The first is used to quickly eliminate the majority of legit-
imate traffic. We used a Bloom filter for this layer. The second is used to perform
exact pattern matching using the scheme of Lai et al., 2021 [4] only for the unfiltered
packets in the possible matching positions received from the first layer.

– We implemented our approach and evaluated it by comparing it with the previous
pattern matching scheme of Lai et al., 2021 [4] and we show how our architecture
can improve the overall performance using the first layer.

2 Related Works

According to the survey of Poh et al., 2021 [6], signature detection methods over
encrypted network traffic can be classified into four main categories: Searchable
Encryption (SE), Access Control (AC), Machine Learning (ML) and Trusted Hardware
(TH). Our work is based on the SE class of methods (aka cryptographic solutions). Here
we give a brief overview of some of the works in this class. We present them by order
of appearance.

2.1 BlindBox by Sherry et al., 2015

BlindBox (the name indicates that the middlebox cannot see the content of the traffic)
is the first DPI scheme that preserves traffic privacy using the SE class. BlindBox sup-
ports four entities: the sender (S), the receiver (R), the middlebox (MB) and the rules
generator (RG). The general idea is that the sender generates the tokens by tokenising
the payload, then encrypts them with a key k and sends them over a second connection,
apart from the SSL/TLS connection. The MB hosts the rules, generated by RG, and then
encrypts them in the same way as the sender, by using a garbled circuit hard-coded with
the same key k. The MB then tries to match the tokens with the encrypted rules. If there
is a match, then the traffic is considered malicious. The MB must not know the value of
k and both the sender and receiver should not have access to the IDS rules. Therefore,
they used an exchange scheme called “obfuscated rule encryption”. However, Sherry et
al., 2015 [8], did not consider preservation of inspection rules against the MB. Blind-
Box is the first step towards a general protocol, based on the SE class, that aims to solve
the MitM problem. However, it is computationally costly.

2.2 Yuan et al., 2016

Yuan et al., 2016 [10] remarked that BlindBox is still not suitable for the context of
outsourced middleboxes, as it does not consider rule protection against middleboxes.
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They also found that BlindBox is currently not ready for practical deployment due
to its expensive initialisation phase. For these reasons, they proposed a scheme that is
more efficient using a high-performance encrypted filter (secure filter). They formulated
the problem as encrypted token matching based on homomorphic encryption. As in
Blindbox, the payload must be divided into tokens so that they can be encrypted (but
in this work, they used hashing to encrypt the tokens). Meanwhile, patterns and actions
are extracted and encrypted (hashed) as key-value pairs - by the RG - to be used to
create the secure filter. This filter allows MB to perform DPI over the encrypted traffic
without knowing the content of packets and the inspection rules. It is based on one
of the efficient hash table designs [1]. They transformed an efficient hash table, which
stores only the encrypted actions, into an encrypted index while preserving its original
performance characteristics. Cuckoo hashing [1] is applied to make the filter extremely
compact where the actions can be moved to different gaps so that the filter can achieve
a high fill rate.

2.3 Hidden CrossTags (HXT) by Lai et al., 2018

HXT is a cryptographic scheme used for conjunctive queries without revealing data
based on two cryptographic primitives: Hidden Vector Encryption (HVE) and Bloom
filter. HVE [2] is a public key encryption paradigm that allows testing membership
over encrypted data, without the need to decrypt it, thanks to the use of homomorphic
encryption. It supports conjunctive, equality and comparison queries. For efficiency
reasons, Lai et al., 2018 [3] exclude public key HVE and replace it with their symmetric
key HVE scheme (SHVE) which uses a symmetric key encryption scheme. The general
idea of HXT is to compare two Bloom filter vectors using SHVE.

2.4 EVDPI by Ren et al., 2020

Neither of the previous schemes support packet filtering. Ren et al., observed that most
of the packets are legitimate (more than 99%). Therefore, the most of packets should
be filtered quickly. Thus, legitimate packets filtering and exact rules matching should
be performed separately. By doing so, the efficiency of DPI can be improved. To this
end, they proposed the EV-DPI scheme [7] based on HXT scheme to implement a DPI
using a two-layer architecture deployed on two separate servers. The first layer filters
legitimate packets by filtering encrypted tokens using an encrypted Bloom filter and
sends only malicious packets to the second layer which performs exact pattern matching
using the scheme of Lai et al., 2018 [3].

2.5 SHVE+ by Lai et al., 2021

According to Lai et al., 2021 [4] these designs are communication inefficient due to traf-
fic tokenisation. They observed that variable size tokenisation introduces a considerable
communication overhead, which can reach more than 100 times the original packet size.
As a result, high latency will be introduced, which is not acceptable in large network
applications. Recently Lai et al. in 2021, proposed an efficient solution that is based on
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their SHVE scheme [3] to build an efficient pattern matching scheme over encrypted
network traffic without going through the traffic tokenisation step. However, the SHVE
scheme cannot be used directly for packet inspection because inspection rules are com-
posed of patterns and the corresponding actions whereas the goal of packets inspection
is to reveal a message in case of a match (i.e., the corresponding action), not only to test
the membership by using the SHVE. For this purpose, the actions must be considered as
encrypted messages. Therefore, they have replaced the SHVE scheme with a new one
called SHVE+ which supports encryption of actions to reveal them in case of a match.
They have also built a secure filter (based on SHVE) to filter out legitimate traffic and
perform pattern matching only on malicious traffic. The construction of their filter is
based on the S-PATCH scheme [9]. This filter provides an improvement in the overall
performance of pattern matching because, for each rule, instead of using all encrypted
patterns for matching, only those matched during the filtering need to be examined in
the exact pattern matching using only possible match positions. However, the size of
this filter is very large, which limits the overall performances. Thus, this filter is not
suitable for fast traffic filtering.

Therefore, we built our system in two layers, the first designed to quickly filter
legitimate traffic and the second to further inspect malicious packets. In the following
sections, we will present the detailed design and development of our solution and in the
Sect. 5 “Experiment and Evaluation” we provide a comparison which shows that our
proposed design outperforms the existing cryptographic solution of Lai et al., 2021 [4]
in terms of inspection time.

3 Overview of the Solution Based on SHVE+ Scheme

3.1 System Architecture

Our design uses the same architecture/entities as all existing searchable encryption sys-
tems, which we present in Fig. 1. There are four entities: the sender (S), the receiver
(R), the middlebox (MB) and the rules generator (RG). We use the term “endpoints” to
denote both S and R. The simple use case we rely on is that the sender aims to inspect all
traffic in a third-party middlebox MB service (deployed in the cloud service provider)
against malicious activities, and then forwards only the legitimate traffic to the receiver.
The Rules Generator (RG) is the part that endpoints rely on to inspect their traffic. It
generates the rules that allow the middlebox to perform the inspection without knowing
neither the traffic content (packets) nor the rules. We will present the general process of
preparing rules and packets as well as the inspection process in detail later.

3.2 Threat Assumption

As our system is based on the searchable encryption (SE) category, we follow the same
security model where the middlebox is (semi-)honest (i.e., it honestly participates in
the detection system but aims to learn the contents of the private encrypted traffic or the
encrypted rules) and one of the endpoints should be honest. According to Sherry et al.,
2015 [8], under this threat assumption, there will be two types of attackers against this
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Fig. 1. System architecture

system which are: The original attacker considered by any traditional IDS and another
attacker who aims to learn data from both encrypted packets/rules. Therefore, MB is
considered semi-honest. The main goal here is to detect anomalies caused by the first
attacker by letting the MB inspect the encrypted traffic using the encrypted rules, while
preserving data privacy (both traffic and rules) from the second attacker.

3.3 Building Blocks

In order to facilitate the understanding, we will first talk about the building blocks on
which our system is based before moving on to explain the general flow of the system.

Basic Cryptographic Tools

– Sym: Is a symmetric key encryption system. It consists of three basic functions
defined as follows:

• k ← KeyGen(.): To generate the secret key k.
• c ← Enc(k,m): To encrypt the message m by the symmetric key k.
• m ← Dec(k,c): To decrypt the ciphertext c by the encryption key k.

– PRF: It is a function in which the set of possible outputs is not effectively distin-
guishable from the outputs of a random function. The existence of one-way functions
is sufficient to construct this type of function. Formally, a pseudorandom function
is a function F : K ∗X �−→ Y where K represent the key space, K ∗X represents the
domain of the function and Y its image. The associated security definition is given
by the fact that any polynomial adversary is unable to distinguish between the output
of F and the output of a random function on the same domain, conditional on the
choice of the key k [5].

SHVE+. We have based our work on the symmetric key HVE scheme version which
also supports message encryption called SHVE+ [4]. It uses a symmetric key encryption
Sym to generate the secret key k, encrypt the message m by the symmetric key k and
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decrypt the ciphertext c by the same key used for encryption. The SHVE+ scheme
consists of four probabilistic polynomial-time algorithms.

– kSE ← SHVE+.Setup(λ ) : This function is used to generate the key kSE (used for
the searchable encryption) and it takes as input a security parameter λ .

– C ← SHVE+.Enc(kSE ,X) : It takes as input the key kSE and the packet represented
as a vector, byte by byte, X = {x1, · · · ,xn} to produce the ciphertext, byte by byte,
vector C (associated to the vector X) where C= {ci = F0(kSE ,xi||i)};∀i ∈ [n]. F0 is
a PRF used to encrypt each byte xi concatenated with its position i (xi||i).

– T = {PNW ,d0,d1} ← SHVE+.KeyGen(kSE ,V,Action): It takes as input the key kSE ,
a pattern (of a rule) placed at a predicate vector V = {v1, · · · ,vn} (such that |V| =
|X| = n) in a specific positions called non-wildcard positions PNW where the search
of this pattern should be applied on the packets. The unfilled positions are called
wildcard positions and are denoted by the symbol “*” which means don’t care about
these positions. It also takes as input a message Action which represents the action
associated to the pattern in order to encrypt it as d1 (using Sym) and then hide the key
inside an homomorphic encryption calculation d1 with the ciphertext of the vector V
on the non-wildcard positions. The algorithm generates the triplet T = {PNW ,d0,d1}
corresponding to the predicate vector V such that:

• PNW = {l ∈ [n];vl �= ∗}; l1 < · · · < l|PNW |
• d1 = Sym.Enc(K,Action); K ← Sym.KeyGen(.)
• d0 = ⊕ j∈[|PNW |](F0(kSE ,vl j ||l j))⊕K

– Out put ← SHVE+.Query(T,C): The Query algorithm used for the test. It takes
as input a trapdoor/triplet T = {PNW ,d0,d1} and a ciphertext C. As a result, it
can extract the key K from the homomorphic encryption calculation d1 iff the pat-
tern matches the encrypted packet in the non-wildcard positions PNW (i.e., ∀ j ∈
[1,n], x j = v j ou v j = ∗) and then reveal the corresponding Action as Out put. Other-
wise, it outputs ⊥. More formally, the algorithm performs an homomorphic encryp-
tion calculation result as follows:

result =⊕ j∈[|PNW |] cl j ⊕d0

By replacing d0, we obtain:

result =⊕ j∈[|PNW |] cl j ⊕ j∈[|PNW |] F0(kSE ,vl j ||l j)⊕K

=⊕ j∈[|PNW |] F0(kSE ,xi||i)⊕ j∈[|PNW |] F0(kSE ,vl j ||l j)⊕K

If (∀ j ∈ [1,n], x j = v j ou v j = ∗) then:
⊕ j∈[|PNW |]F0(kSE ,xi||i) =⊕ j∈[|PNW |] F0(kSE ,vl j ||l j)

As a result:

result =K

Otherwise:

result �=K
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Bloom Filter. The Bloom filter is a probabilistic data structure used essentially to
test the membership of elements to the vector V of N elements represented as fellows
V = {s1,s2, · · · ,sN}. The idea is to choose k independent hash functions, {Hi : V �−→
[m]};1 ≤ i ≤ k. The filter consists of a binary vector b of m bits, all initialized to 0. In
order to establish a BF of V , for each element s ∈ V , the bits at positions {Hi(s)};1 ≤
i ≤ k are changed to 1. To test the membership of an element q, we check if b has 1
in all positions {Hi(q)};1 ≤ i ≤ k, and if it is the case, we conclude that q ∈ V with a
high probability. If not, we conclude that q /∈V with a probability of 1. If q /∈V and the
membership test returns 1, we call it a “false positive” event.

3.4 SHVE+ System Architecture

Returning to Fig. 1, our system is based on SHVE+ system architecture in which the
general flow process for secure packet inspection involves three phases: preparation and
sending of encrypted rules (initialisation), preparation and sending of encrypted packets
(preprocessing) and inspection. We can also add one more phase for verification when
receiving traffic by the receiver (R) as in BlindBox [8].

Preparation and Sending of Encrypted Packets. Before starting, a connection estab-
lishment session is required where the sender establishes an SSL connection with the
receiver (using the SSL encryption key kSSL) which passes through the middlebox for
forwarding encrypted legitimate packets. Then, the sender and the rules generator estab-
lish a searchable encryption key kSE (generated using the SHVE+.Setup() algorithm).
When this session is executed at least one time, the sender then prepares the packets
by encrypting them by the use of the key kSE using the SHVE+ method in order to
allow the detection later. Each packet X is encrypted (hashed) byte by byte using the
SHVE+.Enc(kSE ,X). The hashing is performed using a PRF F0 function that concate-
nates each byte xi with its position i to link it to it and generate the hashed bytes ci of
the hashed packet C as shown on the Fig. 2(a). The sender then sends the two flows (the
SE flow beside the SSL flow) to the MB for the inspection.

Preparation and Sending of Encrypted Rules. On the other hand, the rules generator
prepares the set of encrypted inspection rules E by encrypting rules (patterns) using
the key kSE (the same key used for hashing the packets) with SHVE+.KeyGen(kSE , V,
Action) algorithm. The latter generates a triplet T = {PNW ,d0,d1} for each (pattern,
action) in each rule. We will now explain the process of generating a triplet T for each
vector V with an example using this snort rule:

alert tcp $HOME NET any → $EXTERNAL NET any ( msg:“MALWARE-
BACKDOOR Infector.1.x” ; flow: established , to client ; content:“WHATISIT” ,
offset 2 , depth 9; metadata:impact flag red , ruleset community ; reference:nessus
, 11157; classtype:miscactivity ; sid:117; rev:17; )

We are only interested in 4 fields which are the Content/Pattern: “WHATISIT”
to search for, the Offset: “2” for the starting position, the Depth: “9” of the search and
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the Action: “alert” to be triggered in case of a match. The pattern will be duplicated j
times ( j = end−|pattern|−beg+2) in the form of a set of vectors V1, ...,Vj such that:

beg=

{
o f f set, o f f set > 0

1, else
end =

{
beg+depth, depth> 0

|paquet|, else

Each Vi represents a pattern insertion (byte by byte) at a specific position such that
Vi+1 is a one-byte shift to the right compared to Vi. The first vector V1 inserts the first
byte of the pattern at the position “offset”, and then the other bytes are inserted in suc-
cession just after the first byte of the pattern. All other empty positions of the vector are
filled with the wildcard character “*” and the positions where the pattern is placed repre-
sent the set PNW . After generating the Vi vectors, the algorithm KeyGen(kSE ,Vi,Action)
encrypts them to obtain the corresponding Ti of each as shown on the Fig. 2(b). The
collection of Ti triples represents the set of encrypted inspection rules E that the rules
generator sends to the MB to perform the inspection.

Fig. 2. Preparation of packets and rules (SHVE+) [4]

Inspection. The MB traverses the encrypted (hashed) ruleset E vector by vector and
compares it to the encrypted (hashed) packets C using the SHVE+.Query algorithm
which uses the Sym.Dec to decrypt d1 (the encrypted Action) using the key K found in
case of match as follows:

SHVE+ .Query= Sym.Dec(result,d1) =

{
Action, result = K “MATCH”

⊥, else “MISMATCH”

If the packet is legitimate, the MB allows the SSL connection to pass to the receiver
side. Otherwise, it blocks the SSL connection and acts as an IPS by applying the security
actions corresponding to the matched rules (e.g., dropping the packet). The MB also
sends the legitimate hashed packet to the receiver to verify the inspection.

The process of pattern matching proposed by Lai et al., 2021 [4] is performed in two
phases: the filtering phase then the exact pattern matching phase. The filtering phase
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uses two filters FC and FL to filter out some patterns. The creation of these filters is
also carried out by using SHVE+.KeyGen algorithm. FC contains the set of vectors Ti
associated to short patterns (|pattern| ≤ 3 Bytes) that use the subchain “pattern[0] |
| pattern[1]” instead of using the full pattern. It is used to filter out rules with short
patterns based on the first two bytes only. FL contains the set of vectors Ti associated
to long patterns (|pattern| > 3 Bytes) used to filter out rules with long patterns based
on the first fourth bytes only instead of using the full pattern. It contains two successive
sub-filters FL12 (contains the first and second byte) and FL34 (contains the third and
fourth byte). The filtering is performed before the exact pattern matching process using
the SHVE.Query(Filter,C) algorithm to eliminate unmatched patterns and keep the
first position of only matched patterns in a vector called “possible match positions”.
This vector is later used as input to perform exact pattern matching process (to check
the remaining bytes for each matched pattern) on the packets at the collected positions
only. The Fig. 3 summarizes SHVE+ scheme of Lai et al., 2021 [4].

Verification. The receiver must verify the detection results by decrypting the SSL con-
nection flow using the kSSL key and re-encrypting it with the same encryption algorithm
used by the sender (hashing it using the kSE key) and compare it to the legitimate hashed
packets received from the MB. In case of mismatch of any packet, it indicates that the
detection process is escaped.

Fig. 3. SHVE+ with filtering [4]

4 The Proposed System

The problem with the filter of Lai et al., 2021 [4] scheme is that the size of the two
filters (FC and FL) together is very large almost equal to E that contains a very large
number (thousands) of Ti vectors, which makes traversing this set very costly. There-
fore, the same applies to traversing the two filters (FC and FL) in the filtering phase.
Moreover, according to Ren et al., 2020 [7] 99% of real network traffic is legitimate
and needs to be filtered out quickly without going through thousands of SHVE+ filter
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vectors. Therefore, the filtering phase of Lai et al., 2021 [4] is not designed in a way
that helps filter out such legitimate packets quickly. To solve this problem, we need a
filter that quickly eliminates the majority of legitimate traffic. Therefore, we proposed a
completely separate two-layer architecture, inspired by the Ren et al., 2020 scheme [7]:
“Fast filtering layer” and “Exact pattern matching layer”, as shown in the Fig. 4.
The objective of the first layer (Fast filtering) is to filter out the majority of legitimate
traffic. The filtering must not produce any false negatives (i.e., it must not miss any
possible matches). It must also produce less than 50% false positives in order to filter
out the majority of incoming traffic. The objective of the second layer (Exact pattern
matching) is to further inspect unfiltered packets from the first layer using an exact pat-
tern matching process only in the possible match positions provided by the first layer.
In the following, we provide details on each of them.

Fig. 4. Two-layer architecture

4.1 Layer 1: Fast Filtering

For this layer, we have chosen the tokens filtering server (TFS) of the EVDPI scheme
[7], which is based on ETF (Bloom filter of encoded keywords/tokens). The main idea
is to associate each encoded token/keyword etk (extracted from DPI rules) to spe-
cific locations in the Bloom filter ETF, of size m, using k hash functions to avoid
collisions. Then, to test the membership (for the filtering) of a given encoded token
etk (generated from a packet using tokenisation), the TFS computes the k hash func-
tions as follows: loci = hi(etk) mod m;1 ≤ i ≤ k. Then, the token is matched only if
ETF [loci] = 1; ∀i ∈ [1,k]. This layer must check all tokens and if no match is found,
the packet must be sent outside the network. In our conception, we used the first two
bytes of each pattern concatenated with the offset as a token to be searched. We encrypt
the token by a PRF F0 using another key kBF . Thus, our etk is calculated as follows:
etk = F0(kBF , pattern[0]||pattern[1]||o f f set) for each pattern. This filter is generated
at the level of the rules generator RG. Thus, the filtering process is the same as in TFS.
The Fig. 5 illustrates the design of this layer. The probability of a false positive of a
bloom filter is Pe ≤ (1− e(−k·N/m))k (N is the number of elements in the set). Bigger m
and k allow to avoid collisions, which reduces the false positive rate. But a small k is
preferable because it reduces the computational cost (fast hashing). A smaller m is also
preferable so that the search can be performed in the lower levels of the cache.
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Fig. 5. Preparation and fast filtering of the first layer

4.2 Layer 2: Exact Pattern Matching

For this layer we have used the SHVE+ scheme. However, in our case (when using the
first layer) it is necessary to remove the two filters FC and FL12 because they become
useless in the presence of the Bloom filter which processes the first two bytes of each
pattern in the previous layer (layer 1). The advantage of our proposed scheme compared
to the Lai et al., 2021 scheme [4] is that in the latter, for each packet of maximum 1500
bytes, the filtering algorithm has to go through thousands of vectors just to decide if
the packet is legitimate or not, and thus requires a deep inspection of all the bytes after
the filtering process. In contrast, in our design, with the use of the bloom filter (in the
first layer) of fixed size m, which does not increase with the number of patterns unlike
the SHVE filters, the first layer filtering algorithm traverses the packet instead of the
SHVE filters. This means that the algorithm uses a fixed size sliding window of 2 bytes
to generate 1499 tokens of fixed size, for each packet, to test the membership of each
of them in the bloom filter and collect the possible match positions. Thus, in next layer,
for packets that require further inspection, the algorithm only checks the possible match
positions found in the first layer. In summary, we prefer to traverse a packet of 1500
bytes through a 2-bytes sliding window instead of traversing a set containing thousands
of vectors to just filter out the legitimate packets.

5 Experiment and Evaluation

To evaluate the performances of our solution, we have implemented 4 different inspec-
tion methods. The first two Method 11 and Method 22 are those of Lai et al., 2021 [4]

1 Method 1: SHVE+ without SHVE filtering.
2 Method 2: SHVE+ with SHVE filtering.
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(SHVE+ without and with SHVE filter, respectively) and the other two Method 33 and
Method 44 are our two-layer architecture without and with the use of FL34 SHVE filter
in the second layer, respectively. Figure 6 represents a summary of the conception of
each. The objective of this section is to compare the four implemented inspection meth-
ods between them and show how the size of the Bloom filter improves the inspection
time. To do that, we present the results of two tests. The first one “Methods compari-
son” is to compare the methods and the second one “Parameters optimization” to see
the effect of the Bloom filter size. The execution time was used as a metric for these
tests. We want to mention that we used the programming language Python for the imple-
mentation which is very slow compared to other languages like C++ with a very remark-
able difference. Therefore, we will compare our conceptions with the SHVE+ methods
that we implemented in our environment under the same conditions. For inspection per-
formance evaluations, we used a machine equipped with Intel R©CoreTMi7-5500U CPU
@ 2.40GHz and 8 GB RAM. We used Snort5 as a ruleset for the inspection.

5.1 Test 1: Methods Comparison

For these tests, we used five rulesets R06, R17, R28, R39, R410 (ordered from the small-
est to the biggest, respectively) to inspect 40 packets where only 2 are malicious, giving
a percentage of 5% of malicious packets (which is high compared to the real world).
We present in Table 1 the inspection time of each method, of 40 packets, using the five
rulesets. Then, we present in Fig. 7 the relation between the inspection time of each
method and the number of packets. For this first test, we used a Bloom filter of 1000
elements (BF1000).

Table 1. Inspection time of 40 packets through 5 rulesets using the four implemented methods

Ruleset Method 1 Method 2 Method 3 Method 4

Ruleset0 0.15 s 0.14 s 1.58 s 1.59 s

Ruleset1 11.39 s 10.56 s 7.41 s 7.56 s

Ruleset2 22.88 s 21.37 s 15.04 s 17.10 s

Ruleset3 45.68 s 43.6 s 27.2 s 33.24 s

Ruleset4 214.14 s 192.10 s 116.84 s 143.33 s

3 Method 3: Bloom filter in Layer 1 with SHVE+ without filtering in layer 2.
4 Method 4: Bloom filter in Layer 1 with SHVE+ and SHVE filter FL34 in layer 2.
5 Snort, “Snort community ruleset”, 2019. [Online]. Available: https://www.snort.org/
downloads.

6 Ruleset0 (70 KB), 1 rule, 64 vectors.
7 Ruleset1 (3.7 MB), 9 rules, 4951 vectors.
8 Ruleset2 (8.4 MB), 9 rules, 10085 vectors.
9 Ruleset3 (19 MB), 17 rules, 20544 vectors.
10 Ruleset4 (86 MB), 107 rules, 88360 vectors.

https://www.snort.org/downloads
https://www.snort.org/downloads
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Fig. 6. The overall conception with the four implemented methods

Fig. 7. The relation between the inspection time and the number of packets (using BF1000)
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We obtain for a small set of rules (Ruleset0):

T (Method2)< T (Method1)< T (Method3)< T (Method4)

The method 2 is faster than method 1, making it interesting to use the SHVE+ filter,
instead of using SHVE+ alone to avoid inspecting all bytes of each pattern as mentioned
in Lai et al., 2021 [4]. We also remark that when the number of vectors is very small, the
SHVE+ methods (methods 1 and 2) becomes fast compared to our conception (methods
3 and 4) which performs a membership test of 1499 tokens of fixed size for each packet,
which is logical. However, when the number of patterns increases, we obtain:

T (Method3)< T (Method4)< T (Method2)< T (Method1)

When the number of vectors becomes large, the SHVE+ filtering becomes very
time consuming. To avoid this, it is necessary to quickly filter legitimate packets in the
first layer with the membership test of 1499 fixed size tokens, which makes it very fast
compared to passing through a set that contains thousands of vectors. Therefore, the
methods that use the fast filtering layer give a better inspection time than those that
use only the second layer. As the ruleset becomes larger, the difference in inspection
time between the methods becomes larger as shown in Fig. 8 which shows the relation
between inspection time and ruleset size for the four methods.

Fig. 8. The relation between the inspection time and the size of the ruleset (using BF1000)

We notice that for Method 3, the inspection time increases when the number of
patterns increases, while normally this is not the case (because normally the size of
the ruleset is independent of the filtering time in the first layer, as the filtering time of
the Bloom filter is basically completely dependent on the computation time of the hash
functions). This is due to the fact that the Bloom filter used has a very small number of
elements (m= 1000) which means that there are many legitimate packets that pass the
Bloom filter (the problem of collisions during insertions leads to many false positives).
To solve this problem, it is necessary to increase the number of elements m in the filter.
However, Method 3 gives us the best results, despite the use of a Bloom filter with a
very small number of elements. We will see later the improvement of this method by
increasing the number of elements.



438 O. Tahmi et al.

5.2 Test 2: Parameters Optimization

In this second test, we will first show the difference between using a 1000 elements
bloom filter “BF1000” and a 10000 elements bloom filter “BF10000”. For that, we used 8
packets with the ruleset “Ruleset2” and the Method 3 for inspection as shown in Fig. 9.
Then we will compare the four methods again and show the big difference using the
filter BF10000 instead of BF1000. From Fig. 9 we remark that there is a big difference
between the two cases and this is due to the fact that in the first case, when the number
of elements is small, the Bloom filter suffers a lot of collisions and consequently more
legitimate packets pass to the second layer (more false positives) which increases the
inspection time. In contrast, when there is enough space in the Bloom filter, it lets
only suspicious packets pass for further inspection (less false positives), making the
inspection time at layer 2 very fast.

Fig. 9. The difference between using “BF1000” and “BF10000” according to the inspection time

We now present, in Fig. 10, the difference between the inspection time of the four
methods with the use of “BF10000” for methods 3 and 4. We can see this time that our
methods (methods 3 and 4) give us a better inspection time and incomparable to the
other methods especially when the set of rules becomes bigger and this thanks to the
use of the Bloom filter of 10000 elements which minimizes the false positive rate in the
first layer.

Fig. 10. The relation between the inspection time and the number of packets (using BF10000)
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We present in Table 2 the inspection time results obtained using Method 3 with the
Bloom filter “BF10000” for the inspection of 40 packets. We also give the inspection
throughput and the gain obtained compared to methods 1 and 2 (abbreviated as Gain %
M12) and method 3 with BF1000 (abbreviated as Gain % M31000). The most important
thing to observe is that the larger the ruleset, the greater the gain of the Bloom filter
compared to other methods that don’t use this filter. As the IDS needs a very large
number of rules to work efficiently, this filter will be very useful, especially when the
percentage of malicious packets becomes very low where they get filtered by the Bloom
filter, which saves a lot of inspection time. Moreover, we show in Fig. 11 that by using
a Bloom filter of 10000 elements, we obtained an inspection time almost independent
of the size of the ruleset due to the sufficient space of this filter which reduces the
collisions and so the false positive rate. It is important to choose the number of elements
m carefully to maximize the efficiency of the filter without degrading the performances.
Increasing the value m leads to a risk of degrading performances when the Bloom filter
size surpasses the cache size.

Table 2. Inspection throughput, gain and inspection time of 40 packets using Method 3 (our
conception) based on BF10000

Ruleset Inspection time Gain %M12 Gain %M31000 Throughput

Ruleset0 1.57 s loss 1% 25 Packets/s 38 Bytes/ms

Ruleset1 1.78 s ≥83% 76% 22 Packets/s 34 Bytes/ms

Ruleset2 2 s ≥91% 87% 20 Packets/s 30 Bytes/ms

Ruleset3 2.53 s ≥94% 91% 16 Packets/s 24 Bytes/ms

Ruleset4 8.52 s ≥96% 93% 5 Packets/s 7 Bytes/ms

Fig. 11. The relation between the inspection time and the ruleset size (using BF10000)

6 Conclusion and Future Work

In this work, we have built a fast secure IDS that performs intrusion detection over
encrypted traffic within a very interesting inspection time due to the use of a two-layer
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architecture that allows to quickly filter out the majority of legitimate traffic using a
very powerful filter. This filter saves a lot of unnecessary computations and lets the
pattern matching process to treat only the unfiltered malicious traffic. We proved that
our solution outperforms one of the best recent searchable encryption works in terms
of inspection time. We showed how fixed-length tokenisation can improve the perfor-
mance of the secure IDS. We also presented how our solution becomes more important
as the number of rules gets larger and larger.

As an extension of this work, we will study how to minimize the extra bandwidth
overhead without losing the power of our solution. We will also try to improve more
and more the inspection time by playing on the number and parameters of the fast filter.
Cuckoo hashing is also an interesting way to be considered in order to enhance the
filtering.

Another future goals is to study how to extend our system to support other inspec-
tion rules such as multi-pattern rules, regexes and scripts as well as other rulesets.
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Abstract. New, sophisticated phishing campaigns victimize targets in
few hours from attack delivery. Some methods, such as visual similarity-
based techniques, can spot these zero-hour attacks, at the cost of addi-
tional user intervention. However, more research is needed to investi-
gate the trade-off between automatic detection and user intervention.
To enable this line of research, we present a phishing detection tool that
can be used to instrument scientific research in this direction. The tool
can be used for experimentation on assisting user decision-making, eval-
uating user trust in detection, and keeping track of users’ previous “bad”
decisions.

1 Introduction

Research and industry have identified an increasing sophistication of phishing
attacks in the last years [4,8,13]. The adoption of innovative detection evasion
techniques and the velocity at which phishing attacks arrive and change form
make it challenging to design early detection systems able to warn users of the
suspicious nature of a visited website. New and unknown attack instances take
their toll in the first few hours since delivery (hence zero-hour phishing), and
attempt to bypass detection systems by fingerprinting user agents or conceal-
ing features of cloned pages in embedded objects, while preserving the visual
similarity needed to persuade the end user they are indeed on the legitimate
webpage [7,15]. For example, Fig. 1 shows a phishing website in which no tex-
tual reference to the Office 365 brand in the HTML page, or in single image
resources, is present. This makes it hard to automatically extract relevant fea-
tures by just relying on image resources or textual features from the Document
Object Model (DOM).

To counteract evasion techniques, automatic detection methods can identify
relevant visual features of a suspicious page (e.g., a logo) and find the corre-
sponding legitimate page using search engines, without relying on slow-to-update
block-lists [7]. Such systems, however, are less reliable than allow/block-lists
(too many false alarms) and, therefore, require human intervention to effectively
counter such attacks [5]. Yet users are often not considered in the design of the
tools themselves [2,12]. On the other hand, humans may not heed the generated
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G.-V. Jourdan et al. (Eds.): FPS 2022, LNCS 13877, pp. 443–452, 2023.
https://doi.org/10.1007/978-3-031-30122-3_27
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Fig. 1. Phishing website imitating
Microsoft Office 365

Fig. 2. Example of splitting an image of the
PayPal logo to evade detection

warnings for many reasons, such as lack of trust in the decision support system
or additional user interface fatigue, with consequent detrimental habitual pat-
terns [14]. Moreover, the amount, type and even content of warnings can depend
on the employed detection system and, consequently, affect warning effectiveness.

Assisting users in taking decisions on website legitimacy is in essence the
goal of phishing detection and warning effectiveness research. However, gaps in
this direction are mainly addressed separately by extant research, for example
by improving detection accuracy through the usage of visual features in [7], or
by investigating different warning types, as reported in [3]. As a consequence,
existing methods and tools are often limited in applicability to experiments that
capture the full process where the interaction between the phishing webpage and
the user unfolds. For example, even the best detection methods can be ineffective
when users do not trust and follow the tool’s advice [6]. On the contrary, pitfalls
of detection tools, such as false positives or long run-times, can be mitigated
with effective risk communication. We argue that these limitations narrow the
research possibilities where technology and automation can support individuals
in avoiding phishing attacks. To address them, we need an integrated research
approach that puts both phishing detection and Human Computer Interaction
(HCI) ingredients together for an experimental tool to evaluate, characterize,
and refine the interaction between zero-hour phishing decision support, and the
final user.

In this work, we propose a new experimentation approach to conduct research
on zero-hour attack detection and to inform users about related risks. In partic-
ular, we present a tool, implemented as a browser extension, to support users
in the detection of zero-hour phishing websites, with a particular focus on web-
sites aiming to steal user credentials. The tool relies on a visual similarity-based
method for detection and leverages various warning methods for user notifica-
tion. Thus, our tool enables an integrated research line on zero-hour phishing
that allows, for instance to:

– Assess user aids supporting decision-making on website legitimacy.
– Evaluate user trust in a detection system’s risk advice.
– Explore new risk communication methods by keeping track of past decisions

and associated risks.



A Decision-Support Tool for Experimentation 445

2 Need for Zero-Hour Phishing Detection
Experimentation

According to industry reports [1,13], a significant fraction of phishing attacks are
zero-hour, i.e., when deployed with a variation on previously-observed features
(e.g. domains or DOM elements), they cannot be easily linked back to previously-
seen attacks (e.g. a similar phishing landing page). Several approaches have been
proposed to detect phishing attacks and to communicate risk advice to users.
Next, we review existing methods and discuss their drawbacks w.r.t. zero-hour
attacks, and argue on the need for more experiments (involving end-users) to
investigate their actual effectiveness.

Warnings. Warnings are the primary means to communicate security risks to
users [14]. Two main categories are often employed in web browsers: passive
warnings, which warn users without blocking the content area of a webpage,
and active interstitial warnings, which block the content area and require an
active interaction from the user to be bypassed [10]. Active warnings are more
likely to be heeded by users than passive ones and, therefore, considered more
effective in averting phishing attacks. Nonetheless, more experiments are needed
to understand the effects of these warnings, which still suffer clickthrough rates
between 9–18% for the phishing warnings and up to 70% for SSL related warn-
ings [3]. Active warnings carry the risk of disrupting applications’ usability too
often, to a point where users can develop habitual and detrimental behavior
patterns (such as overriding security settings), nullifying warning effectiveness
altogether [14]. Moreover, user compliance is very sensitive to the context where
warnings are triggered; for example, higher compliance was observed in online
banking than in an e-commerce context [6]. Recent work has investigated how to
nudge users to pay attention to warnings, for example, with just-in-time, just-in-
place tooltips that elicit a more systematic cognitive response without blocking
users completely [17]. This recent line of research integrates multiple disciplines
and yields promising results, further signalling the need of new and innovative
experimentation in this direction. Overall, research on warnings tends to dis-
regard the internal mechanisms of phishing detection methods. On the other
side, users are often not considered in the design of such methods. This has the
side effect of limiting methods and tools’ applicability to experiments that cap-
ture the full process where the interaction between phishing webpages and users
unfolds.

Phishing Detection. Automated detection methods of phishing websites can be
broadly grouped into three main classes: list-based, heuristic-based, and visual
similarity-based [9]. List-based approaches operate by comparing the URL a user
visits against a (block) list of known phishing websites or an (allow) list of legit-
imate websites. These lists are typically maintained and updated by relying on
external crowdsourcing or reputation systems sources, such as PhishTank and
Google Safe Browsing. While these solutions have proven to be effective against
known threats, they face significant limitations when URLs are yet unknown
(new or compromised websites) [7], or due to the time it takes to update block
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lists [15]. Especially the slow update of such lists (approximately nine hours [15])
makes these methods ineffective against zero-hour attacks, which trigger victim
responses in the first few hours since delivery [5,15]. On the other hand, heuristic-
based approaches analyze features extracted from the webpage using predefined
rules to determine its legitimacy. These approaches often rely on features such
as SSL certificates, anomalies in the DOM or URL, etc. [9] which have how-
ever proven to be unreliable as attackers can forge relevant features invisible to
heuristic rules [9,10].

These issues are addressed by visual similarity-based approaches, which use
content rendered in the browser to determine the (non)legitimacy of a website.
These techniques use features such as the logo, the screenshot of the webpage
or other features to compare two websites and determine whether one imitates
the other [2,11,12]. The advantage of visual similarity-based techniques is that
the replacement of text by other objects (such as images and other embedded
objects) cannot circumvent the detection technique [7]. However, their ability
to detect phishing attacks depends on their ability to find the impersonated
legitimate website [10,11]. This important limitation is evident in the state-
of-the-art [2,11,12] where it is often addressed by narrowing the scope to a
predetermined target list of sites or brands that covers specific classes of phishing
attacks.1

Zero-Hour Detection. Whether previous work use corpora of predetermined
URLs, webpages, screenshots or combinations thereof, these approaches are
fundamentally limited in detecting zero-hour attacks not present in the given
corpus [10]. Therefore, the identification of a page resembling the page under
analysis has to be performed using external sources. Visual similarity-based
approaches often apply keyword extraction methods to extract relevant terms
from the webpage metadata (e.g., title-tag) and image resources (e.g., logos) in
the DOM, which are then fed to a search engine [7]. The underlying assumption is
that search engines place benign websites on top [16]. However, the brand name
cannot be detected when it occurs only in embedded objects, as it is the case for
the webpage in Fig. 1. Similarly, adversaries can compose images from several
sub-images as in Fig. 2 or generate them with CSS. Therefore, more robust ways
of extracting search terms, which goes beyond applying text mining or extract-
ing images from the DOM for a reverse image search, are needed to effectively
enable zero-hour detection capability.

Need for Experimentation. Overall, most of the research in phishing detection
deals with improving accuracy and devising new methods for attack detection.
However, this often happens without integrating the constraints of the human in
the loop. As a consequence, the proposed methods and tools are often limited in
applicability to experiments that capture the full cycle of a phishing attack. For
example, when (re)producing experiments with such tools, end-user components

1 Password managers can act as detection methods by flagging mismatched locations
of used credentials; however, they are not the de-facto authentication method and
still act similarly to an allow-list of previously saved websites.
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Fig. 3. Overview of the phishing website detection tool

that should connect to the phishing detection method, e.g. browsers or other
UI components displaying warnings, are often not provided. This gap affects the
possibility to measure or manipulate human-computer interaction (HCI) factors,
also in relation to tool capabilities and warning features. When experimenting
with phishing detection, we need an integrated research approach that puts
all ingredients together in an experimental tool that allows to investigate the
complex interaction between users and (risk-based) decision support tools for
zero-hour phishing detection.

3 A Tool for the Early Detection of Phishing Websites

To enable experimentation in the context of early phishing detection, we designed
and developed a tool that employs a visual similarity-based phishing website
detection method as the backend and leverages a variety of warning mechanisms
to inform the user about the identified risks posed by the webpage they are
visiting. An overview of the overall tool architecture is presented in Fig. 3. The
tool is available at: https://github.com/paolokoelio/zerohour-decisionsupport-
phishing.

3.1 Backend

The backend of our tool implements the machinery for early detection of phishing
websites, which operates on a remote server exposing a REST-like API. In par-
ticular, we extended and enhanced a visual similarity-based detection approach
that employs both textual and visual features of an arbitrary webpage as search
terms for the identification of the original webpage from [7]. The overall idea is to
combine textual and visual features extracted from a screenshot of the rendered
webpages and to evaluate an unknown webpage against the results of the search
engines. The output of the evaluation is then used to generate feedback to the
user (see Sect. 3.2). Figure 3 (Backend) illustrates how the approach operates. By

https://github.com/paolokoelio/zerohour-decisionsupport-phishing
https://github.com/paolokoelio/zerohour-decisionsupport-phishing
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relying on search engines and the visual features of a rendered webpage (rather
than only on features of the DOM), the tool allows a zero-hour protection by
avoiding the maintenance of benign allow-lists, and is robust against resource
evasion techniques, such as image splitting (Fig. 2), image replacement by pure
CSS and image distortions.

As shown in Fig. 3, our approach takes as input a website and obtains
the DOM and a screenshot of the rendered webpage (1). Textual features are
extracted from the DOM (e.g., title-tag) in a similar fashion to other techniques
(cf. Sect. 2). On top of it, visual regions potentially containing identifiable infor-
mation are extracted from the screenshot (2). These features include, but are
not limited to, logos, slogans, parts of header images, and other visual infor-
mation that is likely to be found in the corresponding legitimate website. Such
visual regions are extracted by means of serial image processing steps that rely
on region characteristics, such as saliency and high contrast with other elements
in a webpage. Region extraction can return several regions, where some of them
might not contain information useful to identify the mimicked website. To retain
only regions with relevant information, we employ a random forest classifier to
filter regions based on regions’ features, such as dimensions, coordinates on the
page, color properties, and energy-entropy characteristics. The rationale for using
certain properties stems from their ability to store “constant” brand/logo-like
characteristics [18]. We also rely on the Clearbit public API as an additional
region candidate. This API allows to retrieve the logo of a company by sending
a request with a URL.

Together with the title-tag, the extracted regions are used as (reverse) search
terms to find websites similar to the current webpage through a search engine
(associated pages in step 3). Based on the intuition that search engines most
likely place benign results at the top [16], the top results of both searches are
marked as candidate associate pages and used to determine whether the current
page is legitimate or not. To determine the legitimacy of the current website,
its domain name is checked against the domain names listed in the “Subject
Alt Names”-field of the associated pages’ SSL certificates (4) (this field contains
domain localizations of the current website, e.g., amazon.com, amazon.co.uk,
etc.). If the current domain is in this list, the website is marked as “legitimate”.
Otherwise, a screenshot of the associated pages is obtained (5). Each screenshot
is automatically compared with the screenshot of the current webpage using a
number of image similarity algorithms (Earth Moving Distance, Discrete Cosine
Transformation, etc.) (6) and, depending on their degree of similarity, it is classi-
fied as “phishing” or “legitimate”. The similarity scores are then used to generate
feedback about the legitimacy of the current webpage (7).

3.2 Frontend

To enable experimentation in which the human is in the loop, we also realized a
frontend interface as a Chromium browser extension. This allows to include HCI
factors in the experimentation ingredients and facilitate experiment deployment.
The modules of the plug-in are shown in Fig. 3 (Frontend).
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Fig. 4. Extension status pop-up (past
phishing sites are displayed)

Fig. 5. Passive, just-in-place tooltip
when selecting a password field

Fig. 6. Active, full-screen blocking
warning upon a successful detection

The extension is configured to only scan pages that contain a password field,
given the focus on phishing websites aiming to steal user credentials. Upon vis-
iting a page, the detection process starts in the background (cf. Sect. 3.1), and
a traffic light icon in the address bar signals the current status, as shown in
Fig. 4. The user may click on the icon for more details. On the top, the current
URL is displayed together with the outcome, the center contains information on
the progress, i.e., the textual/image search and image comparison steps, and the
bottom shows the past phishing discoveries.

Whenever users select the password field, the extension triggers the just-
in-time just-in-place passive warning in Fig. 5 to remind that the detection in
not complete. Researchers can personalize the warning behavior to steer user
attention with different designs or impede certain actions by, e.g., temporar-
ily blocking the “Submit” button. When a webpage is detected as a phishing
webpage, a full-page blocking warning (Fig. 6) blocks the user if she is still on
that page, akin to current browsers’ behavior. To ignore this active warning or
remember this choice the user must click locate and click on the respective links.
Contents and design of the message can be customized to, for example, embed
information on the used search features or alter interaction paths to dismiss the
message.

To cover cases where the user acts on the webpage before the analysis is com-
plete, past phishing websites are displayed in a retrospective fashion, as shown
at the bottom of Fig. 4: even if the user navigates away from the not-yet-detected
phishing page, the system will alert the user retrospectively in the status icon
and in the pop-up of a detection. Users can dismiss or label as “legitimate” a
previously detected phishing URL. The displayed information and interactive
elements of the pop-up can be altered to give less or more insights and control
to the user, such as near real-time data, history of detection or (de)activation of
features.
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4 Discussion and Conclusions

As zero-hour phishing detection methods can generate false positives, human
intervention is often needed in the decision making process. This, however, places
additional burden on the user. To this end, research should assess the best ways
to avoid too much strain on the user while keeping them safe. Our work presents
a visual similarity-based phishing detection tool that enables this line of research.
The tool is packaged into a usable and upgradable browser extension and a web
API. This allows an easy deployment of experiments with a scalable number of
participants to investigate research gaps in this area. We identify three main
research directions that could be supported, experimentally, by the proposed
tool:

Assessing User Aids Supporting Decision-Making on Website Legitimacy.
Thanks to prior research in usable security, passive indicators have been replaced
with blocking warnings. Nonetheless, new experiments can shed light on the gaps
not filled by active warnings, such as the circumstances of warning triggering.
Our tool can be used to evaluate (types of) warnings in the context of different
website categories, such as e-commerce, social media or banking. Similarly, differ-
ent implementations of nudges, such as dynamic notifications or timed blocking
of the “Submit” button, can be tested in various circumstances. For example,
experiments can be set up within an organization’s embedded phishing training,
thus allowing warning efficacy to be tested in an ecologically valid setting.

Evaluating User Trust in a Detection System’s Risk Advice. The efficacy of
decision-support systems depends on the balance between system’s capabilities
and users trust [6]. Our tool can help investigating the calibration between the
perceived trust and the tool’s risk advice by dynamically customizing the warn-
ing contents. For example, effects of user calibration on the final decision can
be measured by presenting further details on where, how and when a warning
has been generated or by displaying the tool’s detection statistics. Research on
indicator proxies for the inner processes of the tool, such as progress bars or
status indicators, has the potential to steer user perceptions and, eventually,
improve user choices. Experiments can benefit from the dynamic interaction of
the plug-in and the underlying detection logic where, for example, experiment
designs may vary the content and placement of status indicators in the browser
UI at detection run-time.

Exploring New Risk Communication Methods by Keeping Track of Past Deci-
sions and Associated Risks. Whereas visual similarity-based detection tools are
able to detect zero-hour attacks, they have typically long runtimes, which can
significantly affect a user’s reliance on such tools. Our implementation takes an
original approach to this problem: instead of blocking users before the detec-
tion is complete (as done by, e.g., Microsoft SafeLink), users are notified retro-
spectively of the past phishing encounter and, thus, can remediate ‘bad’ deci-
sions by changing their credentials. While a similar approach has been success-
fully applied against credential stuffing attacks, it is unclear if this concept is
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effective in a near real-time setting. Our tool enables further research in this
direction, for example, user studies on the efficacy of retrospective notifications
to reduce attack success rates.

Acknowledgment. The authors thank Ardela Isuf and Sam Cantineau for the imple-
mentation of the tool. This work is supported by the ITEA3 programme through the
DEFRAUDIfy project funded by Rijksdienst voor Ondernemend Nederland (grant no.
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Abstract. The identification of vulnerabilities is an important element
in the software development life cycle to ensure the security of soft-
ware. While vulnerability identification based on the source code is
a well studied field, the identification of vulnerabilities on basis of a
binary executable without the corresponding source code is more chal-
lenging. Recent research [1] has shown how such detection can generally
be enabled by deep learning methods, but appears to be very limited
regarding the overall amount of detected vulnerabilities. We analyse to
what extent we could cover the identification of a larger variety of vulner-
abilities. Therefore, a supervised deep learning approach using recurrent
neural networks for the application of vulnerability detection based on
binary executables is used. The underlying basis is a dataset with 50,651
samples of vulnerable code in the form of a standardised LLVM Inter-
mediate Representation. Te vectorised features of a Word2Vec model are
used to train different variations of three basic architectures of recur-
rent neural networks (GRU, LSTM, SRNN). A binary classification was
established for detecting the presence of an arbitrary vulnerability, and
a multi-class model was trained for the identification of the exact vul-
nerability, which achieved an out-of-sample accuracy of 88% and 77%,
respectively. Differences in the detection of different vulnerabilities were
also observed, with non-vulnerable samples being detected with a partic-
ularly high precision of over 98%. Thus, our proposed technical approach
and methodology enables an accurate detection of 23 (compared to 4 [1])
vulnerabilities.

1 Introduction

Identifying vulnerabilities is an important element of the software development
process to ensure the security of software. In the early stages of development,
this can be done by testing the code and performing static analysis based on
the source code. The identification of vulnerabilities, however, becomes more
challenging when analysing applications without knowledge of the associated
source code. This usually occurs when analysing legacy applications, proprietary
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software or other forms of black-box pentesting scenarios. In these cases, black-
box tests can be used to identify vulnerabilities based on the behaviour of an
application without knowing its internal workings.

Unfortunately, black-box analysis methods have a number of disadvantages.
Vulnerability detection methods such as fuzzing are very time-consuming, offer
low code coverage and have high resource requirements. Furthermore, the suc-
cess of these methods depends heavily on the specification of the test and the
completeness of the test cannot be proven [2]. Since in an analysis scenario with-
out the presence of the source code, the application would still be available in
the form of assembly code, this code could be used for an analysis to avoid the
disadvantages of a black-box analysis. However, due to its complexity a manual
analysis of assembly code performed by humans may hardly be feasible for larger
applications.

The analysis of assembly code is therefore particularly interesting in the
form of an automated analysis. Since the creation of a program for automated
analysis is not a trivial task due to the complexity of the code, this demanding
programming task in the field of binary code analysis can be accomplished by
using machine learning techniques [3].

This paper aims to analyse whether deep learning-based models can be used
to sufficiently identify vulnerabilities (categorised by CWEs) in binary executa-
bles. The adopted methodology is based on the approach from [1], and extends
this in both implementation and scope. Therefore, the following objectives are
examined:

– Can the approach shown in [1] be reproduced and significantly extended
beyond identification of only four vulnerabilities?

– To which of the 118 vulnerability types (categorised by CWEs) in the used
dataset (SARD) can the approach be extended and how well are they identi-
fiable?

– Is such a model able to identify the exact type of vulnerability or is it more
efficient at identifying the presence of an arbitrary vulnerability?

– Which architectural design decisions influence the result?

Based on the defined objectives, this paper first provides an overview of
related research (Sect. 2). Then, the creation of the dataset used and the training
process based on that data is described in detail (Sect. 3 and Sect. 4). Afterwards
we discuss our findings, its implications and possible improvements (Sect. 5 and
6).

2 Related Work

Previous work on machine learning based vulnerability detection can be divided
into static versus dynamic analysis approaches. When considering static analysis
methods, those can be further divided on static analysis of the source code and
analysis techniques in which no source code is available.
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In the area of vulnerability detection through static source code analysis,
research has been conducted to determine a code similarity order of a finger-
print to already known vulnerabilities. A number of publications have shown
how algorithmic solutions can be used to detect reused vulnerable code frag-
ments on the basis of the source code [4–7]. Limitations of these approaches
were found in the detection of new vulnerabilities that were not a direct copy
of known vulnerabilities or were heavily modified. A detection of new vulnera-
bilities requires a deeper understanding of the code to be analysed, which can
be implemented by deep learning. VulnDeePecker [8] uses such a deep learn-
ing based detection method on program slices, derived from the SARD dataset
[9], to detect bidirectional LSTM neural network API function calls related vul-
nerabilities, resulting in F1-scores between 86.6 and 95%. VulDeeLocator [10]
demonstrated how the use of an intermediate code representation and an asso-
ciated reduction of the code of interest can be used for detection, which enabled
the detection of vulnerabilities with an F1-score of 90.2% to 96.9%.

Another subarea of static analysis is in the area of vulnerability detection
without using the source code, which will also be the focus of this work. In [11],
it was shown how similarity-based binary detection methods can be used under
consideration of cross-architecture. For this purpose, binary code from ARM,
MIPS and x86 CPU architectures was analysed by first translating them into
an intermediate representation and later deriving a similarity score of the trans-
lated samples. Another similarity-based detection method that does not require
the use of source code is discovRE [12]. Here, a k-nearest neighbor algorithm
was used to identify similar functions based on numerical features, which were
filtered based on the similarity of control flow graphs. The authors of [13] showed
how a detection based on decompiled ASM code can be performed using of nat-
ural language processing (NLP) methods. In their work, only stack-based buffer
overflows collected from public repositories were considered, resulting in perfect
classification results reported both in-sample and out-of-sample. Vulnerability
detection based on an intermediate representation of the code extracted from
binary executables, was presented in [1]. In this work a total of 14,657 code frag-
ments were used for detecting the four vulnerability types CWE-134, CWE-191,
CWE-401 and CWE-590 of the SARD dataset. Six different variants of recurrent
neural networks were trained to perform a classification with the bidirectional
simple recurrent neural network giving the best result. The results were only
presented graphically but based on the reported accuracy, a range of 98–100%
could be deduced.

3 Data Gathering and Preprocessing

The approach adopted in this paper follows the methodology reported in [1],
where we initially replicate the reported results and then extend their approach
to cover 19 additional CWEs and required preprocessing steps. This approach
can be defined using the taxonomy introduced in [14] as supervised deep learning
using recurrent neural networks for the application of vulnerability discovery.
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Therefore, code-base features on a token-level are embedded by using a word-
to-vector model. The steps for generating and preprocessing our dataset follow
those of [1] and are outlined in Fig. 1 and detailed in the following.

Fig. 1. Data gathering and preprocessing steps

We used the Juliet Suite for v1.3 C/C++ containing 64,099 artificially gen-
erated non-flawed and a flawed test cases1, categorised following the Common
Weakness Enumeration (CWE). Since we do not want to process the source code
for further processing, but rather in the form of a black-box-based approach, the
code first gets compiled into binary executables using already public code from
the [15] repository. A decompilation of the binary executables to LLVM IR is
performed using RetDec2. The decompiled IR functions are then preprocessed by
standardising variable and function names, decomposing numerical values into
individual digits and marking line ends with individual tokens. The selection of
relevant weaknesses is narrowed down by selecting functions directly related to
the respective weakness, having more than 500 samples per weakness and hav-
ing a minimum length of 300 tokens per sample. The preprocessed samples were
encoded using a Word2Vec model with 100 dimensions, a context size of 3, and
a downsampling rate of 1e−3 padded to a maximum sequence length of 1000
using zero padding.

4 Machine Learning - Training and Evaluation

Using train-test-validation split (70/15/15%) we trained a selection of LSTM,
GRU and SRNN neural networks to perform binary (flawed vs non-flawed func-
tions) and multi-class (exact vulnerability) classifications. The selection includes
unidirectional and bidirectional variants of the model, different numbers of RNN
layers (up to 3), followed by ordinary fully connected feed forward layers and
a unit size of 64 for all RNN layers, using a tanh activation function. Training
was performed with a batch size of 64 to optimise categorical cross entropy, with
early termination occurring after 15 epochs without loss improvement.

For binary classification the single layer unidirectional SRNN model per-
formed best on the test set and achieved an out-of-sample accuracy of 88%
using the validation set. This model was also able to detect non-flawed classes

1 https://samate.nist.gov/SARD/resources/releaseJuliet1.3Doc.txt.
2 https://github.com/avast/retdec.

https://samate.nist.gov/SARD/resources/releaseJuliet1.3Doc.txt
https://github.com/avast/retdec
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with a precision of 96%. The experiment was repeated under same conditions for
the multi-class classification using 24 classes (23 types of vulnerabilities and one
for non-flawed samples). Here, a bidirectional SRNN with three hidden layers
and the unit size of 128 gave the best results with an out-of-sample accuracy
of 78%. In both the unidirectional and bidirectional implementations, it can be
observed that the models with more hidden layers clearly outperform the smaller
models. The results of the multi-class training iterations are shown in Fig. 2.

Fig. 2. Accuracy and loss for multi-class classification

5 Discussion

We examined the improvement of a supervised deep learning approach using
recurrent neural networks for the application of vulnerability detection based
on binary executables [1]. The existing approach has been extended in both
implementation and scope, in terms of test case selection, pre-processing and
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the actual training process. We aimed at analyzing if additional vulnerabilities
can be detected, if the exact type of vulnerabilities can be identified and which
architectural changes of a recurrent neural network are relevant for the learning
process.

As part of the test-case selection, we expanded the test case selection and
justified this selection resulting in the use of 23 weaknesses and 50,651 samples in
total. In the preprocessing step, existing methods were extended to standardise
numerical values in the form of individual digits. We expect this step to be
essential for the detection of memory allocation related vulnerabilities.

When examining the suitability of an exact identification of the weakness
type, a binary classification was compared with a multi-class classification, which
achieved an accuracy of 88% and 77% respectively. In addition, the learning
effects and accuracy of detecting flawed code were both better with multi-class
classification, identifying the exact type is thus more useful.

However, we were not able to determine from [1] whether the classifications
performed consider classes in isolation and thus binary classify each of the flawed
and non-flawed samples of a single CWE. We are actually concerned that such
a sample selection could introduces a bias, since the isolated consideration of
single vulnerabilities does not reflect the real use case of vulnerability detection,
where several vulnerabilities have to be considered. For that reason our work
explicitly details the implementation of both approaches.

5.1 Limitations

Limitations of the approach used mainly arise from the dataset used, which con-
sists of synthetically generated test cases of selected CWEs. It can be presumed
that this data set has different properties in terms of structure and complexity
than real code, which would deviate the detection rate in real use cases. Fur-
thermore, the approach used at the function level has the disadvantage that it
is not suitable for identifying weaknesses that extend across several functions.

5.2 Future Work

In order to overcome the limitations discussed we propose the expansion of
the training dataset by using more realistic data for further enhancement. In
addition a combination with taint analysis methods could be used to be able to
identify vulnerabilities spreading across multiple functions. To not only identify
a vulnerability, but also to find out how this vulnerability can be exploited
and how the respective code location would be reached, a combination of our
approach with fuzzing techniques would be possible. In the first step, possible
vulnerable functions could be identified, and then fuzzing would be used to
determine the most ideal way to reach them. For finding the correct execution
branch, existing research has already impressively shown how the use of machine
learning methods can also accelerate this process [16].
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6 Conclusion

This paper aimed to analyse whether deep learning-based models can be used
to sufficiently identify vulnerabilities in binary executables. We have shown how
the approach introduced in [1] can be extended from 4 to 23 types of identified
vulnerabilities and how additions to the preprocessing process allow for better
processing of numerical values in particular. These differences in preprocessing
and our extended scope meant that it was not possible to reproduce the work
precisely.

We also showed that our approach can be transferred to other types of vulner-
abilities and that false negatives in particular can be excluded, thus generously
reducing the scope of an analysis. In the extended model selection, the findings
from the work [1] regarding the result that SRNN produce the best results could
be confirmed.

Based on these findings, we can recommend the general analysis approach
and state that deep learning methods are able to identify a variety of practically
relevant vulnerabilities. However, in terms of practical application, it was noted
that it is unclear how accurately the relationships learned from synthetic data
can be recognised in real applications.

A reasonable next step for further research would therefore be to apply the
investigated approach to realistic data in order to prove its added value for find-
ing weakness with regard to real applications. For this purpose, a comparison
with other methods discussed, such as the similarity-based analysis of binaries
or the common methods of static analysis, would also be useful. Finally, the
possibility of combining the presented approach with alternative analysis meth-
ods was discussed. We consider such a combination to be reasonable due to the
possibility of precise narrowing of the scope of analysis of a binary file based on
the detection methodology presented in this work.
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Abstract. A Feistel Network (FN) based block cipher relies on a Sub-
stitution Box (S-Box) for achieving the non-linearity. S-Box is carefully
designed to achieve optimal cryptographic security bounds. The research
of the last three decades shows that considerable efforts are being made
on the mathematical design of an S-Box. To import the exact crypto-
graphic profile of an S-Box, the designer focuses on the Affine Equiva-
lent (AE) or Extended Affine (EA) equivalent S-Box. In this research,
we argue that the Robustness of surjective mappings is invariant under
AE and not invariant under EA transformation. It is proved that the EA
equivalent of a surjective mapping does not necessarily contribute to the
Robustness against the Differential Cryptanalysis (DC) in the light of
Seberry’s criteria. The generated EA equivalent S-Box(es) of DES and
other 6 × 4 mappings do not show a good robustness profile compared
to the original mappings. This article concludes that a careful selection
of affine permutation parameters is significant during the design phase
to achieve high Robustness against DC and Differential Power Analysis
(DPA) attacks.

Keywords: S-Box · Permutations · Block Ciphers · Cryptography ·
Differential Cryptanalysis · Differential Uniformity · Affine Equivalence

1 Introduction

Al-Kindi cracked the thousands-year-old Ceaser cipher by exploiting the fre-
quency of occurrence problem in a natural language. The US intelligence agencies
broke the language redundancy problem aroused due to misuse of the Russian
One Time Pad (OTP) [1]. To suppress the statistics of plaintext in the resultant
ciphertext, Claude Shannon coined the idea of information entropy in his land-
mark papers [2–4]. He proposed the concepts of Confusion and Diffusion achiev-
able by networking substitution and permutation in a block cipher. Research
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on the design and security of the substitution layer is maturing [5,6]. The engi-
neering of S-Box remains an area of focus for the cryptographic community. A
cryptanalyst intends to find the statistical vulnerabilities in its design [7–9], and
a side channel analyst exploits the cryptographic implementations [10]. An S-Box
is generated in multiple ways, i.e., Mathematical processing (Finite Field Inver-
sion [11–13]), random generation [14,15] and heuristic-based approach [16,17].
The mathematical generation of S-Box needs rigorous research, but it promises
an optimum cryptographic profile, i.e., Differential Uniformity (DU) [8] and Lin-
earity [9]. The mathematician focuses on the Affine, or Extended Affine (EA)
equivalent, to copy the cryptographic profile of the parent candidate [18,19].
Seberry et al. [20,21] discussed the idea of Robustness against the DC (later
on will be called Robustness throughout the document) rather than focusing on
the highest coefficient in the Difference Distribution Table (DDT) alone. The
robustness is upper bounded by (1−2−n+1) for (n ≡ 1 mod 2) and (1−2−n+2)
for (n ≡ 0 mod 2) for an n-bit (finite field inversion based) bijection. However,
the Robustness of an m × n surjective S-Box is interesting in this regard, upper
bounded by 2n+m−1−2m−2n−1+1

2n+m−1 . The realistic values deviate from the lower or
upper bounds. The AE and EA equivalent S-Box retains the distribution of
differential probabilities at different locations in the DDT compared to the par-
ent profile. Evaluating Robustness in the surjective substitution layer is crucial
rather than focusing on the DU alone. This article identifies and addresses the
robustness problem in the AE and EA equivalent surjective mappings.

Paper Organization: Section 2 explains the preliminary mathematical notations
used throughout the document. In Sect. 3, we have discussed the types and design
strategies of S-Box mappings. Section 4 outlines the robustness against differen-
tial cryptanalysis. Our results are elaborated in Sect. 5, and the paper is con-
cluded in Sect. 6.

2 Preliminaries

Definition 1. Given two positive integers (m,n ≥ 2), an S-Box is a vectorial
boolean function of the form β : Fm

2 → F
n
2 , mapping an m-bits to n-bits. For

m = n, S is a bijection, and m > n is a surjective mapping.

Definition 2. An S-Box is deferentially δ-uniform (δ ≡ 0 mod 2), if for all
a ∈ F

m
2 \ 0, x ∈ F

m
2 and b ∈ F

n
2 in a 2m × 2n Difference Distribution Table

(DDT), δ is the maximum number of occurrences for which Eq. 1 is satisfied.

NB(a, b) = {β(x) ⊕ β(x ⊕ a) = b}
δ = max

Δa�=0∈F
m
2 ,Δb∈F

n
2

NB(Δa,Δb) (1)

Definition 3. An m × n S-Box is differential R Robust, if for δ, and the fre-
quency ψ of non-zero entries in the DDT for a �= 0 and b = 0.

R = (1 − δ

2m
)(1 − ψ

2m
) (2)
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Definition 4. Two m-bit S-Box(es), β and β∗ are affine equivalent (AE) if
there exists an affine permutation L ∈ An and z ∈ F

m
2 [18,19]

β∗ = L ◦ β(x) ⊕ z (3)

Definition 5. Two m-bit S-Box(es), β and β� are extended affine (EA) equiv-
alent, if there exists an affine permutation K,L ∈ An, for some A, c, x, z ∈ F

m
2

and affine function Z(x) = A · (x) ⊕ z [18,19]

β� = K ◦ β(x) ◦ L ⊕ Z(x) (4)

3 Design of S-Box(es)

The information-theoretic security of an FN or SPN block cipher mainly depends
upon an S-Box; therefore, heinous efforts are made on the design level strategies
[5]. Since its inception, high-end research is contributed to its optimal design.
These strategies are grouped into three (03) classes, i.e., Mathematical objects,
Random Generation and Heuristic Techniques. A cryptographer expects a pro-
file with lower δ from an S-Box. The probability distribution of differentials in
a DDT is estimated in [22–24] and Theorem 9.1.1, Eqn 9.1 and 9.2 in [25]. The
mathematical function-based cryptographic mappings are (not limited to) Finite
Field inversion [26–31], Finite Field exponentiation [32,33], Modular Ring Expo-
nentiation [34], and APN functions [35,36]. Like Finite Field inversion [11], not
all the mathematical functions are promising for optimal cryptographic profile,
δ = 128 for SAFER [34] and δ = 10 for E2 [37].

Based upon the results in (Theorem 9.1.1 and Eqn 9.1 [25]), the probability
that a random m × n mapping will be differentially 4 uniform is negligible. For
any 6 × 4 random mapping, the probability that it will be an APN is very low
compared to any other 6 × 4 random mapping with δ = 12. Random mappings
available in the literature [38–41], key-dependent S-Box generation [42] lies in
this cluster as well. A randomly generated S-Box does not guarantee an optimal
cryptographic profile.

The heuristic-based mappings are the refined version of the pseudo-random
mappings. A randomly generated S-Box is filtered for some set of cryptographic
properties. The S-Box is accepted if the desired profile is achieved; otherwise,
a new mapping is generated. The S-Box in Kuznyechick [43] was claimed to be
heuristically generated but turned down by Perrin in [25]. The permutation in
Anubis [44], Skipjack [45], and Kalyna [46] is the outcome of the Hill climbing
technique.

The differential uniformity [11], linearity [9], Algebraic Degree [18], balanced-
ness and linear structures [47] remains invariant under the affine equivalence. The
differential branch number and linear branch number [48], Differential Power
Analysis (DPA) Signal to Noise Ratio (SNR) [49], Transparency Order (TO)
[50] does not remain invariant under the affine and extended affine equivalence.
Lower values of DPA-SNR and TO guarantee the resistance of an S-Box against
DPA attacks.
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4 Robustness of Surjective S-Box(es)

Seberry explained the reasons for the weaknesses of the Data Encryption Stan-
dard (DES) against the differential Cryptanalysis [20]. The author argued that
only the largest coefficient in the DDT table does not matter, and the frequency
of non-zero entries in the first column of DDT is also important. For an n-bit
bijection, the frequency of zero entries for the first column is 2n − 1, and R is
upper bounded by 1 − 2−n+1. The number of non-zero entries is not strictly
unitary in the DDT of m × n mapping (Page 62 - [8]). For surjective mappings,
the robustness is quite interesting and bounded by (1 − 1

2m )(1 − 2−n+1). The
robustness deviates from the lower or upper bound as proposed in [20,21].

Proposition 1. Robustness against the differential cryptanalysis is invariant
under affine equivalence.

Proof: For any positive x, α ∈ F2n , the derivative of S(x) in the direction of α
is DαS(x) = S(x) ⊕ S(x ⊕ α). For an affine matrix Lover F2 and z ∈ F2n , let
S∗(x) = L · S(x) ⊕ z be the affine equivalent S-Box. The directional derivative
of S∗(x) can be computed in the following manner,

DαS∗(x) = S∗(x) ⊕ S∗(x ⊕ α)
= L · S(x) ⊕ z ⊕ L · S(x ⊕ α) ⊕ z

= L · S(x) ⊕ L · S(x ⊕ α)
= L · (S(x) ⊕ S(x ⊕ α))
= L · (DαS(x))

(5)

Since the robustness profile in Eq. 2 only considers the frequency of non-zero
entries in the first column (which is β = 0, equivalently DαS(x) = 0) of DDT,
An S-Box’s affine preserves the distribution of coefficients (with altered posi-
tions) in the DDT. The frequency of non-zero entries in the first column remains
unchanged. The affine equivalence changes the positions of coefficients in the
DDT rows according to the affine matrix. The affine constant z does not play
any role in managing DDT coefficients. The affine permutation parameters do
not affect δ and ψ, thus preserving the values of R in Eq. 2 accordingly.

Proposition 2. Robustness against the differential cryptanalysis is not invari-
ant under extended affine equivalence.

Proof: For two affine matrices A1, A2 over F2, let SΔ = A1 · S(A2(x ⊕ b1)) ⊕
b2 ⊕ A3(x) ⊕ b3 be EA equivalent S-Box of S. The directional derivative of SΔ

can be computed in the following manner,

DαS
Δ
(x) = S

Δ
(x) ⊕ S

Δ
(x ⊕ α)

= A1 · S(A2(x ⊕ b1)) ⊕ b2 ⊕ A3(x) ⊕ b3 ⊕ A1 · S(A2(x ⊕ α ⊕ b1)) ⊕ b2 ⊕ A3(x ⊕ α) ⊕ b3

= A1 · S(A2(x ⊕ b1)) ⊕ A1 · S(A2(x ⊕ α ⊕ b1)) ⊕ A3(x) ⊕ A3(x ⊕ α)

= A1 · S(A2(x ⊕ b1)) ⊕ A1 · S(A2(x ⊕ α ⊕ b1)) ⊕ A3(α)

= A1 · (S(A2(x ⊕ b1)) ⊕ S(A2(x ⊕ α ⊕ b1))) ⊕ A3(α)

(6)



Robustness of Affine and Extended Affine Equivalent Surjective S-Box(es) 465

From Eq. 6, it is evident that the directional derivative is affected by the affine
permutation parameters, thus affecting the values of the directional derivative
for α. The changing frequency of non-zero entries in the first column of DDT
results in the variation of the Robustness profile of EA equivalent mappings.

The higher values of δ and ψ lead to weakened S-Box(es) against the differ-
ential cryptanalysis. The designer focuses on importing the exact cryptographic
profile rather than stressing the affine permutation parameters. The selection
of affine permutation parameters and functions is crucial in this regard. Those
affine permutation parameters are of the utmost importance, which can lower
the value of ψ, resulting in higher robustness. The preceding section shed some
light on the actual test cases of the real-world ciphers, and optimal mappings in
the 4-bit class [51,52].

5 Results

For evaluation of robustness, the S-Box(es) from a well-known cipher DES,
analyzed in [20], are compared to the affine equivalent S-Box(es) for differ-
ent affine permutation parameters. The 4-bit S-Box(es) with optimal crypto-
graphic properties from [51] are combined to get 6-bit S-Box(es) of the form
β1 : F6

2 → F
4
2. The three 5-bit non-linear mappings from [47] are combined for

achieving β2 : F6
2 → F

5
2. For β1 and β2, R is upper bounded by 0.861 and 0.923

respectively. We have also randomly generated (6×5) and (6×4) mappings and
their associated affine equivalent candidates1. The lower values of R against the
affine equivalent of the DES Substitution layer in (Table 1, from [20]) is a clear
indication of the weakness against DC. For the sake of convenience, the affine
equivalent mappings are represented as i, j ∈ [0 . . . ord(An) − 1] for an affine
matrix Mi,Mj ,∈ An, for all i �= j.

Following the proof in Proposition-1 and Eq. 5, the robustness profile of affine
equivalent mappings in Table 3, 2 and 1 remains invariant for all the S-Box(es)
under consideration. The results from Proposition-2 prove that the robustness
profiles for the extended affine equivalent in Table 3, 2 and 1 do not remain
invariant for the surjective mappings. For EA-S0 (EA equivalent of S0), the R
values drastically drop to 0.1289 from 0.316 in Table 1. In Table 2, the values of
R decline to 0.063 for EA-O3 and EA-O4. The R values for EA equivalence are
not promising as the parent mappings in Table 3.

According to [49], the upper bound of DPA-SNR for 6 × 4 S-Box is 23.
The higher values of DPA-SNR make an S-Box vulnerable to the DPA attack.
DPA-SNR of A-S0 (5.0360) is higher than the parent S-Box DPA-SNR (3.6110).
Similarly, the DPA-SNR profile of EA-S7 shows smaller values than S7 and A-
7, making it more resistant to DPA attacks. The TO profile of S-Box(es) in
Table 1 is altered by the affine parameters as compared to the parent mappings;

1 The S-Box(es), their equivalent mappings and detailed cryptographic profile is
available at https://drive.google.com/drive/folders/1-6DNsVdZWT kkdhJEpZgM-
A0Pjtv8wtQ?usp=sharing.

https://drive.google.com/drive/folders/1-6DNsVdZWT_kkdhJEpZgM-A0Pjtv8wtQ?usp=sharing
https://drive.google.com/drive/folders/1-6DNsVdZWT_kkdhJEpZgM-A0Pjtv8wtQ?usp=sharing
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the lower value of TO against all the S-Box(es) is minimized to 2.0079 for EA-
S2. The lower value of TO for the S3 in Table 1 is maximized from 2.0634 to
2.0674 in EA-S3. The values of DPA-SNR for EA-O1 and EA-O5 in Table 2 are
drastically higher and approaching the higher bound, making them vulnerable
to DPA attacks.

For 6 × 5 mappings, the DPA and TO profiles show considerable variations
in Table 3. The DPA-SNR of S54 is lowered from 5.0531 to 3.729 in A-S54. On
the other hand, the EA map amplifies the values against S51 and EA-S51. The
TO values are maximized for EA-S54, and EA-S52 are lowered accordingly.

Table 1. Robustness Profile of DES and its Equivalent S-Box(es)

S-Box S0 S1 S2 S3 S4 S5 S6 S7

ψ 37 33 37 24 31 33 35 36

δ 16

R 0.316 0.363 0.316 0.469 0.387 0.363 0.340 0.328

DPA-SNR 3.6110 4.503 0.316 3.855 3.855 3.0836 4.6618 4.2188

TO 2.063492

Affine Equivalent S-Box(es) of DES

S-Box A-S0 A-S1 A-S2 A-S3 A-S4 A-S5 A-S6 A-S7

ψ 37 33 37 24 31 33 35 36

δ 16

R 0.316 0.363 0.316 0.469 0.387 0.363 0.340 0.328

DPA-SNR 5.0360 4.3813 4.3787 4.7819 4.3120 3.4148 4.8906 4.0236

TO 2.063492

Extended Affine Equivalent S-Box(es) of DES

S-Box EA-S0 EA-S1 EA-S2 EA-S3 EA-S4 EA-S5 EA-S6 EA-S7

ψ 53 44 52 44 49 45 48 44

δ 16

R 0.1289 0.2344 0.1406 0.2344 0.1758 0.2227 0.1875 0.2344

DPA-SNR 4.57711 4.3813 4.9506 3.3795 4.2350 4.7970 3.9806 3.05629

TO 2.03571 2.0555 2.0079 2.0674 2.05158 2.0238 2.0555 2.04761
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Table 2. Robustness Profile of 6 × 4 Equivalent S-Box(es)

S-Box O1 O2 O3 O4 O5

ψ 18 11 15 21 21

δ 46 54 54 48 44

R 0.2021 0.1294 0.1196 0.168 0.210

DPA-SNR 3.1459 3.2825 2.8857 3.1067 3.2356

TO 2.063492

Affine Equivalent 6 × 4 S-Box(es)

S-Box A-O1 A-O2 A-O3 A-O4 A-O5

ψ 18 11 15 21 21

δ 46 54 54 48 44

R 0.2021 0.1294 0.1196 0.168 0.210

DPA-SNR 4.4216 4.0 2.5217 2.3717 3.3288

TO 2.063492

Extended Affine Equivalent 6 × 4 S-Box(es)

S-Box EA-O1 EA-O2 EA-O3 EA-O4 EA-O5

ψ 46 38 38 45 46

δ 46 54 54 48 44

R 0.079 0.063 0.063 0.0742 0.0879

DPA-SNR 7.3292 5.8362 5.2277 5.0695 6.2719

TO 2.0436 2.01984 2.05157 4.0 2.0198

Table 3. Robustness Profile of 6 × 5 Equivalent S-Box(es)

S-Box S51 S52 S53 S54

ψ 18 21 25 21

δ 34 32 32 32

R 0.3369 0.3359 0.3042 0.2734

DPA-SNR 4.1367 4.8013 4.5584 5.0531

TO 4.06394 4.0555 4.0158 4.0834

Affine Equivalent 6 × 5 S-Box(es)

S-Box A-S51 A-S52 A-S53 A-S54

ψ 18 21 25 21

δ 34 32 32 32

R 0.3369 0.3359 0.3042 0.2734

DPA-SNR 5.0800 4.2156 3.8318 3.7290

TO 5.0000 4.0198 5.0000 4.0119

Extended Affine Equivalent 6 × 5 S-Box(es)

S-Box EA-S51 EA-S52 EA-S53 EA-S54

ψ 31 27 37 29

δ 34 32 32 32

R 0.2417 0.2891 0.2109 0.2734

DPA-SNR 5.3692 5.0838 5.4433 4.9637

TO 4.0158 4.0079 4.0476 5.0000
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6 Conclusion

An S-Box is designed to achieve specific cryptographic properties to satisfy the
notions of information-theoretic security. The affine equivalent mappings import
the desired cryptographic profile. During the importing process, the crypto-
graphic engineer may overlook the robustness of surjective mappings. The affine
permutation choices drastically affect the robustness of a surjective mapping. In
our analysis, none of the 6 × 4 and 6 × 5 EA equivalent S-Box achieved good
robustness compared to the parent mapping. Neglecting affine parameters may
lead to a weakened mapping against the differential cryptanalysis irrespective
of the parent differential uniformity. The choice of affine parameters also affects
the security of an S-Box against DPA attacks. Therefore, a careful selection of
affine equivalence parameters is as essential as the cryptographic profile.
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