
 16 ;login: VOL. 36, NO. 1

Back to the Future: Revisiting IPv6
Privacy Extensions
D A V I D B A R R E R A , G L E N N W U R S T E R , A N D P . C . V A N O O R S C H O T

Network stacks on most operating systems are configured by default to use the
interface MAC address as part of the IPv6 address . This allows adversaries to
track systems as they roam between networks . The proposed solution to this prob-
lem—IPv6 privacy extensions—suffers from design and implementation issues
that limit its potential benefits . Our solution creates a more usable and configu-
rable approach to IPv6 privacy extensions that helps protect users from being
tracked .

With more people adopting IPv6, some features of the protocol are slowly being
explored by a small user-base . Security issues related to IP packet fragmentation
and malicious route headers [4] have been identified, and new RFCs addressing
those issues have been published (e .g ., RFC 5095 and RFC 5722) . Over many years,
the iterative process of identifying flaws and creating fixes led to IPv4 becoming a
stable and mature protocol . Since IPv6 is much newer and only now being broadly
deployed, many of its features have not enjoyed broad testing or security analysis .
In this article we concentrate on one such feature: IPv6 privacy extensions .

IPv6 provides the option for clients to assign themselves an IPv6 address based on
a 64-bit prefix periodically broadcast by a local server, and a 64-bit value derived
from the network interface identifier—usually the MAC address of the network
card . Having a globally routable IP address which includes (and therefore reveals
to remote servers) the MAC address of a client was regarded as a potential privacy
issue, leading to the development of IPv6 privacy extensions (RFC 4941) . Through
the use of these extensions, a host can generate and assign itself a partially
randomized (but still valid) IP address at fixed intervals, allowing connectivity
without revealing its MAC address . The existing IPv6 privacy extensions are not
only important for personal privacy, but also for hiding information which can oth-
erwise allow wide-scale targeted malware attacks such as Internet-scale hit lists .

Paradise Lost

The initial IPv6 address design choices have had a detrimental impact on privacy .
The proposed privacy extensions can also fail to provide the benefits they were
designed for . Having recorded multiple IPv6 addresses, an adversary can trivially
map two or more of these addresses to the same client, sometimes even when pri-
vacy extensions are in use . In practice, the adversary could be a corporation wish-
ing to provide targeted services only to users that fit a specific profile (e .g ., users
who have visited more than three coffee shops in the past week or have been at five
airports in the past month) . Other adversaries may include governments or eaves-

David Barrera is a PhD

student in computer science

at Carleton University under

the direction of Paul Van

Oorschot. His research interests include

network security, data visualization, and

smartphone security.

dbarrera@ccsl.carleton.ca

Glenn Wurster completed

his PhD in computer science

(2010) at Carleton University

under the direction of Paul

Van Oorschot. His interests include software

security, system administration, operating

systems, and Web security.

gwurster@scs.carleton.ca

Paul Van Oorschot is a

professor of computer science

at Carleton University in

Ottawa, where he is Canada

Research Chair in Authentication and

Computer Security. He was Program Chair of

USENIX Security ’08, Program Co-Chair of

NDSS 2001 and 2002, and co-author of the

Handbook of Applied Cryptography (1996).

paulv@scs.carleton.ca

 ;login: FEBRUARY 2011 Back to the Future: Revisiting IPv6 Privacy Extensions 17

droppers who wish to follow users as they roam through multiple locations . While
the tracking of users in IPv6 is partially addressed by the IPv6 privacy extensions,
the specification has a number of design issues which can cause implementations
to fall short of the goal of keeping the client-to-IP-address mapping private across
locations .

Without privacy extensions, tracking is possible because the last 64 bits of a cli-
ent’s IPv6 address are constant: if a client has IPv6 address 1::2345:6789 while
on network 1, the client may have IPv6 address 2::2345:6789 when using network
2 . This provides the means to track users as they move between IPv6-capable
networks . Existing privacy extensions essentially randomize the last 64 bits every
x seconds .

Paradise Regained

We propose a new technique and prototype implementation for generating private
IPv6 addresses . Our proposal differs from current IPv6 privacy extensions in that
it can be configured for different privacy requirements and is capable of provid-
ing private addresses even if an administrator has configured the network to
deter their use . Our proposal provides as much privacy as IPv4 and has minimal
overhead . We also describe the implementation of a Linux kernel prototype of our
proposal .

In this article we identify issues with the current state of IPv6 privacy extensions
that could lead to a downgrade attack, enabling eavesdroppers to track IPv6 users
as they move through networks . We also identify issues with currently deployed
implementations of IPv6 privacy extensions in modern operating systems, and
we propose a more flexible and robust algorithm for generating private IPv6
addresses .

IPv6 Background

Before we explain the details of our proposal, we will review relevant terminology
and background on how clients are assigned IPv6 addresses and on the originally
proposed privacy extensions . We will use the generally accepted terminology .

u Prefix: the first (most significant) 64 bits of an IPv6 address . A prefix can be
learned through periodic router advertisements, assigned by DHCPv6, or self-
assigned (e .g ., for loopback and link local addresses) .

u Interface identifier: the least significant 64 bits of an IPv6 address . The prefix
and interface identifier together fully specify an IPv6 address .

u Preferred lifetime: a lifetime associated with a particular IPv6 address dur-
ing which the address should be used to initiate connections . Once the lifetime
expires, the IPv6 address is deprecated, but still active for the remaining open
connections . The address remains deprecated until the valid lifetime expires .

u Valid lifetime: a lifetime associated with a particular IPv6 address . When it
expires, the IPv6 address is removed from the network interface by the kernel and
no longer used .

Obtaining IPv6 Addresses

Clients can obtain IPv6 addresses through one of three methods: (1) the user
manually assigns a valid IPv6 address to an interface; (2) a periodically advertised

 18 ;login: VOL. 36, NO. 1

prefix is prepended to the self-generated interface identifier; or (3) a DHCP server
is queried and the received response used . We review methods (2) and (3) .

S TAT E L E S S A D D R E S S A U T O - C O N F I G U R AT I O N

IPv6 provides a method for clients to automatically assign themselves a valid IPv6
address based on periodically broadcast router advertisements . In a typical setup,
a router broadcasts the IPv6 prefix that all clients should prepend to their auto-
configured interface identifier . In 1998 the authors of RFC 2462 suggested that
clients use their network MAC address in the generation of the interface identifier .
The rationale was that this provided sufficient uniqueness and would require no
persistent storage . Nine years later, RFC 4862 removed the MAC address sugges-
tion, allowing hosts to choose their own method for generating interface identi-
fiers . The interface identifier is always appended to the network prefix, after which
the Duplicate Address Detection (DAD) algorithm is run by the client to ensure
that the address is unique to the network segment, and therefore globally unique
(as prefixes are also unique) .

In cases where a MAC address is used as the interface identifier (still currently
the default behavior of Linux and Mac OS), the IPv6 address reveals information
which can be used to identify the client hardware . This ability to determine the
hardware configuration of a machine may lead to additional information about
the client being revealed on the network . For example, Mac OS runs on a specific
underlying hardware platform, allowing the identification of Apple users based
only on MAC addresses . This ability to determine the characteristics of a client
through the MAC address can be used in a targeted attack on a user or organization
(e .g ., sending a malicious PDF that only exploits Mac OS) . Bellovin et al . [3] argue
that the MAC address could also be used by IPv6 worms to target specific hosts .

I N A D V E R T E N T I P V 6 U S E R S

We define inadvertent IPv6 users as users who unknowingly use IPv6 to connect
to remote servers . While the vast majority of Internet users currently use IPv4,
modern OSes attempt to use IPv6 by default when resolving hosts . In a typical
network, connecting (and therefore revealing the source IP address of the connec-
tion) to a remote server over IPv4 will not typically allow the server to track the
individual or identify the network hardware . Connecting to the same server over
IPv6 may reveal sufficient information to track the individual and identify hard-
ware . Because stateless address auto-configuration does not depend on additional
client software (other than an updated kernel), it is likely to cause inadvertent IPv6
use . This increases the importance of IPv6 privacy extensions that truly provide
protection and information hiding .

D H C P V6

With the addition of stateless address auto-configuration for IPv6, hosts can
obtain network information and learn how to route packets without installing
additional software . While this may seem ideal from a network management
standpoint (e .g ., set up a route prefix advertisement daemon and IPv6 just works),
there may be other configuration parameters needed by hosts in order to actually
communicate with external hosts . These parameters will vary from network to
network, but some include WINS, NTP, NETBIOS, and DNS .

 ;login: FEBRUARY 2011 Back to the Future: Revisiting IPv6 Privacy Extensions 19

There are cases where administrators may choose to replace stateless auto-
configuration with DHCPv6, or use both simultaneously . When using DHCPv6 for
address assignment, the server keeps track of assigned addresses and the hosts
using them, as DHCP did in IPv4 . When using both, a host obtains its IPv6 address
through stateless auto-configuration and other information through a server on
the local network . The issue of tracking clients using IPv6 is specific to those who
obtain an address through stateless address auto-configuration .

Original Privacy Extensions

IPv6 privacy extensions for stateless address auto-configuration were proposed
specifically to address privacy concerns with having a static and globally unique
interface identifier . Concerns that a well-placed sniffer (or prolific ad network)
might track users as they roam through different networks are partially mitigated
by privacy extensions through using periodically changing random interface
identifiers . RFC 4941 specifies the algorithm used to generate a random identifier,
as well as when to update it . As shown in Figure 1, a hash function (MD5 is sug-
gested in the RFC) is used to generate the interface identifier . The first 64 bits of
output are used as the interface identifier, while the last 64 are stored for the next
iteration of the algorithm, which takes place every x seconds (or when a duplicate
address is detected by the client) . The first iteration of the function uses a random
value as the history value .

Figure 1: Original privacy extension address generation

The current specification has two important limitations . The only configurable
parameter is the interval at which new random interface identifiers are gener-
ated . The default interval is to generate a new identifier every 24 hours . This still
allows a user moving between two or more IPv6 networks in a 24-hour window to
be tracked by an adversary (since the client’s interface identifier will not change
during this time, even if the network prefix does) . The expert user can configure
the regeneration interval to be smaller, at the expense of no longer maintaining
long-lasting connections (e .g ., SSH or movie downloads) .

The intervals are dependent on the configuration of the network . If a user has
configured the interval for regeneration of addresses to be small, but the network
advertises smaller intervals, the smallest takes precedence . This means that if
the network is configured to advertise prefixes with valid lifetimes of 60 seconds,
a user with privacy extensions enabled will generate a new and different IPv6
address roughly every 60 seconds . This will severely impact user experience: no
connection made will last more than 60 seconds .

0 63 64 127

History Value
0 63

Hash Function (MD5)

64

63 0

Network Prefix

Network Prefix

Interface Identifier

Interface Identifier

Resulting IPv6 Address

128

Every x
seconds

 20 ;login: VOL. 36, NO. 1

The latest RFC for privacy extensions also specifies that system implementers
should add an option for the user to enable or disable random interface identifiers
on a per-prefix basis . This is similar to our proposal in that a new full IPv6 address
is generated when the prefix changes (the user changes networks), but differs
in that they rely on the client to maintain a list of networks for which privacy
extensions should be enabled (or disabled) and do not use the prefix directly in the
generation of random interface identifiers .

New Privacy Extensions Proposal

In this proposal we focus on protecting clients who configure their IPv6 address
through router advertisements from being tracked as they move between IPv6-
enabled networks . We do not address clients configured through DHCPv6 or
clients with static IPv6 addresses . We assume that each IPv6 network visited by a
client is associated with a distinct prefix (routing problems result if two networks
share the same IPv6 prefix) .

We assume that the attacker does not have access to the LAN segment, and hence
cannot associate IPv6 addresses with MAC addresses, but we do not assume that
the network administrator is totally benign . We assume the network administra-
tor is capable of modifying router advertisements, forcing users to renew their
IPv6 address often . We assume an attacker attempting to track the client can see
traffic generated with each IPv6 address the client uses . We do not attempt to pro-
tect against tracking clients using higher-level protocols such as HTTP [5] .

Figure 2: Generation of new IPv6 addresses

The new proposal is for clients to generate IPv6 address interface identifiers (I)
through hashing the IPv6 prefix advertised by the router advertisement daemon
(p) with a t-bit random number (R) incremented by n (in order to resolve dupli-
cate addresses) . R is generated locally and does not leave the client . The generated
interface address is composed of the first 64 bits of the resulting m-bit hash value,
as illustrated in Figure 2 .

I = H(p | (R + n))

0 63 64 127

Unused Output Bits
0 63

Hash Function

Random Number

m64

0 63 0

Network Prefix

Network Prefix

Interface Identifier

Interface Identifier

t

Resulting IPv6 Address

n
(R)(p)

 ;login: FEBRUARY 2011 Back to the Future: Revisiting IPv6 Privacy Extensions 21

We require a pre-image resistant hash function H [8] so that given the prefix and
interface identifier, an attacker cannot determine R . Keeping R hidden prevents
an attacker from determining that two distinct IPv6 addresses correspond to the
same client . There are no compatibility or interoperability concerns should two
clients choose to use different hash functions in generating the interface identifier .

To ensure that a new I is generated for every new network prefix (which is not pos-
sible in the current privacy extensions), p is included in the hash . There are several
options regarding when to change R, allowing the client control over when to start
using a new interface identifier . To prevent known attacks [11, 8] against guess-
ing R, its length (t) should be sufficient (e .g ., t = 128 or 256 bits should certainly
be enough), and it should be set from a cryptographically secure random number
generator .

Should a client discover (through duplicate address detection) that it is attempting
to use the same generated IPv6 address as another client on the local network (an
unlikely scenario), the client should generate a new I (and hence IPv6 address) by
incrementing n and recomputing the hash . The client should reset n to 0 on reboot
and whenever p or R changes .

Generation of New Random Numbers

Our proposal includes several options on when to (re)generate R, resulting in a
changed IPv6 address . The different options provide different levels of privacy
protection, which we now discuss .

 1 . Generate R on OS install . If R is generated during system install and then
never changed, I will change when the network prefix advertised by the router
changes . As long as p remains constant, so will I . This option is useful for laptops
in enterprise environments . As long as the laptop is on the corporate network, the
IPv6 address will be fixed . When the laptop is removed from the network (e .g ., the
employee goes to a USENIX workshop), the interface identifier I will change, pre-
venting the employee from being tracked as they roam between networks . When
they rejoin the enterprise environment, they will re-obtain the original interface
identifier .

 2 . Generate R on OS reboot . This option results in a new IPv6 address every time
the computer is rebooted, even if the client receives the same IPv6 prefix from the
broadcast daemon .

 3 . Generate R on network interface change . This option results in a new interface
identifier I being generated whenever the client computer brings up the network
interface . Since interfaces are brought up on boot and when connecting to a wire-
less network, a client will use a different I each time it joins a network broadcast-
ing the same IPv6 prefix .

 4 . Generate R when the user chooses . This option results in a new interface
identifier I being generated based on user involvement (e .g ., the user regenerates
R when transitioning between tasks) . While we include this option for complete-
ness, we do not suggest defaulting to this option .

 5 . Generate R every x seconds . In this option, the client generates a new IPv6
address every x seconds . This approach closely parallels the current IPv6 pri-
vacy scheme . Unlike the approaches discussed above, a new IPv6 address may
be generated while network connections are open, causing these connections to
be dropped . To reduce the number of dropped connections, the kernel can avoid
deleting old IPv6 temporary addresses associated with active network connec-

 22 ;login: VOL. 36, NO. 1

tions . As long as the active network prefix is the same as that contained in the old
temporary address, the temporary address can continue to be used . While we note
that x does not need to stay fixed (i .e ., a new x can also be chosen when the random
identifier is updated), we currently see no additional benefit in randomly changing
x . A default x of one day mirrors the current default with IPv6 privacy extensions .

We suggest the generation of a new random number (and hence interface iden-
tifier) whenever the network interface is brought up (option 3) . This method
generates IPv6 addresses as frequently as possible without interrupting open con-
nections (since connections are terminated when the interface goes down) .

Our proposal is designed so that given two distinct IPv6 addresses, it should be
hard for an attacker to answer the question, “Did the same client use both IPv6
addresses?” To answer this question, the attacker must be able to determine that
the same R value was used in the generation of both addresses (since two clients
sharing the same R value is extremely unlikely) .

In answering this question, we assume that the attacker has access to the gener-
ated interface identifier as well as to the prefix . The security, therefore, depends
on the difficulty of determining the random number provided to the pre-image
resistant hash function—which is assumed to be hard for a sufficiently large R . An
attacker attempting to track a client would need to keep trying random values for R
until finding one which generates multiple distinct and observed interface identi-
fiers; therefore a birthday attack [2, 8] does not seem to help .

Because the interface identifier changes whenever the prefix changes, a client
connecting through two networks with different prefixes will also connect with
different interface identifiers, leaking no information in the IPv6 address .

One potential attack against our proposal involves a network administrator (as
attacker) broadcasting target prefixes in an effort to detect what interface identi-
fier would be used by the client on that network (e .g ., the administrator broadcasts
prefix 1:2:3::/64 to determine what IPv6 address the client would attempt to use
on that network) . The attack would be successful if R was not updated by the cli-
ent before visiting the target network . One way to defend against this attack is to
configure the client to generate a new R whenever it enables or makes a change to
the network interface .

The proposal for generating interface identifiers relies on an appropriate random
number generator . If R can be guessed, an attacker can determine whether a client
using the same R value generated multiple distinct IPv6 addresses using dis-
tinct prefixes . The proposal also depends on a pre-image resistant hash function
(SHA-2 should suffice) .

Our approach does not protect against an attacker identifying two addresses used
by a client through correlating the time at which one IPv6 address stops being used
and another starts . We expect that as IPv6 privacy extensions are deployed, the
volume of IPv6 address churn will make correlations more difficult .

As an extension to the core approach, it may be possible to use multiple IPv6 tem-
porary addresses concurrently on a host . As an example, a new IPv6 address could
be used for every application running on the client (e .g ., Web browsing would use
one IPv6 address, DNS queries would use another, and an active SSH connection
may use a third) . While not directly privacy related, a server may also choose to use
multiple IPv6 addresses (e .g ., as a method for distributing firewalls [12]) .

 ;login: FEBRUARY 2011 Back to the Future: Revisiting IPv6 Privacy Extensions 23

Implementation

For our prototype implementation, we used version 2 .6 .34 of the Linux kernel . We
modified the currently implemented IPv6 privacy extensions . The modified kernel
provides several sys-controls which can be read and written to by user-space
programs, controlling the operation of IPv6 privacy extensions . These sys-controls
are as follows:

use_tempaddr: controls whether or not to enable privacy extensions . Possible
values are listed in Table 1 .

temp_valid_lft: the maximum amount of time a temporary address is valid . In the
original approach, a new distinct temporary address would be created . In this pro-
posal, the lifetime of an already existing temporary address will be extended when
router advertisements are received if both p and R are unchanged .

temp_prefered_lft: the maximum amount of time a temporary address will be
the preferred address for the interface . As with temp_valid_lft, the lifetime will be
extended if both p and R are unchanged when a router advertisement is received .

temp_random (new): a 32 byte (256 bit) random value R used as input to the hash
function . This sys-control is specific to our proposal .

We tested our prototype by switching between several IPv6 networks and verify-
ing that the generated IPv6 addresses were different at each network . We did not
notice any impact on activities such as Web browsing and SSH . During the course
of implementing the proposed IPv6 privacy extensions in Linux, we found several
bugs which cause IPv6 privacy extensions to be disabled and/or have all temporary
addresses deleted . We have a patch in version 2 .6 .37 of the Linux kernel which
addresses these implementation deficiencies . We will be submitting our proposed
revisions to privacy extensions to the Linux kernel in hopes that this will help
improve adoption .

Value Meaning

0 Privacy extension disabled

1 Original privacy extension enabled but not used by default for new
outgoing connections

2 Original privacy extension enabled and used by default for new
 outgoing connections

5 Proposed privacy extension enabled but not used by default for new
outgoing connections

6 Proposed privacy extension enabled and used by default for new
 outgoing connections

Table 1: Possible values and their meanings for the use_tempaddr sys-control in the modified
kernel.

 24 ;login: VOL. 36, NO. 1

Other Related Work

Cryptographically Generated Addresses [1] (CGA) were proposed to prevent steal-
ing and/or spoofing IPv6 addresses . CGAs define a method for securely associat-
ing a public key to an IPv6 address . The interface identifier of the IPv6 address is
a cryptographic hash of the public key, which can later be verified by the recipient
of the packet or message . Because CGAs tie a public key to an IPv6 address, even as
hosts switch networks, they are uniquely identifiable through use of the public key .
CGAs, like our proposal, use a cryptographic hash to generate the interface identi-
fier, but the purpose of CGAs is contrary to ours and our proposal does not involve
public keys .

Mobility extensions (RFC 3775) define ways in which a mobile host can move
between networks while maintaining open connections, even if the networks use
different link layer technologies (WiMAX, LTE, WiFi) . This is accomplished by
establishing a tunnel (usually with IPSec) to the home network . The mobile host is
then reachable through the proxy home network . Route optimization (RFC 4866)
allows the correspondent node (server) to communicate directly with the mobile
host, even though the mobile host’s IPv6 address may continue to change . IPv6
Mobile extensions with route optimization are illustrated in Figure 3 .

Figure 3: Communication with Mobile IPv6 agents

For mobile agents, implementing route optimization is mandatory . The corre-
spondent node receives both the home address and care-of address and can track
the location of the mobile agent as it moves between IPv6 networks . Because the
mobile agent is also tied to the fixed home address, enabling privacy extensions at
the mobile agent does not prevent the correspondent node from tracking the mobile
agent . To prevent tracking the mobile agent, the home address and care-of address
must be changed at the same time . Otherwise, the correspondent node can tie the
old address to the new address and continue to track the mobile node .

Mobility extensions aim to address connection persistence problems rather than
privacy concerns . The former have also been solved independently in the cell phone
industry at the link layer, where cell towers hand off connections to prevent active
phone calls from being dropped when a device switches towers .

Tracking at Other Layers

Guha and Francis [6] demonstrate how to track users through DNS . Their analy-
sis shows that dynamic DNS updates combined with geolocation [9] can provide a
passive attacker with all the approximate locations visited by a victim . Geolocation
in IPv6 may also reveal more accurate results compared to IPv4 due to address
allocation recommendations (http://www .apnic .net/policy/ipv6-address-policy) .

Home Agent

care-of-address

Correspondent
Node

Mobile Agent

home address

 ;login: FEBRUARY 2011 Back to the Future: Revisiting IPv6 Privacy Extensions 25

Users with private IPv6 addresses may be tracked at the application layer through
cookies [7] or browser characteristics [5] . Protecting privacy at all layers is clearly
a difficult problem and beyond our scope, but we argue that in order to have privacy
at higher-level protocols, underlying protocols must also be private .

While we do not address the problem of tracking users on the LAN specifically
in this article, we note that tracking users at the Ethernet level is possible due to
clients broadcasting their MAC addresses [10] . Because MAC addresses in the
Ethernet header are overwritten on a hop-by-hop basis, attackers outside the LAN
do not obtain the MAC address of a client . This article focuses on the network
layer, where tracking can be performed across the Internet .

Conclusion

We have proposed a new way of generating the interface identifier used in tempo-
rary IPv6 addresses . The use of temporary addresses prevents tracking clients as
they move between IPv6 networks . Our approach does not use MAC addresses,
which can be used to identify client hardware .

Our proposal has several benefits over the current IPv6 privacy extension scheme,
including: (1) the ability to maintain a consistent IPv6 address over an extended
period regardless of the lifetime specified by a router advertisement (as long as
the prefix being advertised does not change); (2) the ability to always use the same
interface identifier while connected to a network broadcasting an unchanging
prefix; (3) the ability to configure when a new interface identifier should be created
(e .g ., whenever the network interface is brought up); and (4) not being able to track
a client through the use of a common interface identifier across networks broad-
casting different IPv6 prefixes . We have implemented and tested the approach in
Linux and found that it generates new interface identifiers as designed while not
impacting Internet activities .

A version of this article is also available as Technical Report TR-10-17 (September
9, 2010), Carleton University, School of Computer Science .

References

[1] T . Aura, “Cryptographically Generated Addresses (CGA),” in Proceedings of the
6th International Information Security Conference (ISC ’03), pp . 29–43 .

[2] M . Bellare, O . Goldreich, and H . Krawczyk, “Stateless Evaluation of Pseudoran-
dom Functions: Security beyond the Birthday Barrier,” 19th International Confer-
ence on Cryptology (Crypto ’99) .

[3] S . Bellovin, B . Cheswick, and A . Keromytis, “Worm Propagation Strategies in an
IPv6 Internet,” ;login:, vol . 31, no . 1 (February 2006), pp . 70–76 .

[4] P . Biondi, A . Ebalard, M . Balmer, and V . Manral, “Ipv6 Protocol Type 0 Route
Header Denial of Service Vulnerability,” April 23, 2007: http://www .securityfocus
 .com/bid/23615 .

[5] P . Eckersley, “A Primer on Information Theory and Privacy”: https://www
 .eff .org/deeplinks/2010/01/primer-information-theory-and-privacy .

[6] S . Guha and P . Francis, “Identity Trail: Covert Surveillance Using DNS,” in
Proceedings of the Privacy Enhancing Technologies Symposium, 2007 .

 26 ;login: VOL. 36, NO. 1

[7] D . Kristol and L . Montulli, “HTTP State Management Mechanism,” RFC 2965
(Proposed Standard), October 2000 .

[8] A .J . Menezes, P .C . Van Oorschot, and S .A . Vanstone, Handbook of Applied Cryp-
tography (CRC Press, 1996) .

[9] J .A . Muir and P .C . Van Oorschot, “Internet Geolocation: Evasion and Counter-
evasion,” ACM Computing Surveys (CSUR), vol . 42, no . 1 (2009), pp . 1–23 .

[10] L . Peterson and B . Davie, Computer Networks: A Systems Approach (Morgan
Kaufmann, 2007) .

[11] B . Preneel and P .C . van Oorschot, “On the Security of Iterated Message Authen-
tication Codes,” IEEE-IT, vol . 45, no . 1 (January 1999), pp . 188–99 .

[12] H . Zhao, C .-K . Chau, and S .M . Bellovin, “ROFL: Routing as the Firewall
Layer,” in New Security Paradigms Workshop (NSPW), 2008 .

