
Smartphone Security

42 COPUBLISHED BY THE IEEE COMPUTER AND RELIABILITY SOCIETIES 1540-7993/11/$26.00 © 2011 IEEE MAY/JUNE 2011

S martphones—mobile phones with advanced
features, such as always-on Internet con-
nectivity, full-featured Web browsers, and
multimedia capabilities—have become ex-

tremely popular. Smartphone manufacturers and
mobile- OS vendors are selling record numbers of
units, and thousands of developers are forming com-
munities around each of the popular smartphone plat-
forms. A recent analysis suggests that by 2015, more
users will access the Web through smartphones than
through desktop systems.1 This shift isn’t entirely sur-
prising. Smartphones are more powerful today than
desktop computers were 10 years ago; they are more
portable and have fast CPUs, large amounts of RAM,

-
tor in determining a platform’s commercial success.
This has led major smartphone OS vendors to provide
open development tools, such as a set of APIs, emula-
tors, and tools to build apps, even when the platform
itself isn’t fully open.

Currently, the top smartphone platforms have
thousands of available apps, which users can usually
install through an on-device store with a few key

presses. Letting
users install so
many apps from
a variety of de-
velopers with such ease raises security issues. Users
must consider whether they can trust an app and its
developer and whether the app will break any other
apps they’ve installed.

Here, we describe how the four most popular
smartphone OSs—Apple’s iOS, Android, BlackBerry,
and Symbian—handle installation of third-party apps,
focusing on security. Our research on this topic led us
to a generalized classification of application installa-
tion methods, which have important implications for
smartphone security.

Security Considerations
for Smartphones
Mobile phones were once simple devices capable of
performing only basic phone functions. With the re-
lease of newer smartphone OSs, mobile phones be-
gan to include advanced desktop-like features, which
has caused users (and forced app developers) to think
differently about these devices. Whether users think
of their smartphones as computers is unclear. Typi-
cal computer activities such as installing and updating
software are present—albeit simpler—but other ac-
tivities such as running antivirus or firewalls are cur-
rently uncommon.

 Because of extensive feature sets, smartphones
tend to store more personal data (for example, pic-
tures, messages, and detailed contact information)

This overview of iOS, Android, BlackBerry, and Symbian

security frameworks includes a novel classification

of third-party-application installation models. It also

discusses how controlled app marketplaces fit in the

smartphone security ecosystem.

DaviD
Barrera anD
Paul van
OOrschOt

Carleton
University

Secure Software Installation
on Smartphones

Smartphone Security

 www.computer.org/security 43

than their plain-old cell phone (POC) precursors. So,
privacy and data-leak risks in the smartphone world
are more serious. Furthermore, always-on connectiv-
ity and cloud synchronization facilitate the propaga-
tion of locally corrupted data to other synchronization
end points. For example, in BlackBerry’s Enterprise
Server (BES) and Android’s contacts apps, syncing
results in contacts and email being stored on remote
servers and thus offering additional attack points.
Malware infecting the phone could propagate to the
cloud and, in turn, modify contacts on other cloud-
connected hosts.

Many smartphones also include GPS receivers to
help users get directions and find nearby attractions.
Malicious apps can potentially use location informa-
tion to track or spy on users, leading to serious pri-
vacy concerns.

These issues are by no means exhaustive but pro-
vide a flavor of the types of security concerns that
can arise from increasing third-party-app use. Asaf
Shabtai and his colleagues provide a comprehensive
list of smartphone threats.2

Current Smartphone Platforms
As of December 2010, iOS, Android, BlackBerry,
and Symbian accounted for approximately 92 percent
of the global smartphone market (measured by total
units sold in 2010; see Table 1).

iOS
Apple’s iOS (originally called the iPhone OS) is based
on the Mac OS. The iPhone, iPod Touch, and iPad all
run it, letting developers easily write apps that run on
all those devices. iOS apps are written in Objective-C
and can communicate with hardware through a set of
published APIs. iOS offers several abstraction layers to
easily create onscreen interactive menus, 2D and 3D
graphics, location services, and core OS functionality
such as threads and network sockets.

iOS achieves application separation and isolation
through a sandbox mechanism similar to that of Mac
OS X, in which a policy file restricts access to certain
device features and data.4 By default, no third-party
app can read or write data outside its own directory,
which includes system files, resources, and the kernel.
Restricting apps this way requires developers to use
registered APIs to access protected resources.

Developers wishing to publish iOS apps must sub-
mit them to Apple for approval. Apple hasn’t published
detailed information regarding the criteria underlying
its approval process.5 It’s generally believed that the
company employs both automated and manual veri-
fication of submitted apps. If an app is categorized as
suitable for public distribution, Apple digitally signs it
and releases it to Apple’s software clearinghouse, the

iTunes App Store. Apple rejects apps that it finds vio-
late intellectual property laws or developer terms of
service. Developers have reported cryptic and seem-
ingly subjective rejections of some apps, supporting
the consensus that Apple performs at least some man-
ual verification.

Android
The Open Handset Alliance’s Android platform (main-
ly backed by Google) is open source Linux-based mid-
dleware that runs on top of a Linux kernel. Android
powers a variety of smartphones, tablets, and netbooks
from many manufacturers. Linux provides hardware
support, and Android provides a device-independent
API and UI. Since Android’s announcement and first
release in October 2008, the code base has seen rapid
development, with three major releases in 2009 alone.

Android apps are written in Java and run in Dalvik,
a custom virtual machine (VM). Process and file sys-
tem isolation is provided primarily by making each
app run as its own user (using standard Unix user IDs).
By default, apps only have read and write access to files
in their own directory. Dalvik provides some isolation
as well. However, Android makes no security claims
or assumptions that the VM itself provides security.
This is because app developers can create and invoke
libraries written in C/C++, which are run natively,
beyond VM boundaries.

One unique Android feature is that it lets apps in-
teract and use system resources on the basis of a list of
permission labels. Developers must declare any special
functionality their apps might need, such as a camera,
GPS, and access to messages or contact data. They can
specify (in a manifest file) permission labels that pro-
tect their own interfaces, or labels to request access to
another app’s protected interfaces. Interprocess com-
munication (IPC) is allowed if the callee app allows
unrestricted access to its APIs or if the calling app has
defined the necessary permissions in its manifest to
access remote APIs. William Enck and his colleagues
discuss Android’s security model, including IPC and
the permission architecture.6

Android apps can be downloaded through the
Android Market—Google’s controlled app market-

Table 1. Year-end 2010 smartphone
platform global market share.3

Smartphone OS Global market share (%)

iOS 15.7

Android 22.7

BlackBerry 16.0

Symbian 37.6

Smartphone Security

44 IEEE SECURITY & PRIVACY MAY/JUNE 2011

place—or obtained directly through a developer’s site
or third-party-app marketplace, also called sideloading.
Google has minimal involvement when apps are up-
loaded to the Android Market and no involvement
when apps are distributed from a third-party devel-
oper site. Google removes apps from the Android
Market when their content violates terms of use or
when reported malicious activity is confirmed. A ma-
jor difference from iOS is that Android developers
don’t have to wait for external approval before their
apps become generally available and can still distribute
banned Android apps outside the Android Market.

BlackBerry
Research in Motion (RIM) developed the BlackBerry
OS. It runs on many BlackBerry models and has his-
torically targeted enterprise customers by including
features such as push email and groupware support
(for example, Microsoft Exchange, Lotus, Novell
GroupWise, and BES support).

BlackBerry supports third-party apps written in
Java. It uses sandboxing to isolate apps at runtime,
through the Java Virtual Machine (JVM). Develop-
ers traditionally wrote Java apps for BlackBerry and
distributed them through websites without requiring
RIM approval. This changed in April 2009 with the
introduction of BlackBerry App World, in which us-
ers of newer BlackBerry models can access a reposi-
tory of RIM-approved apps through an on-device
app. Even though RIM must approve each submitted
app for inclusion in App World, developers can host
their apps on other servers. Unlike Apple’s approval
model, having a RIM-approved app is only beneficial
for distribution purposes; unapproved apps can still be
distributed outside the market.

BlackBerry OS gives companies fine-grained con-
trol of devices they distribute to employees. Adminis-
trators can push policies to BlackBerry devices, letting
them restrict the functionality available to users. For
example, policy administrators might decide that apps
downloaded from third-party websites aren’t allowed
but that those installed through App World are.

Symbian
Nokia’s Symbian is the most widely used smartphone
OS. It has existed since the early 1990s and is now de-
ployed on hundreds of smartphone models. Symbian
was a proprietary platform until February 2010, when
Nokia open-sourced it under the Symbian^3 brand-
ing. Nokia designed the OS with integrity, security,
and low resources in mind, in contrast to the giga-
hertz chips on newer smartphones. Although malware
has targeted Symbian in the past, few attacks exploited
software flaws. Rather, they relied on social engineer-
ing or direct user manipulation—for example, the

Cabir worm repeatedly prompts users to click “yes”
to allow a malicious program to run.

Symbian mandates that all apps be digitally signed,
but not all signatures have to be issued by the Symbian
Foundation. Developers can self-sign their apps, let-
ting them access “user capabilities,” including making
phone calls, initiating network connections, and ac-
cessing device location data. Developers must submit
apps that modify system settings or access core OS files
or system capabilities to the Symbian Signed program
for approval. Users can configure Symbian phones
to check an online server for a certificate’s validity.
Unsigned apps might have limited access to advanced
functionality. However, they can still behave mali-
ciously and cause denial of service by executing code
repeatedly to drain the battery or even leak private in-
formation. Some carriers disable non- Symbian-signed
certificates entirely, allowing only signed apps to run
on devices they control.

Common Security Features
The main security features common to all four OSs
involve process and file system isolation; app or code
signing; ROM, firmware, and factory restore; and kill
switches.

Process and File System Isolation
All four OSs include some form of application isola-
tion to help protect apps from each other. Isolation
separates processes and file system access so that each
app can run in its own context while remaining un-
affected by other, potentially malicious, apps. Black-
Berry and Android provide process isolation (at least
partially in the case of Android) through VMs (JVM
and Dalvik, respectively). When running native apps
(not interpreted by a VM), iOS and Symbian provide
process isolation at the system level.

Typically, file system access on smartphones differs
from that on desktop systems. Applications can read
and write data only in their own context. Posix file
permissions limit access to files on Android, which
uses traditional read, write, and execute bits as well
as user and group identifiers. iOS enforces similar re-
strictions through sandbox policy files. Some smart-
phones include a memory card slot, which generally
takes a FAT32 formatted card. Because FAT32 doesn’t
have file access control (that is, the read, write, and ex-
ecute bits), apps that can read or write to the card can
access all content, not just data in the app’s context.

App or Code Signing
In code signing, an authority such as the app de-
veloper or OS vendor digitally signs an app so that
signature verification can later validate that the app
wasn’t tampered with and that it originates from the

Smartphone Security

46 IEEE SECURITY & PRIVACY MAY/JUNE 2011

•	an enterprise system administrator who already
controls policy on other devices.

The guardian is typically in charge of making most
of the fundamental security decisions (for example,
which apps may be installed and which services they’re
allowed to access). Thereafter, users are minimally in-
volved with the decisions. The guardian might also
perform less rigorous app vetting—for instance, ban-
ning apps that violate corporate policy.

This method provides a flexible middle ground for
software installation that can be fine-tuned accord-
ing to the required security level. If the guardian is
the user, this model moves closer to the user control
model.

The User Control Model
Here, the user is responsible for all software installation
and software security decisions. Third-party apps are
distributed to users with minimal involvement from
the phone vendor or carrier, reducing overhead costs.
Users can install software from any source (website,
memory card, or app marketplace), understanding the
risk that, because there’s no app vetting, any or all apps
could be malicious.

Ideally, this model should enforce any available
strong OS security features, such as application iso-
lation, to limit malicious apps’ negative impact on
the user experience. This balance is difficult to reach
because users might be required to answer puzzling
questions about software at either installation time or
resource access time. Users might not have the techni-
cal expertise or detailed knowledge to answer ques-
tions such as, “Do you want to allow app A to read
the phone state?”

Classifying Existing Systems
Figure 1 shows an approximate binning of platforms
into the different models.

iOS falls mostly into the walled-garden model
because Apple ultimately has the power over which
apps are available at its App Store. However, iOS isn’t
entirely a walled-garden OS; for example, in some in-
stances the user must make security decisions, includ-

ing whether to allow access to geolocation data. The
OS itself is also preloaded with policy files, resembling
a (relatively restrictive) guardian model.

Android is at the other end of the spectrum, fitting
tightly into the user control model and relying heav-
ily on users to keep their devices clear of malware.
Some carriers might choose to ship a branded ver-
sion of Android customized to their specific needs. In
these cases, Android moves more toward the guardian
model, in which the carrier is the guardian. Of course,
because the Android OS is open source, customization
can result in variations yet to be seen. Finally, Google
can (and has) employed the remote kill switch, show-
ing some resemblance to the walled-garden model.

BlackBerry most closely resembles the guardian
model. Depending on the environment, the guardian
might play an important role in configuring policy
for BlackBerry devices (typical corporate use). The
guardian could also be the carrier, configuring the
device for more flexible use and involving the user
only under certain conditions.

Symbian falls somewhere between the guardian
and user control models but is more difficult to locate
on the continuum in Figure 1. Symbian configures
many of its security features, but some are user con-
figurable, such as bypassing unsigned-app warnings.

We list POCs as the canonical example of the
walled-garden model because manufacturers and car-
riers don’t typically allow or support any phone modi-
fication, including app installation, postsale. We place
feature phones between the walled-garden and guard-
ian models. These devices allow app installation, but
carriers will often act as guardians, disabling features
and services on the device as they see fit.

Controlled Marketplaces
for Third-Party Applications
A trend has been for each smartphone vendor to pro-
vide a third-party-app repository (a controlled mar-
ketplace) that acts as a central location for app vetting,
app distribution, or both. Depending on the software
installation model, the marketplace might require rig-
orous vetting before including an app. Other market-
places might be for user convenience only, providing
an on-device location for searching for, rating, and
buying apps.

An app’s presence in a marketplace doesn’t imply
that it has undergone substantial vetting. The ap-
proved status can be denoted in three ways. The first
is by a digital signature, verified by a corresponding
public key on the device. The second is by the app’s
placement in a closed market, verified by validating
the software’s source (for example, through a Secure
Sockets Layer or other types of end-point verification).
Finally, both methods could be employed in parallel.

More control More open

Walled garden User controlGuardian

iOS

Symbian

BlackBerry OS Android

POCs Feature phones

Figure 1. An approximate binning of smartphone platforms across the three

generic software installation models. For reference, the figure includes plain-

old cell phones (POCs) and feature phones.

Smartphone Security

 www.computer.org/security 47

Controlled Markets under Each Model
Depending on the software installation model, con-
trolled markets might serve different purposes. In
each model, the market is a repository that lets an on-
device app conveniently search for, install, and rate
apps. Controlled markets also help developers reach
a large number of users—in many countries, on vari-
ous carriers and devices—by letting them upload their
apps to a central location. In the walled-garden mod-
el, the app marketplace has a secondary purpose: it’s a
choke point for allowing or rejecting apps, giving the
OS vendor full control over which apps are available
to users. The added control comes at the cost of scal-
ability and thoroughness in testing, because the ven-
dor must inspect each submitted application.

The user control model uses a controlled market
only for distribution. So, it allows third-party markets
such as those provided by carriers. The OS vendor
will rarely be involved in app testing or vetting, let-
ting developers and users interact more freely. Because
of a minimal-involvement policy, user-control-model
app marketplaces might rely more on crowd-sourced
vetting or recommendation systems.

The guardian model uses the marketplace for some
control but focuses more on app distribution. The app
marketplace allows downloads, but a configurable
policy on the phone controls installation. Although an
app approval process could exist, developers can dis-
tribute apps outside the controlled market—for exam-
ple, through their own websites. Controlled markets
on platforms using the guardian model might serve as
a repository for “premium” apps that have undergone
some testing.

Application Vetting Tests
We describe some tests that vendors run on apps dur-
ing vetting. This includes information we obtained
informally as well as anecdotal reports; most smart-
phone OS vendors don’t publicly explain their test-
ing process. Of the four platforms we discuss, only
Symbian publishes a list of tests it has performed, and
the vendors review only compiled binaries, not source
code files.

Smoke tests. These tests usually involve a quick over-
view inspection of the app to ensure that it doesn’t fail
catastrophically. Generally, these tests aren’t thorough
but are an initial sanity check to verify that the app
is worth a full testing process, provided one exists.
Smoke tests help filter out both broken apps submitted
by mistake and poorly written apps. These tests must
be simple to perform in an automated fashion, thereby
reducing costs, albeit sometimes at the expense of ac-
curacy. Our understanding is that all controlled mar-
ketplaces perform at least basic smoke testing.

Hidden-API checks. Mobile OSs, like their desktop
counterparts, contain APIs reserved for system apps.
These APIs are generally hidden from developer docu-
mentation and intended to be used only by the OS ven-
dor. Developers sometimes use hidden APIs (by either
guessing function names in a common namespace or
reverse-engineering the OS) to directly access low- level
functionality or speed up their app by avoiding unneces-
sary abstraction layers, especially in graphics and media
code. This use is considered poor programming practice
because the APIs could change with future OS releases.
Static code analysis and debugging can help identify
hidden APIs but might not reveal all instances. This test
might require manual testing and fuzzing.

Functionality checks. These tests verify that the app
can undergo typical expected use without interfering
with other installed apps. Smartphone vendors don’t
always release details of how they perform such tests,
but we expect manual testing is required. Function-
ality checks involve simulated real-world app use to
ensure the app opens, closes, doesn’t crash, and so
forth. Other checks might include verifying that an
app doesn’t drain the battery or disrupt basic phone
functionality, such as the ability to receive a phone
call. Some vendors might also perform further testing
on the most popular apps in their app repository.

Intellectual property, liability, and terms-of-
service checks. These checks verify that an app
doesn’t violate vendor or carrier terms of service or
infringe on intellectual property. Vendors usually
perform these tests to limit their liability in the event
of a legal dispute surrounding the app once it’s been
approved. Such checks can be partially automated by
looking for specific trademarked keywords or files.
However, they likely require some manual inspection
if they’re searching for objectionable content or if they
simply rely on independent notification or complaints
by third parties.

UI checks. Some vendors heavily emphasize the
app’s UI in an attempt to deliver a more consistent
user experience. For these vendors, testing the UI—
including the placement of buttons, color schemes,
and navigation—is important. Failure to comply with
established UI guidelines could result in the app be-
ing rejected from a vendor’s controlled market. We
believe these checks are manual.

Bandwidth checks. Using excessive bandwidth can
severely impact a network. Applications that stream
Internet radio or download large files might be fur-
ther tested to see whether they operate within a net-
work operator’s infrastructure constraints.

